| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317 | /* * mpint_i.h: definitions used internally by the bignum code, and * also a few other vaguely-bignum-like places. *//* ---------------------------------------------------------------------- * The assorted conditional definitions of BignumInt and multiply * macros used throughout the bignum code to treat numbers as arrays * of the most conveniently sized word for the target machine. * Exported so that other code (e.g. poly1305) can use it too. * * This code must export, in whatever ifdef branch it ends up in: * *  - two types: 'BignumInt' and 'BignumCarry'. BignumInt is an *    unsigned integer type which will be used as the base word size *    for all bignum operations. BignumCarry is an unsigned integer *    type used to hold the carry flag taken as input and output by *    the BignumADC macro (see below). * *  - five constant macros: *     + BIGNUM_INT_BITS, the number of bits in BignumInt, *     + BIGNUM_INT_BYTES, the number of bytes that works out to *     + BIGNUM_TOP_BIT, the BignumInt value consisting of only the top bit *     + BIGNUM_INT_MASK, the BignumInt value with all bits set *     + BIGNUM_INT_BITS_BITS, log to the base 2 of BIGNUM_INT_BITS. * *  - four statement macros: BignumADC, BignumMUL, BignumMULADD, *    BignumMULADD2. These do various kinds of multi-word arithmetic, *    and all produce two output values. *     * BignumADC(ret,retc,a,b,c) takes input BignumInt values a,b *       and a BignumCarry c, and outputs a BignumInt ret = a+b+c and *       a BignumCarry retc which is the carry off the top of that *       addition. *     * BignumMUL(rh,rl,a,b) returns the two halves of the *       double-width product a*b. *     * BignumMULADD(rh,rl,a,b,addend) returns the two halves of the *       double-width value a*b + addend. *     * BignumMULADD2(rh,rl,a,b,addend1,addend2) returns the two *       halves of the double-width value a*b + addend1 + addend2. * * Every branch of the main ifdef below defines the type BignumInt and * the value BIGNUM_INT_BITS_BITS. The other constant macros are * filled in by common code further down. * * Most branches also define a macro DEFINE_BIGNUMDBLINT containing a * typedef statement which declares a type _twice_ the length of a * BignumInt. This causes the common code further down to produce a * default implementation of the four statement macros in terms of * that double-width type, and also to defined BignumCarry to be * BignumInt. * * However, if a particular compile target does not have a type twice * the length of the BignumInt you want to use but it does provide * some alternative means of doing add-with-carry and double-word * multiply, then the ifdef branch in question can just define * BignumCarry and the four statement macros itself, and that's fine * too. *//* You can lower the BignumInt size by defining BIGNUM_OVERRIDE on the * command line to be your chosen max value of BIGNUM_INT_BITS_BITS */#define BB_OK(b) (!defined BIGNUM_OVERRIDE || BIGNUM_OVERRIDE >= b)#if defined __SIZEOF_INT128__ && BB_OK(6)  /*   * 64-bit BignumInt using gcc/clang style 128-bit BignumDblInt.   *   * gcc and clang both provide a __uint128_t type on 64-bit targets   * (and, when they do, indicate its presence by the above macro),   * using the same 'two machine registers' kind of code generation   * that 32-bit targets use for 64-bit ints.   */  typedef unsigned long long BignumInt;  #define BIGNUM_INT_BITS_BITS 6  #define DEFINE_BIGNUMDBLINT typedef __uint128_t BignumDblInt#elif defined _MSC_VER && defined _M_AMD64 && BB_OK(6)  /*   * 64-bit BignumInt, using Visual Studio x86-64 compiler intrinsics.   *   * 64-bit Visual Studio doesn't provide very much in the way of help   * here: there's no int128 type, and also no inline assembler giving   * us direct access to the x86-64 MUL or ADC instructions. However,   * there are compiler intrinsics giving us that access, so we can   * use those - though it turns out we have to be a little careful,   * since they seem to generate wrong code if their pointer-typed   * output parameters alias their inputs. Hence all the internal temp   * variables inside the macros.   */  #include <intrin.h>  typedef unsigned char BignumCarry; /* the type _addcarry_u64 likes to use */  typedef unsigned __int64 BignumInt;  #define BIGNUM_INT_BITS_BITS 6  #define BignumADC(ret, retc, a, b, c) do                \      {                                                   \          BignumInt ADC_tmp;                              \          (retc) = _addcarry_u64(c, a, b, &ADC_tmp);      \          (ret) = ADC_tmp;                                \      } while (0)  #define BignumMUL(rh, rl, a, b) do              \      {                                           \          BignumInt MULADD_hi;                    \          (rl) = _umul128(a, b, &MULADD_hi);      \          (rh) = MULADD_hi;                       \      } while (0)  #define BignumMULADD(rh, rl, a, b, addend) do                           \      {                                                                   \          BignumInt MULADD_lo, MULADD_hi;                                 \          MULADD_lo = _umul128(a, b, &MULADD_hi);                         \          MULADD_hi += _addcarry_u64(0, MULADD_lo, (addend), &(rl));     \          (rh) = MULADD_hi;                                               \      } while (0)  #define BignumMULADD2(rh, rl, a, b, addend1, addend2) do                \      {                                                                   \          BignumInt MULADD_lo1, MULADD_lo2, MULADD_hi;                    \          MULADD_lo1 = _umul128(a, b, &MULADD_hi);                        \          MULADD_hi += _addcarry_u64(0, MULADD_lo1, (addend1), &MULADD_lo2); \          MULADD_hi += _addcarry_u64(0, MULADD_lo2, (addend2), &(rl));    \          (rh) = MULADD_hi;                                               \      } while (0)#elif (defined __GNUC__ || defined _LLP64 || __STDC__ >= 199901L) && BB_OK(5)  /* 32-bit BignumInt, using C99 unsigned long long as BignumDblInt */  typedef unsigned int BignumInt;  #define BIGNUM_INT_BITS_BITS 5  #define DEFINE_BIGNUMDBLINT typedef unsigned long long BignumDblInt#elif defined _MSC_VER && BB_OK(5) || defined(MPEXT)  /* 32-bit BignumInt, using Visual Studio __int64 as BignumDblInt */  typedef unsigned int BignumInt;  #define BIGNUM_INT_BITS_BITS 5  #define DEFINE_BIGNUMDBLINT typedef unsigned __int64 BignumDblInt#elif defined _LP64 && BB_OK(5)  /*   * 32-bit BignumInt, using unsigned long itself as BignumDblInt.   *   * Only for platforms where long is 64 bits, of course.   */  typedef unsigned int BignumInt;  #define BIGNUM_INT_BITS_BITS 5  #define DEFINE_BIGNUMDBLINT typedef unsigned long BignumDblInt#elif BB_OK(4)  /*   * 16-bit BignumInt, using unsigned long as BignumDblInt.   *   * This is the final fallback for real emergencies: C89 guarantees   * unsigned short/long to be at least the required sizes, so this   * should work on any C implementation at all. But it'll be   * noticeably slow, so if you find yourself in this case you   * probably want to move heaven and earth to find an alternative!   */  typedef unsigned short BignumInt;  #define BIGNUM_INT_BITS_BITS 4  #define DEFINE_BIGNUMDBLINT typedef unsigned long BignumDblInt#else  /* Should only get here if BB_OK(4) evaluated false, i.e. the   * command line defined BIGNUM_OVERRIDE to an absurdly small   * value. */  #error Must define BIGNUM_OVERRIDE to at least 4#endif#undef BB_OK/* * Common code across all branches of that ifdef: define all the * easy constant macros in terms of BIGNUM_INT_BITS_BITS. */#define BIGNUM_INT_BITS (1 << BIGNUM_INT_BITS_BITS)#define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)#define BIGNUM_TOP_BIT (((BignumInt)1) << (BIGNUM_INT_BITS-1))#define BIGNUM_INT_MASK (BIGNUM_TOP_BIT | (BIGNUM_TOP_BIT-1))/* * Just occasionally, we might need a GET_nnBIT_xSB_FIRST macro to * operate on whatever BignumInt is. */#if BIGNUM_INT_BITS_BITS == 4#define GET_BIGNUMINT_MSB_FIRST GET_16BIT_MSB_FIRST#define GET_BIGNUMINT_LSB_FIRST GET_16BIT_LSB_FIRST#define PUT_BIGNUMINT_MSB_FIRST PUT_16BIT_MSB_FIRST#define PUT_BIGNUMINT_LSB_FIRST PUT_16BIT_LSB_FIRST#elif BIGNUM_INT_BITS_BITS == 5#define GET_BIGNUMINT_MSB_FIRST GET_32BIT_MSB_FIRST#define GET_BIGNUMINT_LSB_FIRST GET_32BIT_LSB_FIRST#define PUT_BIGNUMINT_MSB_FIRST PUT_32BIT_MSB_FIRST#define PUT_BIGNUMINT_LSB_FIRST PUT_32BIT_LSB_FIRST#elif BIGNUM_INT_BITS_BITS == 6#define GET_BIGNUMINT_MSB_FIRST GET_64BIT_MSB_