| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539 | #include <assert.h>#include <limits.h>#include <stdio.h>#include "defs.h"#include "misc.h"#include "puttymem.h"#include "mpint.h"#include "mpint_i.h"#pragma warn -ngu // WINSCP#define SIZE_T_BITS (CHAR_BIT * sizeof(size_t))/* * Inline helpers to take min and max of size_t values, used * throughout this code. */static inline size_t size_t_min(size_t a, size_t b){    return a < b ? a : b;}static inline size_t size_t_max(size_t a, size_t b){    return a > b ? a : b;}/* * Helper to fetch a word of data from x with array overflow checking. * If x is too short to have that word, 0 is returned. */static inline BignumInt mp_word(mp_int *x, size_t i){    return i < x->nw ? x->w[i] : 0;}static mp_int *mp_make_sized(size_t nw){    mp_int *x = snew_plus(mp_int, nw * sizeof(BignumInt));    assert(nw);                   /* we outlaw the zero-word mp_int */    x->nw = nw;    x->w = snew_plus_get_aux(x);    mp_clear(x);    return x;}mp_int *mp_new(size_t maxbits){    size_t words = (maxbits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;    return mp_make_sized(words);}mp_int *mp_from_integer(uintmax_t n){    mp_int *x = mp_make_sized(        (sizeof(n) + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES);    size_t i; // WINSCP    for (i = 0; i < x->nw; i++)        x->w[i] = n >> (i * BIGNUM_INT_BITS);    return x;}size_t mp_max_bytes(mp_int *x){    return x->nw * BIGNUM_INT_BYTES;}size_t mp_max_bits(mp_int *x){    return x->nw * BIGNUM_INT_BITS;}void mp_free(mp_int *x){    mp_clear(x);    smemclr(x, sizeof(*x));    sfree(x);}void mp_dump(FILE *fp, const char *prefix, mp_int *x, const char *suffix){    size_t i; // WINSCP    fprintf(fp, "%s0x", prefix);    for (i = mp_max_bytes(x); i-- > 0 ;)        fprintf(fp, "%02X", mp_get_byte(x, i));    fputs(suffix, fp);}void mp_copy_into(mp_int *dest, mp_int *src){    size_t copy_nw = size_t_min(dest->nw, src->nw);    memmove(dest->w, src->w, copy_nw * sizeof(BignumInt));    smemclr(dest->w + copy_nw, (dest->nw - copy_nw) * sizeof(BignumInt));}/* * Conditional selection is done by negating 'which', to give a mask * word which is all 1s if which==1 and all 0s if which==0. Then you * can select between two inputs a,b without data-dependent control * flow by XORing them to get their difference; ANDing with the mask * word to replace that difference with 0 if which==0; and XORing that * into a, which will either turn it into b or leave it alone. * * This trick will be used throughout this code and taken as read the * rest of the time (or else I'd be here all week typing comments), * but I felt I ought to explain it in words _once_. */void mp_select_into(mp_int *dest, mp_int *src0, mp_int *src1,                    unsigned which){    BignumInt mask = -(BignumInt)(1 & which);    size_t i; // WINSCP    for (i = 0; i < dest->nw; i++) {        BignumInt srcword0 = mp_word(src0, i), srcword1 = mp_word(src1, i);        dest->w[i] = srcword0 ^ ((srcword1 ^ srcword0) & mask);    }}void mp_cond_swap(mp_int *x0, mp_int *x1, unsigned swap){    pinitassert(x0->nw == x1->nw);    volatile BignumInt mask = -(BignumInt)(1 & swap);    size_t i; // WINSCP    for (i = 0; i < x0->nw; i++) {        BignumInt diff = (x0->w[i] ^ x1->w[i]) & mask;        x0->w[i] ^= diff;        x1->w[i] ^= diff;    }}void mp_clear(mp_int *x){    smemclr(x->w, x->nw * sizeof(BignumInt));}void mp_cond_clear(mp_int *x, unsigned clear){    BignumInt mask = ~-(BignumInt)(1 & clear);    size_t i; // WINSCP    for (i = 0; i < x->nw; i++)        x->w[i] &= mask;}/* * Common code between mp_from_bytes_{le,be} which reads bytes in an * arbitrary arithmetic progression. */static mp_int *mp_from_bytes_int(ptrlen bytes, size_t m, size_t c){    size_t nw = (bytes.len + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES;    nw = size_t_max(nw, 1);    { // WINSCP    mp_int *n = mp_make_sized(nw);    size_t i; // WINSCP    for (i = 0; i < bytes.len; i++)        n->w[i / BIGNUM_INT_BYTES] |=            (BignumInt)(((const unsigned char *)bytes.ptr)[m*i+c]) <<            (8 * (i % BIGNUM_INT_BYTES));    return n;    } // WINSCP}mp_int *mp_from_bytes_le(ptrlen bytes){    return mp_from_bytes_int(bytes, 1, 0);}mp_int *mp_from_bytes_be(ptrlen bytes){    return mp_from_bytes_int(bytes, -1, bytes.len - 1);}static mp_int *mp_from_words(size_t nw, const BignumInt *w){    mp_int *x = mp_make_sized(nw);    memcpy(x->w, w, x->nw * sizeof(BignumInt));    return x;}/* * Decimal-to-binary conversion: just go through the input string * adding on the decimal value of each digit, and then multiplying the * number so far by 10. */mp_int *mp_from_decimal_pl(ptrlen decimal){    /* 196/59 is an upper bound (and also a continued-fraction     * convergent) for log2(10), so this conservatively estimates the     * number of bits that will be needed to store any number that can     * be written in this many decimal digits. */    pinitassert(decimal.len < (~(size_t)0) / 196);    size_t bits = 196 * decimal.len / 59;    /* Now round that up to words. */    size_t words = bits / BIGNUM_INT_BITS + 1;    mp_int *x = mp_make_sized(words);    size_t i; // WINSCP    for (i = 0; i < decimal.len; i++) {        mp_add_integer_into(x, x, ((char *)decimal.ptr)[i] - '0');        if (i+1 == decimal.len)            break;        mp_mul_integer_into(x, x, 10);    }    return x;}mp_int *mp_from_decimal(const char *decimal){    return mp_from_decimal_pl(ptrlen_from_asciz(decimal));}/* * Hex-to-binary conversion: _algorithmically_ simpler than decimal * (none of those multiplications by 10), but there's some fiddly * bit-twiddling needed to process each hex digit without diverging * control flow depending on whether it's a letter or a number. */mp_int *mp_from_hex_pl(ptrlen hex){    pinitassert(hex.len <= (~(size_t)0) / 4);    size_t bits = hex.len * 4;    size_t words = (bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;    words = size_t_max(words, 1);    { // WINSCP    mp_int *x = mp_make_sized(words);    size_t nibble; // WINSCP    for (nibble = 0; nibble < hex.len; nibble++) {        BignumInt digit = ((char *)hex.ptr)[hex.len-1 - nibble];        BignumInt lmask = ~-((BignumInt)((digit-'a')|('f'-digit))                             >> (BIGNUM_INT_BITS-1));        BignumInt umask = ~-((BignumInt)((digit-'A')|('F'-digit))                             >> (BIGNUM_INT_BITS-1));        BignumInt digitval = digit - '0';        digitval ^= (digitval ^ (digit - 'a' + 10)) & lmask;        digitval ^= (digitval ^ (digit - 'A' + 10)) & umask;        digitval &= 0xF; /* at least be _slightly_ nice about weird input */        { // WINSCP        size_t word_idx = nibble / (BIGNUM_INT_BYTES*2);        size_t nibble_within_word = nibble % (BIGNUM_INT_BYTES*2);        x->w[word_idx] |= digitval << (nibble_within_word * 4);        } // WINSCP    }    return x;    } // WINSCP}mp_int *mp_from_hex(const char *hex){    return mp_from_hex_pl(ptrlen_from_asciz(hex));}mp_int *mp_copy(mp_int *x){    return mp_from_words(x->nw, x->w);}uint8_t mp_get_byte(mp_int *x, size_t byte){    return 0xFF & (mp_word(x, byte / BIGNUM_INT_BYTES) >>                   (8 * (byte % BIGNUM_INT_BYTES)));}unsigned mp_get_bit(mp_int *x, size_t bit){    return 1 & (mp_word(x, bit / BIGNUM_INT_BITS) >>                (bit % BIGNUM_INT_BITS));}uintmax_t mp_get_integer(mp_int *x){    uintmax_t toret = 0;    size_t i; // WINSCP    for (i = x->nw; i-- > 0 ;) {        /* Shift in two stages to avoid undefined behaviour if the         * shift count equals the integer width */        toret = (toret << (BIGNUM_INT_BITS/2)) << (BIGNUM_INT_BITS/2);        toret |= x->w[i];    }    return toret;}void mp_set_bit(mp_int *x, size_t bit, unsigned val){    size_t word = bit / BIGNUM_INT_BITS;    pinitassert(word < x->nw);    unsigned shift = (bit % BIGNUM_INT_BITS);    x->w[word] &= ~((BignumInt)1 << shift);    x->w[word] |= (BignumInt)(val & 1) << shift;}/* * Helper function used here and there to normalise any nonzero input * value to 1. */static inline unsigned normalise_to_1(BignumInt n){    n = (n >> 1) | (n & 1);            /* ensure top bit is clear */    n = (BignumInt)(-n) >> (BIGNUM_INT_BITS - 1); /* normalise to 0 or 1 */    return n;}static inline unsigned normalise_to_1_u64(uint64_t n){    n = (n >> 1) | (n & 1);            /* ensure top bit is clear */    n = (-n) >> 63;                    /* normalise to 0 or 1 */    return n;}/* * Find the highest nonzero word in a number. Returns the index of the * word in x->w, and also a pair of output uint64_t in which that word * appears in the high one shifted left by 'shift_wanted' bits, the * words immediately below it occupy the space to the right, and the * words below _that_ fill up the low one. * * If there is no nonzero word at all, the passed-by-reference output * variables retain their original values. */static inline void mp_find_highest_nonzero_word_pair(    mp_int *x, size_t shift_wanted, size_t *index,    uint64_t *hi, uint64_t *lo){    uint64_t curr_hi = 0, curr_lo = 0;    size_t curr_index; // WINSCP    for (curr_index = 0; curr_index < x->nw; curr_index++) {        BignumInt curr_word = x->w[curr_index];        unsigned indicator = normalise_to_1(curr_word);        curr_lo = (BIGNUM_INT_BITS < 64 ? (curr_lo >> BIGNUM_INT_BITS) : 0) |            (curr_hi << (64 - BIGNUM_INT_BITS));        curr_hi = (BIGNUM_INT_BITS < 64 ? (curr_hi >> BIGNUM_INT_BITS) : 0) |            ((uint64_t)curr_word << shift_wanted);        if (hi)    *hi    ^= (curr_hi    ^ *hi   ) & -(uint64_t)indicator;        if (lo)    *lo    ^= (curr_lo    ^ *lo   ) & -(uint64_t)indicator;        if (index) *index ^= (curr_index ^ *index) & -(size_t)  indicator;    }}size_t mp_get_nbits(mp_int *x){    /* Sentinel values in case there are no bits set at all: we     * imagine that there's a word at position -1 (i.e. the topmost     * fraction word) which is all 1s, because that way, we handle a     * zero input by considering its highest set bit to be the top one     * of that word, i.e. just below the units digit, i.e. at bit     * index -1, i.e. so we'll return 0 on output. */    size_t hiword_index = -(size_t)1;    uint64_t hiword64 = ~(BignumInt)0;    /*     * Find the highest nonzero word and its index.     */    mp_find_highest_nonzero_word_pair(x, 0, &hiword_index, &hiword64, NULL);    { // WINSCP    BignumInt hiword = hiword64; /* in case BignumInt is a narrower type */    /*     * Find the index of the highest set bit within hiword.     */    BignumInt hibit_index = 0;    size_t i; // WINSCP    for (i = (1 << (BIGNUM_INT_BITS_BITS-1)); i != 0; i >>= 1) {        BignumInt shifted_word = hiword >> i;        BignumInt indicator =            (BignumInt)(-shifted_word) >> (BIGNUM_INT_BITS-1);        hiword ^= (shifted_word ^ hiword ) & -indicator;        hibit_index += i & -(size_t)indicator;    }    /*     * Put together the result.     */    return (hiword_index << BIGNUM_INT_BITS_BITS) + hibit_index + 1;    } // WINSCP}/* * Shared code between the hex and decimal output functions to get rid * of leading zeroes on the output string. The idea is that we wrote * out a fixed number of digits and a trailing \0 byte into 'buf', and * now we want to shift it all left so that the first nonzero digit * moves to buf[0] (or, if there are no nonzero digits at all, we move * up by 'maxtrim', so that we return 0 as "0" instead of ""). */static void trim_leading_zeroes(char *buf, size_t bufsize, size_t maxtrim){    size_t trim = maxtrim;    /*     * Look for the first character not equal to '0', to find the     * shift count.     */    if (trim > 0) {        size_t pos; // WINSCP        for (pos = trim; pos-- > 0 ;) {            uint8_t diff = buf[pos] ^ '0';            size_t mask = -((((size_t)diff) - 1) >> (SIZE_T_BITS - 1));            trim ^= (trim ^ pos) & ~mask;        }    }    /*     * Now do the shift, in log n passes each of which does a     * conditional shift by 2^i bytes if bit i is set in the shift     * count.     */    { // WINSCP    uint8_t *ubuf = (uint8_t *)buf;    size_t logd; // WINSCP    for (logd = 0; bufsize >> logd; logd++) {        uint8_t mask = -(uint8_t)((trim >> logd) & 1);        size_t d = (size_t)1 << logd;        size_t i; // WINSCP        for (i = 0; i+d < bufsize; i++) {            uint8_t diff = mask & (ubuf[i] ^ ubuf[i+d]);            ubuf[i] ^= diff;            ubuf[i+d] ^= diff;        }    }    } // WINSCP}/* * Binary to decimal conversion. Our strategy here is to extract each * decimal digit by finding the input number's residue mod 10, then * subtract that off to give an exact multiple of 10, which then means * you can safely divide by 10 by means of shifting right one bit and * then multiplying by the inverse of 5 mod 2^n. */char *mp_get_decimal(mp_int *x_orig){    mp_int *x = mp_copy(x_orig), *y = mp_make_sized(x->nw);    /*     * The inverse of 5 mod 2^lots is 0xccccccccccccccccccccd, for an     * appropriate number of 'c's. Manually construct an integer the     * right size.     */    mp_int *inv5 = mp_make_sized(x->nw);    pinitassert(BIGNUM_INT_BITS % 8 == 0);    size_t i; // WINSCP    for (i = 0; i < inv5->nw; i++)        inv5->w[i] = BIGNUM_INT_MASK / 5 * 4;    inv5->w[0]++;    /*     * 146/485 is an upper bound (and also a continued-fraction     * convergent) of log10(2), so this is a conservative estimate of     * the number of decimal digits needed to store a value that fits     * in this many binary bits.     */    assert(x->nw < (~(size_t)1) / (146 * BIGNUM_INT_BITS));    { // WINSCP    size_t bufsize = size_t_max(x->nw * (146 * BIGNUM_INT_BITS) / 485, 1) + 2;    char *outbuf = snewn(bufsize, char);    outbuf[bufsize - 1] = '\0';    /*     * Loop over the number generating digits from the least     * significant upwards, so that we write to outbuf in reverse     * order.     */    { // WINSCP    size_t pos; // WINSCP    for (pos = bufsize - 1; pos-- > 0 ;) {        /*         * Find the current residue mod 10. We do this by first         * summing the bytes of the number, with all but the lowest         * one multiplied by 6 (because 256^i == 6 mod 10 for all         * i>0). That gives us a single word congruent mod 10 to the         * input number, and then we reduce it further by manual         * multiplication and shifting, just in case the compiler         * target implements the C division operator in a way that has         * input-dependent timing.         */        uint32_t low_digit = 0, maxval = 0, mult = 1;        size_t i; // WINSCP        for (i = 0; i < x->nw; i++) {            unsigned j; // WINSCP            for (j = 0; j < BIGNUM_INT_BYTES; j++) {                low_digit += mult * (0xFF & (x->w[i] >> (8*j)));                maxval += mult * 0xFF;                mult = 6;            }            /*             * For _really_ big numbers, prevent overflow of t by             * periodically folding the top half of the accumulator             * into the bottom half, using the same rule 'multiply by             * 6 when shifting down by one or more whole bytes'.             */            if (maxval > UINT32_MAX - (6 * 0xFF * BIGNUM_INT_BYTES)) {                low_digit = (low_digit & 0xFFFF) + 6 * (low_digit >> 16);                maxval = (maxval & 0xFFFF) + 6 * (maxval >> 16);            }        }        /*         * Final reduction of low_digit. We multiply by 2^32 / 10         * (that's the constant 0x19999999) to get a 64-bit value         * whose top 32 bits are the approximate quotient         * low_digit/10; then we subtract off 10 times that; and         * finally we do one last trial subtraction of 10 by adding 6         * (which sets bit 4 if the number was just over 10) and then         * testing bit 4.         */        low_digit -= 10 * ((0x19999999ULL * low_digit) >> 32);        low_digit -= 10 * ((low_digit + 6) >> 4);        assert(low_digit < 10);        /* make sure we did reduce fully */        outbuf[pos] = '0' + low_digit;        /*         * Now subtract off that digit, divide by 2 (using a right         * shift) and by 5 (using the modular inverse), to get the         * next output digit into the units position.         */        mp_sub_integer_into(x, x, low_digit);        mp_rshift_fixed_into(y, x, 1);        mp_mul_into(x, y, inv5);    }    mp_free(x);    mp_free(y);    mp_free(inv5);    trim_leading_zeroes(outbuf, bufsize, bufsize - 2);    return outbuf;    } // WINSCP    } // WINSCP}/* * Binary to hex conversion. Reasonably simple (only a spot of bit * twiddling to choose whether to output a digit or a letter for each * nibble). */static char *mp_get_hex_internal(mp_int *x, uint8_t letter_offset){    size_t nibbles = x->nw * BIGNUM_INT_BYTES * 2;    size_t bufsize = nibbles + 1;    char *outbuf = snewn(bufsize, char);    size_t nibble; // WINSCP    outbuf[nibbles] = '\0';    for (nibble = 0; nibble < nibbles; nibble++) {        size_t word_idx = nibble / (BIGNUM_INT_BYTES*2);        size_t nibble_within_word = nibble % (BIGNUM_INT_BYTES*2);        uint8_t digitval = 0xF & (x->w[word_idx] >> (nibble_within_word * 4));        uint8_t mask = -((digitval + 6) >> 4);        char digit = digitval + '0' + (letter_offset & mask);        outbuf[nibbles-1 - nibble] = digit;    }    trim_leading_zeroes(outbuf, bufsize, nibbles - 1);    return outbuf;}char *mp_get_hex(mp_int *x){    return mp_get_hex_internal(x, 'a' - ('0'+10));}char *mp_get_hex_uppercase(mp_int *x){    return mp_get_hex_internal(x, 'A' - ('0'+10));}/* * Routines for reading and writing the SSH-1 and SSH-2 wire formats * for multiprecision integers, declared in marshal.h. * * These can't avoid having control flow dependent on the true bit * size of the number, because the wire format requires the number of * output bytes to depend on that. */void BinarySink_put_mp_ssh1(BinarySink *bs, mp_int *x){    size_t bits = mp_get_nbits(x);    size_t bytes = (bits + 7) / 8;    size_t i; // WINSCP    assert(bits < 0x10000);    put_uint16(bs, bits);    for (i = bytes; i-- > 0 ;)        put_byte(bs, mp_get_byte(x, i));}void BinarySink_put_mp_ssh2(BinarySink *bs, mp_int *x){    size_t bytes = (mp_get_nbits(x) + 8) / 8;    size_t i; // WINSCP    put_uint32(bs, bytes);    for (i = bytes; i-- > 0 ;)        put_byte(bs, mp_get_byte(x, i));}mp_int *BinarySource_get_mp_ssh1(BinarySource *src){    unsigned bitc = get_uint16(src);    ptrlen bytes = get_data(src, (bitc + 7) / 8);    if (get_err(src)) {        return mp_from_integer(0);    } else {        mp_int *toret = mp_from_bytes_be(bytes);        /* SSH-1.5 spec says that it's OK for the prefix uint16 to be         * _greater_ than the actual number of bits */        if (mp_get_nbits(toret) > bitc) {            src->err = BSE_INVALID;            mp_free(toret);            toret = mp_from_integer(0);        }        return toret;    }}mp_int *BinarySource_get_mp_ssh2(BinarySource *src){    ptrlen bytes = get_string(src);    if (get_err(src)) {        return mp_from_integer(0);    } else {        const unsigned char *p = bytes.ptr;        if ((bytes.len > 0 &&             ((p[0] & 0x80) ||              (p[0] == 0 && (bytes.len <= 1 || !(p[1] & 0x80)))))) {            src->err = BSE_INVALID;            return mp_from_integer(0);        }        return mp_from_bytes_be(bytes);    }}/* * Make an mp_int structure whose words array aliases a subinterval of * some other mp_int. This makes it easy to read or write just the low * or high words of a number, e.g. to add a number starting from a * high bit position, or to reduce mod 2^{n*BIGNUM_INT_BITS}. * * The convention throughout this code is that when we store an mp_int * directly by value, we always expect it to be an alias of some kind, * so its words array won't ever need freeing. Whereas an 'mp_int *' * has an owner, who knows whether it needs freeing or whether it was * created by address-taking an alias. */static mp_int mp_make_alias(mp_int *in, size_t offset, size_t len){    /*     * Bounds-check the offset and length so that we always return     * something valid, even if it's not necessarily the length the     * caller asked for.     */    if (offset > in->nw)        offset = in->nw;    if (len > in->nw - offset)        len = in->nw - offset;    { // WINSCP    mp_int toret;    toret.nw = len;    toret.w = in->w + offset;    return toret;    } // WINSCP}/* * A special case of mp_make_alias: in some cases we preallocate a * large mp_int to use as scratch space (to avoid pointless * malloc/free churn in recursive or iterative work). * * mp_alloc_from_scratch creates an alias of size 'len' to part of * 'pool', and adjusts 'pool' itself so that further allocations won't * overwrite that space. * * There's no free function to go with this. Typically you just copy * the pool mp_int by value, allocate from the copy, and when you're * done with those allocations, throw the copy away and go back to the * original value of pool. (A mark/release system.) */static mp_int mp_alloc_from_scratch(mp_int *pool, size_t len){    pinitassert(len <= pool->nw);    mp_int toret = mp_make_alias(pool, 0, len);    *pool = mp_make_alias(pool, len, pool->nw);    return toret;}/* * Internal component common to lots of assorted add/subtract code. * Reads words from a,b; writes into w_out (which might be NULL if the * output isn't even needed). Takes an input carry flag in 'carry', * and returns the output carry. Each word read from b is ANDed with * b_and and then XORed with b_xor. * * So you can implement addition by setting b_and to all 1s and b_xor * to 0; you can subtract by making b_xor all 1s too (effectively * bit-flipping b) and also passing 1 as the input carry (to turn * one's complement into two's complement). And you can do conditional * add/subtract by choosing b_and to be all 1s or all 0s based on a * condition, because the value of b will be totally ignored if b_and * == 0. */static BignumCarry mp_add_masked_into(    BignumInt *w_out, size_t rw, mp_int *a, mp_int *b,    BignumInt b_and, BignumInt b_xor, BignumCarry carry){    size_t i; // WINSCP    for (i = 0; i < rw; i++) {        BignumInt aword = mp_word(a, i), bword = mp_word(b, i), out;        bword = (bword & b_and) ^ b_xor;        BignumADC(out, carry, aword, bword, carry);        if (w_out)            w_out[i] = out;    }    return carry;}/* * Like the public mp_add_into except that it returns the output carry. */static inline BignumCarry mp_add_into_internal(mp_int *r, mp_int *a, mp_int *b){    return mp_add_masked_into(r->w, r->nw, a, b, ~(BignumInt)0, 0, 0);}void mp_add_into(mp_int *r, mp_int *a, mp_int *b){    mp_add_into_internal(r, a, b);}void mp_sub_into(mp_int *r, mp_int *a, mp_int *b){    mp_add_masked_into(r->w, r->nw, a, b, ~(BignumInt)0, ~(BignumInt)0, 1);}void mp_and_into(mp_int *r, mp_int *a, mp_int *b){    size_t i; // WINSCP    for (i = 0; i < r->nw; i++) {        BignumInt aword = mp_word(a, i), bword = mp_word(b, i);        r->w[i] = aword & bword;    }}void mp_or_into(mp_int *r, mp_int *a, mp_int *b){    size_t i; // WINSCP    for (i = 0; i < r->nw; i++) {        BignumInt aword = mp_word(a, i), bword = mp_word(b, i);        r->w[i] = aword | bword;    }}void mp_xor_into(mp_int *r, mp_int *a, mp_int *b){    size_t i; // WINSCP    for (i = 0; i < r->nw; i++) {        BignumInt aword = mp_word(a, i), bword = mp_word(b, i);        r->w[i] = aword ^ bword;    }}void mp_bic_into(mp_int *r, mp_int *a, mp_int *b){    size_t i; // WINSCP    for (i = 0; i < r->nw; i++) {        BignumInt aword = mp_word(a, i), bword = mp_word(b, i);        r->w[i] = aword & ~bword;    }}static void mp_cond_negate(mp_int *r, mp_int *x, unsigned yes){    BignumCarry carry = yes;    BignumInt flip = -(BignumInt)yes;    size_t i; // WINSCP    for (i = 0; i < r->nw; i++) {        BignumInt xword = mp_word(x, i);        xword ^= flip;        BignumADC(r->w[i], carry, 0, xword, carry);    }}/* * Similar to mp_add_masked_into, but takes a C integer instead of an * mp_int as the masked operand. */static BignumCarry mp_add_masked_integer_into(    BignumInt *w_out, size_t rw, mp_int *a, uintmax_t b,    BignumInt b_and, BignumInt b_xor, BignumCarry carry){    size_t i; // WINSCP    for (i = 0; i < rw; i++) {        BignumInt aword = mp_word(a, i);        size_t shift = i * BIGNUM_INT_BITS;        BignumInt bword = shift < BIGNUM_INT_BYTES ? b >> shift : 0;        BignumInt out;        bword = (bword ^ b_xor) & b_and;        BignumADC(out, carry, aword, bword, carry);        if (w_out)            w_out[i] = out;    }    return carry;}void mp_add_integer_into(mp_int *r, mp_int *a, uintmax_t n){    mp_add_masked_integer_into(r->w, r->nw, a, n, ~(BignumInt)0, 0, 0);}void mp_sub_integer_into(mp_int *r, mp_int *a, uintmax_t n){    mp_add_masked_integer_into(r->w, r->nw, a, n,                               ~(BignumInt)0, ~(BignumInt)0, 1);}/* * Sets r to a + n << (word_index * BIGNUM_INT_BITS), treating * word_index as secret data. */static void mp_add_integer_into_shifted_by_words(    mp_int *r, mp_int *a, uintmax_t n, size_t word_index){    unsigned indicator = 0;    BignumCarry carry = 0;    size_t i; // WINSCP    for (i = 0; i < r->nw; i++) {        /* indicator becomes 1 when we reach the index that the least         * significant bits of n want to be placed at, and it stays 1         * thereafter. */        indicator |= 1 ^ normalise_to_1(i ^ word_index);        /* If indicator is 1, we add the low bits of n into r, and         * shift n down. If it's 0, we add zero bits into r, and         * leave n alone. */        { // WINSCP        BignumInt bword = n & -(BignumInt)indicator;        uintmax_t new_n = (BIGNUM_INT_BITS < 64 ? n >> BIGNUM_INT_BITS : 0);        n ^= (n ^ new_n) & -(uintmax_t)indicator;        { // WINSCP        BignumInt aword = mp_word(a, i);        BignumInt out;        BignumADC(out, carry, aword, bword, carry);        r->w[i] = out;        } // WINSCP        } // WINSCP    }}void mp_mul_integer_into(mp_int *r, mp_int *a, uint16_t n){    BignumInt carry = 0, mult = n;    size_t i; // WINSCP    for (i = 0; i < r->nw; i++) {        BignumInt aword = mp_word(a, i);        BignumMULADD(carry, r->w[i], aword, mult, carry);    }    assert(!carry);}void mp_cond_add_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes){    BignumInt mask = -(BignumInt)(yes & 1);    mp_add_masked_into(r->w, r->nw, a, b, mask, 0, 0);}void mp_cond_sub_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes){    BignumInt mask = -(BignumInt)(yes & 1);    mp_add_masked_into(r->w, r->nw, a, b, mask, mask, 1 & mask);}/* * Ordered comparison between unsigned numbers is done by subtracting * one from the other and looking at the output carry. */unsigned mp_cmp_hs(mp_int *a, mp_int *b){    size_t rw = size_t_max(a->nw, b->nw);    return mp_add_masked_into(NULL, rw, a, b, ~(BignumInt)0, ~(BignumInt)0, 1);}unsigned mp_hs_integer(mp_int *x, uintmax_t n){    BignumInt carry = 1;    size_t i; // WINSCP    for (i = 0; i < x->nw; i++) {        size_t shift = i * BIGNUM_INT_BITS;        BignumInt nword = shift < CHAR_BIT*sizeof(n) ? n >> shift : 0;        BignumInt dummy_out;        BignumADC(dummy_out, carry, x->w[i], ~nword, carry);        (void)dummy_out;    }    return carry;}/* * Equality comparison is done by bitwise XOR of the input numbers, * ORing together all the output words, and normalising the result * using our careful normalise_to_1 helper function. */unsigned mp_cmp_eq(mp_int *a, mp_int *b){    BignumInt diff = 0;    size_t i, limit; // WINSCP    for (i = 0, limit = size_t_max(a->nw, b->nw); i < limit; i++)        diff |= mp_word(a, i) ^ mp_word(b, i);    return 1 ^ normalise_to_1(diff);   /* return 1 if diff _is_ zero */}unsigned mp_eq_integer(mp_int *x, uintmax_t n){    BignumInt diff = 0;    size_t i; // WINSCP    for (i = 0; i < x->nw; i++) {        size_t shift = i * BIGNUM_INT_BITS;        BignumInt nword = shift < CHAR_BIT*sizeof(n) ? n >> shift : 0;        diff |= x->w[i] ^ nword;    }    return 1 ^ normalise_to_1(diff);   /* return 1 if diff _is_ zero */}void mp_neg_into(mp_int *r, mp_int *a){    mp_int zero;    zero.nw = 0;    mp_sub_into(r, &zero, a);}mp_int *mp_add(mp_int *x, mp_int *y){    mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw) + 1);    mp_add_into(r, x, y);    return r;}mp_int *mp_sub(mp_int *x, mp_int *y){    mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw));    mp_sub_into(r, x, y);    return r;}mp_int *mp_neg(mp_int *a){    mp_int *r = mp_make_sized(a->nw);    mp_neg_into(r, a);    return r;}/* * Internal routine: multiply and accumulate in the trivial O(N^2) * way. Sets r <- r + a*b. */static void mp_mul_add_simple(mp_int *r, mp_int *a, mp_int *b){    BignumInt *aend = a->w + a->nw, *bend = b->w + b->nw, *rend = r->w + r->nw;    BignumInt *ap, *rp; // WINSCP    for (ap = a->w, rp = r->w;         ap < aend && rp < rend; ap++, rp++) {        BignumInt adata = *ap, carry = 0, *rq = rp;        { // WINSCP        BignumInt *bp; // WINSCP        for (bp = b->w; bp < bend && rq < rend; bp++, rq++) {            BignumInt bdata = bp < bend ? *bp : 0;            BignumMULADD2(carry, *rq, adata, bdata, *rq, carry);        }        } // WINSCP        for (; rq < rend; rq++)            BignumADC(*rq, carry, carry, *rq, 0);    }}#ifndef KARATSUBA_THRESHOLD      /* allow redefinition via -D for testing */#define KARATSUBA_THRESHOLD 24#endifstatic inline size_t mp_mul_scratchspace_unary(size_t n){    /*     * Simplistic and overcautious bound on the amount of scratch     * space that the recursive multiply function will need.     *     * The rationale is: on the main Karatsuba branch of     * mp_mul_internal, which is the most space-intensive one, we     * allocate space for (a0+a1) and (b0+b1) (each just over half the     * input length n) and their product (the sum of those sizes, i.e.     * just over n itself). Then in order to actually compute the     * product, we do a recursive multiplication of size just over n.     *     * If all those 'just over' weren't there, and everything was     * _exactly_ half the length, you'd get the amount of space for a     * size-n multiply defined by the recurrence M(n) = 2n + M(n/2),     * which is satisfied by M(n) = 4n. But instead it's (2n plus a     * word or two) and M(n/2 plus a word or two). On the assumption     * that there's still some constant k such that M(n) <= kn, this     * gives us kn = 2n + w + k(n/2 + w), where w is a small constant     * (one or two words). That simplifies to kn/2 = 2n + (k+1)w, and     * since we don't even _start_ needing scratch space until n is at     * least 50, we can bound 2n + (k+1)w above by 3n, giving k=6.     *     * So I claim that 6n words of scratch space will suffice, and I     * check that by assertion at every stage of the recursion.     */    return n * 6;}static size_t mp_mul_scratchspace(size_t rw, size_t aw, size_t bw){    size_t inlen = size_t_min(rw, size_t_max(aw, bw));    return mp_mul_scratchspace_unary(inlen);}static void mp_mul_internal(mp_int *r, mp_int *a, mp_int *b, mp_int scratch){    size_t inlen = size_t_min(r->nw, size_t_max(a->nw, b->nw));    assert(scratch.nw >= mp_mul_scratchspace_unary(inlen));    mp_clear(r);    if (inlen < KARATSUBA_THRESHOLD || a->nw == 0 || b->nw == 0) {        /*         * The input numbers are too small to bother optimising. Go         * straight to the simple primitive approach.         */        mp_mul_add_simple(r, a, b);        return;    }    /*     * Karatsuba divide-and-conquer algorithm. We cut each input in     * half, so that it's expressed as two big 'digits' in a giant     * base D:     *     *   a = a_1 D + a_0     *   b = b_1 D + b_0     *     * Then the product is of course     *     *   ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0     *     * and we compute the three coefficients by recursively calling     * ourself to do half-length multiplications.     *     * The clever bit that makes this worth doing is that we only need     * _one_ half-length multiplication for the central coefficient     * rather than the two that it obviouly looks like, because we can     * use a single multiplication to compute     *     *   (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0     *     * and then we subtract the other two coefficients (a_1 b_1 and     * a_0 b_0) which we were computing anyway.     *     * Hence we get to multiply two numbers of length N in about three     * times as much work as it takes to multiply numbers of length     * N/2, which is obviously better than the four times as much work     * it would take if we just did a long conventional multiply.     */    { // WINSCP    /* Break up the input as botlen + toplen, with botlen >= toplen.     * The 'base' D is equal to 2^{botlen * BIGNUM_INT_BITS}. */    size_t toplen = inlen / 2;    size_t botlen = inlen - toplen;    /* Alias bignums that address the two halves of a,b, and useful     * pieces of r. */    mp_int a0 = mp_make_alias(a, 0, botlen);    mp_int b0 = mp_make_alias(b, 0, botlen);    mp_int a1 = mp_make_alias(a, botlen, toplen);    mp_int b1 = mp_make_alias(b, botlen, toplen);    mp_int r0 = mp_make_alias(r, 0, botlen*2);    mp_int r1 = mp_make_alias(r, botlen, r->nw);    mp_int r2 = mp_make_alias(r, botlen*2, r->nw);    /* Recurse to compute a0*b0 and a1*b1, in their correct positions     * in the output bignum. They can't overlap. */    mp_mul_internal(&r0, &a0, &b0, scratch);    mp_mul_internal(&r2, &a1, &b1, scratch);    if (r->nw < inlen*2) {        /*         * The output buffer isn't large enough to require the whole         * product, so some of a1*b1 won't have been stored. In that         * case we won't try to do the full Karatsuba optimisation;         * we'll just recurse again to compute a0*b1 and a1*b0 - or at         * least as much of them as the output buffer size requires -         * and add each one in.         */        mp_int s = mp_alloc_from_scratch(            &scratch, size_t_min(botlen+toplen, r1.nw));        mp_mul_internal(&s, &a0, &b1, scratch);        mp_add_into(&r1, &r1, &s);        mp_mul_internal(&s, &a1, &b0, scratch);        mp_add_into(&r1, &r1, &s);        return;    }    { // WINSCP    /* a0+a1 and b0+b1 */    mp_int asum = mp_alloc_from_scratch(&scratch, botlen+1);    mp_int bsum = mp_alloc_from_scratch(&scratch, botlen+1);    mp_add_into(&asum, &a0, &a1);    mp_add_into(&bsum, &b0, &b1);    { // WINSCP    /* Their product */    mp_int product = mp_alloc_from_scratch(&scratch, botlen*2+1);    mp_mul_internal(&product, &asum, &bsum, scratch);    /* Subtract off the outer terms we already have */    mp_sub_into(&product, &product, &r0);    mp_sub_into(&product, &product, &r2);    /* And add it in with the right offset. */    mp_add_into(&r1, &r1, &product);    } // WINSCP    } // WINSCP    } // WINSCP}void mp_mul_into(mp_int *r, mp_int *a, mp_int *b){    mp_int *scratch = mp_make_sized(mp_mul_scratchspace(r->nw, a->nw, b->nw));    mp_mul_internal(r, a, b, *scratch);    mp_free(scratch);}mp_int *mp_mul(mp_int *x, mp_int *y){    mp_int *r = mp_make_sized(x->nw + y->nw);    mp_mul_into(r, x, y);    return r;}void mp_lshift_fixed_into(mp_int *r, mp_int *a, size_t bits){    size_t words = bits / BIGNUM_INT_BITS;    size_t bitoff = bits % BIGNUM_INT_BITS;    size_t i; // WINSCP    for (i = r->nw; i-- > 0 ;) {        if (i < words) {            r->w[i] = 0;        } else {            r->w[i] = mp_word(a, i - words);            if (bitoff != 0) {                r->w[i] <<= bitoff;                if (i > words)                    r->w[i] |= mp_word(a, i - words - 1) >>                        (BIGNUM_INT_BITS - bitoff);            }        }    }}void mp_rshift_fixed_into(mp_int *r, mp_int *a, size_t bits){    size_t words = bits / BIGNUM_INT_BITS;    size_t bitoff = bits % BIGNUM_INT_BITS;    size_t i; // WINSCP    for (i = 0; i < r->nw; i++) {        r->w[i] = mp_word(a, i + words);        if (bitoff != 0) {            r->w[i] >>= bitoff;            r->w[i] |= mp_word(a, i + words + 1) << (BIGNUM_INT_BITS - bitoff);        }    }}mp_int *mp_rshift_fixed(mp_int *x, size_t bits){    size_t words = bits / BIGNUM_INT_BITS;    size_t nw = x->nw - size_t_min(x->nw, words);    mp_int *r = mp_make_sized(size_t_max(nw, 1));    mp_rshift_fixed_into(r, x, bits);    return r;}/* * Safe right shift is done using the same technique as * trim_leading_zeroes above: you make an n-word left shift by * composing an appropriate subset of power-of-2-sized shifts, so it * takes log_2(n) loop iterations each of which does a different shift * by a power of 2 words, using the usual bit twiddling to make the * whole shift conditional on the appropriate bit of n. */mp_int *mp_rshift_safe(mp_int *x, size_t bits){    size_t wordshift = bits / BIGNUM_INT_BITS;    size_t bitshift = bits % BIGNUM_INT_BITS;    mp_int *r = mp_copy(x);    unsigned bit; // WINSCP    unsigned clear = (r->nw - wordshift) >> (CHAR_BIT * sizeof(size_t) - 1);    mp_cond_clear(r, clear);    for (bit = 0; r->nw >> bit; bit++) {        size_t word_offset = 1 << bit;        BignumInt mask = -(BignumInt)((wordshift >> bit) & 1);        size_t i; // WINSCP        for (i = 0; i < r->nw; i++) {            BignumInt w = mp_word(r, i + word_offset);            r->w[i] ^= (r->w[i] ^ w) & mask;        }    }    /*     * That's done the shifting by words; now we do the shifting by     * bits.     */    for (bit = 0; bit < BIGNUM_INT_BITS_BITS; bit++) { // WINSCP        unsigned shift = 1 << bit, upshift = BIGNUM_INT_BITS - shift;        BignumInt mask = -(BignumInt)((bitshift >> bit) & 1);        size_t i; // WINSCP        for (i = 0; i < r->nw; i++) {            BignumInt w = ((r->w[i] >> shift) | (mp_word(r, i+1) << upshift));            r->w[i] ^= (r->w[i] ^ w) & mask;        }    }    return r;}void mp_reduce_mod_2to(mp_int *x, size_t p){    size_t word = p / BIGNUM_INT_BITS;    size_t mask = ((size_t)1 << (p % BIGNUM_INT_BITS)) - 1;    for (; word < x->nw; word++) {        x->w[word] &= mask;        mask = 0;    }}/* * Inverse mod 2^n is computed by an iterative technique which doubles * the number of bits at each step. */mp_int *mp_invert_mod_2to(mp_int *x, size_t p){    /* Input checks: x must be coprime to the modulus, i.e. odd, and p     * can't be zero */    assert(x->nw > 0);    assert(x->w[0] & 1);    assert(p > 0);    { // WINSCP    size_t rw = (p + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;    rw = size_t_max(rw, 1);    { // WINSCP    mp_int *r = mp_make_sized(rw);    size_t mul_scratchsize = mp_mul_scratchspace(2*rw, rw, rw);    mp_int *scratch_orig = mp_make_sized(6 * rw + mul_scratchsize);    mp_int scratch_per_iter = *scratch_orig;    mp_int mul_scratch = mp_alloc_from_scratch(        &scratch_per_iter, mul_scratchsize);    size_t b; // WINSCP    r->w[0] = 1;    for (b = 1; b < p; b <<= 1) {        /*         * In each step of this iteration, we have the inverse of x         * mod 2^b, and we want the inverse of x mod 2^{2b}.         *         * Write B = 2^b for convenience, so we want x^{-1} mod B^2.         * Let x = x_0 + B x_1 + k B^2, with 0 <= x_0,x_1 < B.         *         * We want to find r_0 and r_1 such that         *    (r_1 B + r_0) (x_1 B + x_0) == 1 (mod B^2)         *         * To begin with, we know r_0 must be the inverse mod B of         * x_0, i.e. of x, i.e. it is the inverse we computed in the         * previous iteration. So now all we need is r_1.         *         * Multiplying out, neglecting multiples of B^2, and writing         * x_0 r_0 = K B + 1, we have         *         *    r_1 x_0 B + r_0 x_1 B + K B == 0                    (mod B^2)         * =>                   r_1 x_0 B == - r_0 x_1 B - K B    (mod B^2)         * =>                     r_1 x_0 == - r_0 x_1 - K        (mod B)         * =>                         r_1 == r_0 (- r_0 x_1 - K)  (mod B)         *         * (the last step because we multiply through by the inverse         * of x_0, which we already know is r_0).         */        mp_int scratch_this_iter = scratch_per_iter;        size_t Bw = (b + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;        size_t B2w = (2*b + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;        /* Start by finding K: multiply x_0 by r_0, and shift down. */        mp_int x0 = mp_alloc_from_scratch(&scratch_this_iter, Bw);        mp_copy_into(&x0, x);        mp_reduce_mod_2to(&x0, b);        { // WINSCP        mp_int r0 = mp_make_alias(r, 0, Bw);        mp_int Kshift = mp_alloc_from_scratch(&scratch_this_iter, B2w);        mp_mul_internal(&Kshift, &x0, &r0, mul_scratch);        { // WINSCP        mp_int K = mp_alloc_from_scratch(&scratch_this_iter, Bw);        mp_rshift_fixed_into(&K, &Kshift, b);        /* Now compute the product r_0 x_1, reusing the space of Kshift. */        { // WINSCP        mp_int x1 = mp_alloc_from_scratch(&scratch_this_iter, Bw);        mp_rshift_fixed_into(&x1, x, b);        mp_reduce_mod_2to(&x1, b);        { // WINSCP        mp_int r0x1 = mp_make_alias(&Kshift, 0, Bw);        mp_mul_internal(&r0x1, &r0, &x1, mul_scratch);        /* Add K to that. */        mp_add_into(&r0x1, &r0x1, &K);        /* Negate it. */        mp_neg_into(&r0x1, &r0x1);        /* Multiply by r_0. */        { // WINSCP        mp_int r1 = mp_alloc_from_scratch(&scratch_this_iter, Bw);        mp_mul_internal(&r1, &r0, &r0x1, mul_scratch);        mp_reduce_mod_2to(&r1, b);        /* That's our r_1, so add it on to r_0 to get the full inverse         * output from this iteration. */        mp_lshift_fixed_into(&K, &r1, (b % BIGNUM_INT_BITS));        { // WINSCP        size_t Bpos = b / BIGNUM_INT_BITS;        mp_int r1_position = mp_make_alias(r, Bpos, B2w-Bpos);        mp_add_into(&r1_position, &r1_position, &K);        } // WINSCP        } // WINSCP        } // WINSCP        } // WINSCP        } // WINSCP        } // WINSCP    }    /* Finally, reduce mod the precise desired number of bits. */    mp_reduce_mod_2to(r, p);    mp_free(scratch_orig);    return r;    } // WINSCP    } // WINSCP}static size_t monty_scratch_size(MontyContext *mc){    return 3*mc->rw + mc->pw + mp_mul_scratchspace(mc->pw, mc->rw, mc->rw);}MontyContext *monty_new(mp_int *modulus){    MontyContext *mc = snew(MontyContext);    mc->rw = modulus->nw;    mc->rbits = mc->rw * BIGNUM_INT_BITS;    mc->pw = mc->rw * 2 + 1;    mc->m = mp_copy(modulus);    mc->minus_minv_mod_r = mp_invert_mod_2to(mc->m, mc->rbits);    mp_neg_into(mc->minus_minv_mod_r, mc->minus_minv_mod_r);    { // WINSCP    size_t j; // WINSCP    mp_int *r = mp_make_sized(mc->rw + 1);    r->w[mc->rw] = 1;    mc->powers_of_r_mod_m[0] = mp_mod(r, mc->m);    mp_free(r);    for (j = 1; j < lenof(mc->powers_of_r_mod_m); j++)        mc->powers_of_r_mod_m[j] = mp_modmul(            mc->powers_of_r_mod_m[0], mc->powers_of_r_mod_m[j-1], mc->m);    mc->scratch = mp_make_sized(monty_scratch_size(mc));    return mc;    } // WINSCP}void monty_free(MontyContext *mc){    size_t j; // WINSCP    mp_free(mc->m);    for (j = 0; j < 3; j++)        mp_free(mc->powers_of_r_mod_m[j]);    mp_free(mc->minus_minv_mod_r);    mp_free(mc->scratch);    smemclr(mc, sizeof(*mc));    sfree(mc);}/* * The main Montgomery reduction step. */static mp_int monty_reduce_internal(MontyContext *mc, mp_int *x, mp_int scratch){    /*     * The trick with Montgomery reduction is that on the one hand we     * want to reduce the size of the input by a factor of about r,     * and on the other hand, the two numbers we just multiplied were     * both stored with an extra factor of r multiplied in. So we     * computed ar*br = ab r^2, but we want to return abr, so we need     * to divide by r - and if we can do that by _actually dividing_     * by r then this also reduces the size of the number.     *     * But we can only do that if the number we're dividing by r is a     * multiple of r. So first we must add an adjustment to it which     * clears its bottom 'rbits' bits. That adjustment must be a     * multiple of m in order to leave the residue mod n unchanged, so     * the question is, what multiple of m can we add to x to make it     * congruent to 0 mod r? And the answer is, x * (-m)^{-1} mod r.     */    /* x mod r */    mp_int x_lo = mp_make_alias(x, 0, mc->rbits);    /* x * (-m)^{-1}, i.e. the number we want to multiply by m */    mp_int k = mp_alloc_from_scratch(&scratch, mc->rw);    mp_mul_internal(&k, &x_lo, mc->minus_minv_mod_r, scratch);    /* m times that, i.e. the number we want to add to x */    { // WINSCP    mp_int mk = mp_alloc_from_scratch(&scratch, mc->pw);    mp_mul_internal(&mk, mc->m, &k, scratch);    /* Add it to x */    mp_add_into(&mk, x, &mk);    /* Reduce mod r, by simply making an alias to the upper words of x */    { // WINSCP    mp_int toret = mp_make_alias(&mk, mc->rw, mk.nw - mc->rw);    /*     * We'll generally be doing this after a multiplication of two     * fully reduced values. So our input could be anything up to m^2,     * and then we added up to rm to it. Hence, the maximum value is     * rm+m^2, and after dividing by r, that becomes r + m(m/r) < 2r.     * So a single trial-subtraction will finish reducing to the     * interval [0,m).     */    mp_cond_sub_into(&toret, &toret, mc->m, mp_cmp_hs(&toret, mc->m));    return toret;    } // WINSCP    } // WINSCP}void monty_mul_into(MontyContext *mc, mp_int *r, mp_int *x, mp_int *y){    assert(x->nw <= mc->rw);    assert(y->nw <= mc->rw);    { // WINSCP    mp_int scratch = *mc->scratch;    mp_int tmp = mp_alloc_from_scratch(&scratch, 2*mc->rw);    mp_mul_into(&tmp, x, y);    { // WINSCP    mp_int reduced = monty_reduce_internal(mc, &tmp, scratch);    mp_copy_into(r, &reduced);    mp_clear(mc->scratch);    } // WINSCP    } // WINSCP}mp_int *monty_mul(MontyContext *mc, mp_int *x, mp_int *y){    mp_int *toret = mp_make_sized(mc->rw);    monty_mul_into(mc, toret, x, y);    return toret;}mp_int *monty_modulus(MontyContext *mc){    return mc->m;}mp_int *monty_identity(MontyContext *mc){    return mc->powers_of_r_mod_m[0];}mp_int *monty_invert(MontyContext *mc, mp_int *x){    /* Given xr, we want to return x^{-1}r = (xr)^{-1} r^2 =     * monty_reduce((xr)^{-1} r^3) */    mp_int *tmp = mp_invert(x, mc->m);    mp_int *toret = monty_mul(mc, tmp, mc->powers_of_r_mod_m[2]);    mp_free(tmp);    return toret;}/* * Importing a number into Montgomery representation involves * multiplying it by r and reducing mod m. We use the general-purpose * mp_modmul for this, in case the input number is out of range. */mp_int *monty_import(MontyContext *mc, mp_int *x){    return mp_modmul(x, mc->powers_of_r_mod_m[0], mc->m);}void monty_import_into(MontyContext *mc, mp_int *r, mp_int *x){    mp_int *imported = monty_import(mc, x);    mp_copy_into(r, imported);    mp_free(imported);}/* * Exporting a number means multiplying it by r^{-1}, which is exactly * what monty_reduce does anyway, so we just do that. */void monty_export_into(MontyContext *mc, mp_int *r, mp_int *x){    pinitassert(x->nw <= 2*mc->rw);    mp_int reduced = monty_reduce_internal(mc, x, *mc->scratch);    mp_copy_into(r, &reduced);    mp_clear(mc->scratch);}mp_int *monty_export(MontyContext *mc, mp_int *x){    mp_int *toret = mp_make_sized(mc->rw);    monty_export_into(mc, toret, x);    return toret;}static void monty_reduce(MontyContext *mc, mp_int *x){    mp_int reduced = monty_reduce_internal(mc, x, *mc->scratch);    mp_copy_into(x, &reduced);    mp_clear(mc->scratch);}mp_int *monty_pow(MontyContext *mc, mp_int *base, mp_int *exponent){    /* square builds up powers of the form base^{2^i}. */    mp_int *square = mp_copy(base);    size_t i = 0;    /* out accumulates the output value. Starts at 1 (in Montgomery     * representation) and we multiply in each base^{2^i}. */    mp_int *out = mp_copy(mc->powers_of_r_mod_m[0]);    /* tmp holds each product we compute and reduce. */    mp_int *tmp = mp_make_sized(mc->rw * 2);    while (true) {        mp_mul_into(tmp, out, square);        monty_reduce(mc, tmp);        mp_select_into(out, out, tmp, mp_get_bit(exponent, i));        if (++i >= exponent->nw * BIGNUM_INT_BITS)            break;        mp_mul_into(tmp, square, square);        monty_reduce(mc, tmp);        mp_copy_into(square, tmp);    }    mp_free(square);    mp_free(tmp);    mp_clear(mc->scratch);    return out;}mp_int *mp_modpow(mp_int *base, mp_int *exponent, mp_int *modulus){    assert(modulus->nw > 0);    assert(modulus->w[0] & 1);    { // WINSCP    MontyContext *mc = monty_new(modulus);    mp_int *m_base = monty_import(mc, base);    mp_int *m_out = monty_pow(mc, m_base, exponent);    mp_int *out = monty_export(mc, m_out);    mp_free(m_base);    mp_free(m_out);    monty_free(mc);    return out;    } // WINSCP}/* * Given two coprime nonzero input integers a,b, returns two integers * A,B such that A*a - B*b = 1. A,B will be the minimal non-negative * pair satisfying that criterion, which is equivalent to saying that * 0<=A<b and 0<=B<a. * * This algorithm is an adapted form of Stein's algorithm, which * computes gcd(a,b) using only addition and bit shifts (i.e. without * needing general division), using the following rules: * *  - if both of a,b are even, divide off a common factor of 2 *  - if one of a,b (WLOG a) is even, then gcd(a,b) = gcd(a/2,b), so *    just divide a by 2 *  - if both of a,b are odd, then WLOG a>b, and gcd(a,b) = *    gcd(b,(a-b)/2). * * For this application, I always expect the actual gcd to be coprime, * so we can rule out the 'both even' initial case. So this function * just performs a sequence of reductions in the following form: * *  - if a,b are both odd, sort them so that a > b, and replace a with *    b-a; otherwise sort them so that a is the even one *  - either way, now a is even and b is odd, so divide a by 2. * * The big change to Stein's algorithm is that we need the Bezout * coefficients as output, not just the gcd. So we need to know how to * generate those in each case, based on the coefficients from the * reduced pair of numbers: * *  - If a is even, and u,v are such that u*(a/2) + v*b = 1: *     + if u is also even, then this is just (u/2)*a + v*b = 1 *     + otherwise, (u+b)*(a/2) + (v-a/2)*b is also equal to 1, and *       since u and b are both odd, (u+b)/2 is an integer, so we have *       ((u+b)/2)*a + (v-a/2)*b = 1. * *  - If a,b are both odd, and u,v are such that u*b + v*(a-b) = 1, *    then v*a + (u-v)*b = 1. * * In the case where we passed from (a,b) to (b,(a-b)/2), we regard it * as having first subtracted b from a and then halved a, so both of * these transformations must be done in sequence. * * The code below transforms this from a recursive to an iterative * algorithm. We first reduce a,b to 0,1, recording at each stage * whether we did the initial subtraction, and whether we had to swap * the two values; then we iterate backwards over that record of what * we did, applying the above rules for building up the Bezout * coefficients as we go. Of course, all the case analysis is done by * the usual bit-twiddling conditionalisation to avoid data-dependent * control flow. * * Also, since these mp_ints are generally treated as unsigned, we * store the coefficients by absolute value, with the semantics that * they always have opposite sign, and in the unwinding loop we keep a * bit indicating whether Aa-Bb is currently expected to be +1 or -1, * so that we can do one final conditional adjustment if it's -1. * * Once the reduction rules have managed to reduce the input numbers * to (0,1), then they are stable (the next reduction will always * divide the even one by 2, which maps 0 to 0). So it doesn't matter * if we do more steps of the algorithm than necessary; hence, for * constant time, we just need to find the maximum number we could * _possibly_ require, and do that many. * * If a,b < 2^n, at most 2n iterations are required. Proof: consider * the quantity Q = log_2(a) + log_2(b). Every step halves one of the * numbers (and may also reduce one of them further by doing a * subtraction beforehand, but in the worst case, not by much or not * at all). So Q reduces by at least 1 per iteration, and it starts * off with a value at most 2n. * * The worst case inputs (I think) are where x=2^{n-1} and y=2^n-1 * (i.e. x is a power of 2 and y is all 1s). In that situation, the * first n-1 steps repeatedly halve x until it's 1, and then there are * n further steps each of which subtracts 1 from y and halves it. */static void mp_bezout_into(mp_int *a_coeff_out, mp_int *b_coeff_out,                           mp_int *a_in, mp_int *b_in){    size_t nw = size_t_max(1, size_t_max(a_in->nw, b_in->nw));    /* Make mutable copies of the input numbers */    mp_int *a = mp_make_sized(nw), *b = mp_make_sized(nw);    mp_copy_into(a, a_in);    mp_copy_into(b, b_in);    /* Space to build up the output coefficients, with an extra word     * so that intermediate values can overflow off the top and still     * right-shift back down to the correct value */    { // WINSCP    mp_int *ac = mp_make_sized(nw + 1), *bc = mp_make_sized(nw + 1);    /* And a general-purpose temp register */    mp_int *tmp = mp_make_sized(nw);    /* Space to record the sequence of reduction steps to unwind. We     * make it a BignumInt for no particular reason except that (a)     * mp_make_sized conveniently zeroes the allocation and mp_free     * wipes it, and (b) this way I can use mp_dump() if I have to     * debug this code. */    size_t steps = 2 * nw * BIGNUM_INT_BITS;    mp_int *record = mp_make_sized(        (steps*2 + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);    size_t step; // WINSCP    for (step = 0; step < steps; step++) {        /*         * If a and b are both odd, we want to sort them so that a is         * larger. But if one is even, we want to sort them so that a         * is the even one.         */        unsigned swap_if_both_odd = mp_cmp_hs(b, a);        unsigned swap_if_one_even = a->w[0] & 1;        unsigned both_odd = a->w[0] & b->w[0] & 1;        unsigned swap = swap_if_one_even ^ (            (swap_if_both_odd ^ swap_if_one_even) & both_odd);        mp_cond_swap(a, b, swap);        /*         * If a,b are both odd, then a is the larger number, so         * subtract the smaller one from it.         */        mp_cond_sub_into(a, a, b, both_odd);        /*         * Now a is even, so divide it by two.         */        mp_rshift_fixed_into(a, a, 1);        /*         * Record the two 1-bit values both_odd and swap.         */        mp_set_bit(record, step*2, both_odd);        mp_set_bit(record, step*2+1, swap);    }    /*     * Now we expect to have reduced the two numbers to 0 and 1,     * although we don't know which way round. (But we avoid checking     * this by assertion; sometimes we'll need to do this computation     * without giving away that we already know the inputs were bogus.     * So we'd prefer to just press on and return nonsense.)     */    /*     * So their Bezout coefficients at this point are simply     * themselves.     */    mp_copy_into(ac, a);    mp_copy_into(bc, b);    /*     * We'll maintain the invariant as we unwind that ac * a - bc * b     * is either +1 or -1, and we'll remember which. (We _could_ keep     * it at +1 the whole time, but it would cost more work every time     * round the loop, so it's cheaper to fix that up once at the     * end.)     *     * Initially, the result is +1 if a was the nonzero value after     * reduction, and -1 if b was.     */    { // WINSCP    unsigned minus_one = b->w[0];    for (step = steps; step-- > 0 ;) {        /*         * Recover the data from the step we're unwinding.         */        unsigned both_odd = mp_get_bit(record, step*2);        unsigned swap = mp_get_bit(record, step*2+1);        /*         * Unwind the division: if our coefficient of a is odd, we         * adjust the coefficients by +b and +a respectively.         */        unsigned adjust = ac->w[0] & 1;        mp_cond_add_into(ac, ac, b, adjust);        mp_cond_add_into(bc, bc, a, adjust);        /*         * Now ac is definitely even, so we divide it by two.         */        mp_rshift_fixed_into(ac, ac, 1);        /*         * Now unwind the subtraction, if there was one, by adding         * ac to bc.         */        mp_cond_add_into(bc, bc, ac, both_odd);        /*         * Undo the transformation of the input numbers, by         * multiplying a by 2 and then adding b to a (the latter         * only if both_odd).         */        mp_lshift_fixed_into(a, a, 1);        mp_cond_add_into(a, a, b, both_odd);        /*         * Finally, undo the swap. If we do swap, this also         * reverses the sign of the current result ac*a+bc*b.         */        mp_cond_swap(a, b, swap);        mp_cond_swap(ac, bc, swap);        minus_one ^= swap;    }    /*     * Now we expect to have recovered the input a,b.     */    assert(mp_cmp_eq(a, a_in) & mp_cmp_eq(b, b_in));    /*     * But we might find that our current result is -1 instead of +1,     * that is, we have A',B' such that A'a - B'b = -1.     *     * In that situation, we set A = b-A' and B = a-B', giving us     * Aa-Bb = ab - A'a - ab + B'b = +1.     */    mp_sub_into(tmp, b, ac);    mp_select_into(ac, ac, tmp, minus_one);    mp_sub_into(tmp, a, bc);    mp_select_into(bc, bc, tmp, minus_one);    /*     * Now we really are done. Return the outputs.     */    if (a_coeff_out)        mp_copy_into(a_coeff_out, ac);    if (b_coeff_out)        mp_copy_into(b_coeff_out, bc);    mp_free(a);    mp_free(b);    mp_free(ac);    mp_free(bc);    mp_free(tmp);    mp_free(record);    } // WINSCP    } // WINSCP}mp_int *mp_invert(mp_int *x, mp_int *m){    mp_int *result = mp_make_sized(m->nw);    mp_bezout_into(result, NULL, x, m);    return result;}static uint32_t recip_approx_32(uint32_t x){    /*     * Given an input x in [2^31,2^32), i.e. a uint32_t with its high     * bit set, this function returns an approximation to 2^63/x,     * computed using only multiplications and bit shifts just in case     * the C divide operator has non-constant time (either because the     * underlying machine instruction does, or because the operator     * expands to a library function on a CPU without hardware     * division).     *     * The coefficients are derived from those of the degree-9     * polynomial which is the minimax-optimal approximation to that     * function on the given interval (generated using the Remez     * algorithm), converted into integer arithmetic with shifts used     * to maximise the number of significant bits at every state. (A     * sort of 'static floating point' - the exponent is statically     * known at every point in the code, so it never needs to be     * stored at run time or to influence runtime decisions.)     *     * Exhaustive iteration over the whole input space shows the     * largest possible error to be 1686.54. (The input value     * attaining that bound is 4226800006 == 0xfbefd986, whose true     * reciprocal is 2182116973.540... == 0x8210766d.8a6..., whereas     * this function returns 2182115287 == 0x82106fd7.)     */    uint64_t r = 0x92db03d6ULL;    r = 0xf63e71eaULL - ((r*x) >> 34);    r = 0xb63721e8ULL - ((r*x) >> 34);    r = 0x9c2da00eULL - ((r*x) >> 33);    r = 0xaada0bb8ULL - ((r*x) >> 32);    r = 0xf75cd403ULL - ((r*x) >> 31);    r = 0xecf97a41ULL - ((r*x) >> 31);    r = 0x90d876cdULL - ((r*x) >> 31);    r = 0x6682799a0ULL - ((r*x) >> 26);    return r;}void mp_divmod_into(mp_int *n, mp_int *d, mp_int *q_out, mp_int *r_out){    pinitassert(!mp_eq_integer(d, 0));    /*     * We do division by using Newton-Raphson iteration to converge to     * the reciprocal of d (or rather, R/d for R a sufficiently large     * power of 2); then we multiply that reciprocal by n; and we     * finish up with conditional subtraction.     *     * But we have to do it in a fixed number of N-R iterations, so we     * need some error analysis to know how many we might need.     *     * The iteration is derived by defining f(r) = d - R/r.     * Differentiating gives f'(r) = R/r^2, and the Newton-Raphson     * formula applied to those functions gives     *     *      r_{i+1} = r_i - f(r_i) / f'(r_i)     *              = r_i - (d - R/r_i) r_i^2 / R     *              = r_i (2 R - d r_i) / R     *     * Now let e_i be the error in a given iteration, in the sense     * that     *     *        d r_i = R + e_i     *  i.e.  e_i/R = (r_i - r_true) / r_true     *     * so e_i is the _relative_ error in r_i.     *     * We must also introduce a rounding-error term, because the     * division by R always gives an integer. This might make the     * output off by up to 1 (in the negative direction, because     * right-shifting gives floor of the true quotient). So when we     * divide by R, we must imagine adding some f in [0,1). Then we     * have     *     *    d r_{i+1} = d r_i (2 R - d r_i) / R - d f     *              = (R + e_i) (R - e_i) / R - d f     *              = (R^2 - e_i^2) / R - d f     *              = R - (e_i^2 / R + d f)     * =>   e_{i+1} = - (e_i^2 / R + d f)     *     * The sum of two positive quantities is bounded above by twice     * their max, and max |f| = 1, so we can bound this as follows:     *     *               |e_{i+1}| <= 2 max (e_i^2/R, d)     *             |e_{i+1}/R| <= 2 max ((e_i/R)^2, d/R)     *        log2 |R/e_{i+1}| <= min (2 log2 |R/e_i|, log2 |R/d|) - 1     *     * which tells us that the number of 'good' bits - i.e.     * log2(R/e_i) - very nearly doubles at every iteration (apart     * from that subtraction of 1), until it gets to the same size as     * log2(R/d). In other words, the size of R in bits has to be the     * size of denominator we're putting in, _plus_ the amount of     * precision we want to get back out.     *     * So when we multiply n (the input numerator) by our final     * reciprocal approximation r, but actually r differs from R/d by     * up to 2, then it follows that      *     *   n/d - nr/R = n/d - [ n (R/d + e) ] / R     *              = n/d - [ (n/d) R + n e ] / R     *              = -ne/R     *      =>   0 <= n/d - nr/R < 2n/R     *     * so our computed quotient can differ from the true n/d by up to     * 2n/R. Hence, as long as we also choose R large enough that 2n/R     * is bounded above by a constant, we can guarantee a bounded     * number of final conditional-subtraction steps.     */    /*     * Get at least 32 of the most significant bits of the input     * number.     */    size_t hiword_index = 0;    uint64_t hibits = 0, lobits = 0;    mp_find_highest_nonzero_word_pair(d, 64 - BIGNUM_INT_BITS,                                      &hiword_index, &hibits, &lobits);    /*     * Make a shifted combination of those two words which puts the     * topmost bit of the number at bit 63.     */    { // WINSCP    size_t shift_up = 0;    size_t i; // WINSCP    for (i = BIGNUM_INT_BITS_BITS; i-- > 0;) {        size_t sl = 1 << i;               /* left shift count */        size_t sr = 64 - sl;     /* complementary right-shift count */        /* Should we shift up? */        unsigned indicator = 1 ^ normalise_to_1_u64(hibits >> sr);        /* If we do, what will we get? */        uint64_t new_hibits = (hibits << sl) | (lobits >> sr);        uint64_t new_lobits = lobits << sl;        size_t new_shift_up = shift_up + sl;        /* Conditionally swap those values in. */        hibits    ^= (hibits    ^ new_hibits   ) & -(uint64_t)indicator;        lobits    ^= (lobits    ^ new_lobits   ) & -(uint64_t)indicator;        shift_up  ^= (shift_up  ^ new_shift_up ) & -(size_t)  indicator;    }    /*     * So now we know the most significant 32 bits of d are at the top     * of hibits. Approximate the reciprocal of those bits.     */    lobits = (uint64_t)recip_approx_32(hibits >> 32) << 32;    hibits = 0;    /*     * And shift that up by as many bits as the input was shifted up     * just now, so that the product of this approximation and the     * actual input will be close to a fixed power of two regardless     * of where the MSB was.     *     * I do this in another log n individual passes, partly in case     * the CPU's register-controlled shift operation isn't     * time-constant, and also in case the compiler code-generates     * uint64_t shifts out of a variable number of smaller-word shift     * instructions, e.g. by splitting up into cases.     */    for (i = BIGNUM_INT_BITS_BITS; i-- > 0;) {        size_t sl = 1 << i;               /* left shift count */        size_t sr = 64 - sl;     /* complementary right-shift count */        /* Should we shift up? */        unsigned indicator = 1 & (shift_up >> i);        /* If we do, what will we get? */        uint64_t new_hibits = (hibits << sl) | (lobits >> sr);        uint64_t new_lobits = lobits << sl;        /* Conditionally swap those values in. */        hibits    ^= (hibits    ^ new_hibits   ) & -(uint64_t)indicator;        lobits    ^= (lobits    ^ new_lobits   ) & -(uint64_t)indicator;    }    /*     * The product of the 128-bit value now in hibits:lobits with the     * 128-bit value we originally retrieved in the same variables     * will be in the vicinity of 2^191. So we'll take log2(R) to be     * 191, plus a multiple of BIGNUM_INT_BITS large enough to allow R     * to hold the combined sizes of n and d.     */    { // WINSCP    size_t log2_R;    {        size_t max_log2_n = (n->nw + d->nw) * BIGNUM_INT_BITS;        log2_R = max_log2_n + 3;        log2_R -= size_t_min(191, log2_R);        log2_R = (log2_R + BIGNUM_INT_BITS - 1) & ~(BIGNUM_INT_BITS - 1);        log2_R += 191;    }    /* Number of words in a bignum capable of holding numbers the size     * of twice R. */    { // WINSCP    size_t rw = ((log2_R+2) + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;    /*     * Now construct our full-sized starting reciprocal approximation.     */    mp_int *r_approx = mp_make_sized(rw);    size_t output_bit_index;    {        /* Where in the input number did the input 128-bit value come from? */        size_t input_bit_index =            (hiword_index * BIGNUM_INT_BITS) - (128 - BIGNUM_INT_BITS);        /* So how far do we need to shift our 64-bit output, if the         * product of those two fixed-size values is 2^191 and we want         * to make it 2^log2_R instead? */        output_bit_index = log2_R - 191 - input_bit_index;        /* If we've done all that right, it should be a whole number         * of words. */        assert(output_bit_index % BIGNUM_INT_BITS == 0);        { // WINSCP        size_t output_word_index = output_bit_index / BIGNUM_INT_BITS;        mp_add_integer_into_shifted_by_words(            r_approx, r_approx, lobits, output_word_index);        mp_add_integer_into_shifted_by_words(            r_approx, r_approx, hibits,            output_word_index + 64 / BIGNUM_INT_BITS);        } // WINSCP    }    /*     * Make the constant 2*R, which we'll need in the iteration.     */    { // WINSCP    mp_int *two_R = mp_make_sized(rw);    mp_add_integer_into_shifted_by_words(        two_R, two_R, (BignumInt)1 << ((log2_R+1) % BIGNUM_INT_BITS),        (log2_R+1) / BIGNUM_INT_BITS);    /*     * Scratch space.     */    { // WINSCP    mp_int *dr = mp_make_sized(rw + d->nw);    mp_int *diff = mp_make_sized(size_t_max(rw, dr->nw));    mp_int *product = mp_make_sized(rw + diff->nw);    size_t scratchsize = size_t_max(        mp_mul_scratchspace(dr->nw, r_approx->nw, d->nw),        mp_mul_scratchspace(product->nw, r_approx->nw, diff->nw));    mp_int *scratch = mp_make_sized(scratchsize);    mp_int product_shifted = mp_make_alias(        product, log2_R / BIGNUM_INT_BITS, product->nw);    /*     * Initial error estimate: the 32-bit output of recip_approx_32     * differs by less than 2048 (== 2^11) from the true top 32 bits     * of the reciprocal, so the relative error is at most 2^11     * divided by the 32-bit reciprocal, which at worst is 2^11/2^31 =     * 2^-20. So even in the worst case, we have 20 good bits of     * reciprocal to start with.     */    size_t good_bits = 31 - 11;    size_t good_bits_needed = BIGNUM_INT_BITS * n->nw + 4; /* add a few */    /*     * Now do Newton-Raphson iterations until we have reason to think     * they're not converging any more.     */    while (good_bits < good_bits_needed) {        /*         * Compute the next iterate.         */        mp_mul_internal(dr, r_approx, d, *scratch);        mp_sub_into(diff, two_R, dr);        mp_mul_internal(product, r_approx, diff, *scratch);        mp_rshift_fixed_into(r_approx, &product_shifted,                             log2_R % BIGNUM_INT_BITS);        /*         * Adjust the error estimate.         */        good_bits = good_bits * 2 - 1;    }    mp_free(dr);    mp_free(diff);    mp_free(product);    mp_free(scratch);    /*     * Now we've got our reciprocal, we can compute the quotient, by     * multiplying in n and then shifting down by log2_R bits.     */    { // WINSCP    mp_int *quotient_full = mp_mul(r_approx, n);    mp_int quotient_alias = mp_make_alias(        quotient_full, log2_R / BIGNUM_INT_BITS, quotient_full->nw);    mp_int *quotient = mp_make_sized(n->nw);    mp_rshift_fixed_into(quotient, "ient_alias, log2_R % BIGNUM_INT_BITS);    /*     * Next, compute the remainder.     */    { // WINSCP    mp_int *remainder = mp_make_sized(d->nw);    mp_mul_into(remainder, quotient, d);    mp_sub_into(remainder, n, remainder);    /*     * Finally, two conditional subtractions to fix up any remaining     * rounding error. (I _think_ one should be enough, but this     * routine isn't time-critical enough to take chances.)     */    { // WINSCP    unsigned q_correction = 0;    unsigned iter; // WINSCP    for (iter = 0; iter < 2; iter++) {        unsigned need_correction = mp_cmp_hs(remainder, d);        mp_cond_sub_into(remainder, remainder, d, need_correction);        q_correction += need_correction;    }    mp_add_integer_into(quotient, quotient, q_correction);    /*     * Now we should have a perfect answer, i.e. 0 <= r < d.     */    assert(!mp_cmp_hs(remainder, d));    if (q_out)        mp_copy_into(q_out, quotient);    if (r_out)        mp_copy_into(r_out, remainder);    mp_free(r_approx);    mp_free(two_R);    mp_free(quotient_full);    mp_free(quotient);    mp_free(remainder);    } // WINSCP    } // WINSCP    } // WINSCP    } // WINSCP    } // WINSCP    } // WINSCP    } // WINSCP    } // WINSCP}mp_int *mp_div(mp_int *n, mp_int *d){    mp_int *q = mp_make_sized(n->nw);    mp_divmod_into(n, d, q, NULL);    return q;}mp_int *mp_mod(mp_int *n, mp_int *d){    mp_int *r = mp_make_sized(d->nw);    mp_divmod_into(n, d, NULL, r);    return r;}mp_int *mp_modmul(mp_int *x, mp_int *y, mp_int *modulus){    mp_int *product = mp_mul(x, y);    mp_int *reduced = mp_mod(product, modulus);    mp_free(product);    return reduced;}mp_int *mp_modadd(mp_int *x, mp_int *y, mp_int *modulus){    mp_int *sum = mp_add(x, y);    mp_int *reduced = mp_mod(sum, modulus);    mp_free(sum);    return reduced;}mp_int *mp_modsub(mp_int *x, mp_int *y, mp_int *modulus){    mp_int *diff = mp_make_sized(size_t_max(x->nw, y->nw));    mp_sub_into(diff, x, y);    { // WINSCP    unsigned negate = mp_cmp_hs(y, x);    mp_cond_negate(diff, diff, negate);    { // WINSCP    mp_int *residue = mp_mod(diff, modulus);    mp_cond_negate(residue, residue, negate);    /* If we've just negated the residue, then it will be < 0 and need     * the modulus adding to it to make it positive - *except* if the     * residue was zero when we negated it. */    { // WINSCP    unsigned make_positive = negate & ~mp_eq_integer(residue, 0);    mp_cond_add_into(residue, residue, modulus, make_positive);    mp_free(diff);    return residue;    } // WINSCP    } // WINSCP    } // WINSCP}static mp_int *mp_modadd_in_range(mp_int *x, mp_int *y, mp_int *modulus){    mp_int *sum = mp_make_sized(modulus->nw);    unsigned carry = mp_add_into_internal(sum, x, y);    mp_cond_sub_into(sum, sum, modulus, carry | mp_cmp_hs(sum, modulus));    return sum;}static mp_int *mp_modsub_in_range(mp_int *x, mp_int *y, mp_int *modulus){    mp_int *diff = mp_make_sized(modulus->nw);    mp_sub_into(diff, x, y);    mp_cond_add_into(diff, diff, modulus, 1 ^ mp_cmp_hs(x, y));    return diff;}mp_int *monty_add(MontyContext *mc, mp_int *x, mp_int *y){    return mp_modadd_in_range(x, y, mc->m);}mp_int *monty_sub(MontyContext *mc, mp_int *x, mp_int *y){    return mp_modsub_in_range(x, y, mc->m);}void mp_min_into(mp_int *r, mp_int *x, mp_int *y){    mp_select_into(r, x, y, mp_cmp_hs(x, y));}void mp_max_into(mp_int *r, mp_int *x, mp_int *y){    mp_select_into(r, y, x, mp_cmp_hs(x, y));}mp_int *mp_min(mp_int *x, mp_int *y){    mp_int *r = mp_make_sized(size_t_min(x->nw, y->nw));    mp_min_into(r, x, y);    return r;}mp_int *mp_max(mp_int *x, mp_int *y){    mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw));    mp_max_into(r, x, y);    return r;}mp_int *mp_power_2(size_t power){    mp_int *x = mp_new(power + 1);    mp_set_bit(x, power, 1);    return x;}struct ModsqrtContext {    mp_int *p;                      /* the prime */    MontyContext *mc;                  /* for doing arithmetic mod p */    /* Decompose p-1 as 2^e k, for positive integer e and odd k */    size_t e;    mp_int *k;    mp_int *km1o2;                  /* (k-1)/2 */    /* The user-provided value z which is not a quadratic residue mod     * p, and its kth power. Both in Montgomery form. */    mp_int *z, *zk;};ModsqrtContext *modsqrt_new(mp_int *p, mp_int *any_nonsquare_mod_p){    ModsqrtContext *sc = snew(ModsqrtContext);    memset(sc, 0, sizeof(ModsqrtContext));    sc->p = mp_copy(p);    sc->mc = monty_new(sc->p);    sc->z = monty_import(sc->mc, any_nonsquare_mod_p);    /* Find the lowest set bit in p-1. Since this routine expects p to     * be non-secret (typically a well-known standard elliptic curve     * parameter), for once we don't need clever bit tricks. */    for (sc->e = 1; sc->e < BIGNUM_INT_BITS * p->nw; sc->e++)        if (mp_get_bit(p, sc->e))            break;    sc->k = mp_rshift_fixed(p, sc->e);    sc->km1o2 = mp_rshift_fixed(sc->k, 1);    /* Leave zk to be filled in lazily, since it's more expensive to     * compute. If this context turns out never to be needed, we can     * save the bulk of the setup time this way. */    return sc;}static void modsqrt_lazy_setup(ModsqrtContext *sc){    if (!sc->zk)        sc->zk = monty_pow(sc->mc, sc->z, sc->k);}void modsqrt_free(ModsqrtContext *sc){    monty_free(sc->mc);    mp_free(sc->p);    mp_free(sc->z);    mp_free(sc->k);    mp_free(sc->km1o2);    if (sc->zk)        mp_free(sc->zk);    sfree(sc);}mp_int *mp_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success){    mp_int *mx = monty_import(sc->mc, x);    mp_int *mroot = monty_modsqrt(sc, mx, success);    mp_free(mx);    { // WINSCP    mp_int *root = monty_export(sc->mc, mroot);    mp_free(mroot);    return root;    } // WINSCP}/* * Modular square root, using an algorithm more or less similar to * Tonelli-Shanks but adapted for constant time. * * The basic idea is to write p-1 = k 2^e, where k is odd and e > 0. * Then the multiplicative group mod p (call it G) has a sequence of * e+1 nested subgroups G = G_0 > G_1 > G_2 > ... > G_e, where each * G_i is exactly half the size of G_{i-1} and consists of all the * squares of elements in G_{i-1}. So the innermost group G_e has * order k, which is odd, and hence within that group you can take a * square root by raising to the power (k+1)/2. * * Our strategy is to iterate over these groups one by one and make * sure the number x we're trying to take the square root of is inside * each one, by adjusting it if it isn't. * * Suppose g is a primitive root of p, i.e. a generator of G_0. (We * don't actually need to know what g _is_; we just imagine it for the * sake of understanding.) Then G_i consists of precisely the (2^i)th * powers of g, and hence, you can tell if a number is in G_i if * raising it to the power k 2^{e-i} gives 1. So the conceptual * algorithm goes: for each i, test whether x is in G_i by that * method. If it isn't, then the previous iteration ensured it's in * G_{i-1}, so it will be an odd power of g^{2^{i-1}}, and hence * multiplying by any other odd power of g^{2^{i-1}} will give x' in * G_i. And we have one of those, because our non-square z is an odd * power of g, so z^{2^{i-1}} is an odd power of g^{2^{i-1}}. * * (There's a special case in the very first iteration, where we don't * have a G_{i-1}. If it turns out that x is not even in G_1, that * means it's not a square, so we set *success to 0. We still run the * rest of the algorithm anyway, for the sake of constant time, but we * don't give a hoot what it returns.) * * When we get to the end and have x in G_e, then we can take its * square root by raising to (k+1)/2. But of course that's not the * square root of the original input - it's only the square root of * the adjusted version we produced during the algorithm. To get the * true output answer we also have to multiply by a power of z, * namely, z to the power of _half_ whatever we've been multiplying in * as we go along. (The power of z we multiplied in must have been * even, because the case in which we would have multiplied in an odd * power of z is the i=0 case, in which we instead set the failure * flag.) * * The code below is an optimised version of that basic idea, in which * we _start_ by computing x^k so as to be able to test membership in * G_i by only a few squarings rather than a full from-scratch modpow * every time; we also start by computing our candidate output value * x^{(k+1)/2}. So when the above description says 'adjust x by z^i' * for some i, we have to adjust our running values of x^k and * x^{(k+1)/2} by z^{ik} and z^{ik/2} respectively (the latter is safe * because, as above, i is always even). And it turns out that we * don't actually have to store the adjusted version of x itself at * all - we _only_ keep those two powers of it. */mp_int *monty_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success){    modsqrt_lazy_setup(sc);    { // WINSCP    mp_int *scratch_to_free = mp_make_sized(3 * sc->mc->rw);    mp_int scratch = *scratch_to_free;    /*     * Compute toret = x^{(k+1)/2}, our starting point for the output     * square root, and also xk = x^k which we'll use as we go along     * for knowing when to apply correction factors. We do this by     * first computing x^{(k-1)/2}, then multiplying it by x, then     * multiplying the two together.     */    mp_int *toret = monty_pow(sc->mc, x, sc->km1o2);    mp_int xk = mp_alloc_from_scratch(&scratch, sc->mc->rw);    mp_copy_into(&xk, toret);    monty_mul_into(sc->mc, toret, toret, x);    monty_mul_into(sc->mc, &xk, toret, &xk);    { // WINSCP    mp_int tmp = mp_alloc_from_scratch(&scratch, sc->mc->rw);    mp_int power_of_zk = mp_alloc_from_scratch(&scratch, sc->mc->rw);    size_t i; // WINSCP    mp_copy_into(&power_of_zk, sc->zk);    for (i = 0; i < sc->e; i++) {        size_t j; // WINSCP        mp_copy_into(&tmp, &xk);        for (j = i+1; j < sc->e; j++)            monty_mul_into(sc->mc, &tmp, &tmp, &tmp);        { // WINSCP        unsigned eq1 = mp_cmp_eq(&tmp, monty_identity(sc->mc));        if (i == 0) {            /* One special case: if x=0, then no power of x will ever             * equal 1, but we should still report success on the             * grounds that 0 does have a square root mod p. */            *success = eq1 | mp_eq_integer(x, 0);        } else {            monty_mul_into(sc->mc, &tmp, toret, &power_of_zk);            mp_select_into(toret, &tmp, toret, eq1);            monty_mul_into(sc->mc, &power_of_zk,                           &power_of_zk, &power_of_zk);            monty_mul_into(sc->mc, &tmp, &xk, &power_of_zk);            mp_select_into(&xk, &tmp, &xk, eq1);        }        } // WINSCP    }    mp_free(scratch_to_free);    return toret;    } // WINSCP    } // WINSCP}mp_int *mp_random_bits_fn(size_t bits, random_read_fn_t random_read){    size_t bytes = (bits + 7) / 8;    uint8_t *randbuf = snewn(bytes, uint8_t);    random_read(randbuf, bytes);    if (bytes)        randbuf[0] &= (2 << ((bits-1) & 7)) - 1;    { // WINSCP    mp_int *toret = mp_from_bytes_be(make_ptrlen(randbuf, bytes));    smemclr(randbuf, bytes);    sfree(randbuf);    return toret;    } // WINSCP}mp_int *mp_random_in_range_fn(mp_int *lo, mp_int *hi, random_read_fn_t rf){    mp_int *n_outcomes = mp_sub(hi, lo);    /*     * It would be nice to generate our random numbers in such a way     * as to make every possible outcome literally equiprobable. But     * we can't do that in constant time, so we have to go for a very     * close approximation instead. I'm going to take the view that a     * factor of (1+2^-128) between the probabilities of two outcomes     * is acceptable on the grounds that you'd have to examine so many     * outputs to even detect it.     */    mp_int *unreduced = mp_random_bits_fn(mp_max_bits(n_outcomes) + 128, rf);    mp_int *reduced = mp_mod(unreduced, n_outcomes);    mp_add_into(reduced, reduced, lo);    mp_free(unreduced);    mp_free(n_outcomes);    return reduced;}
 |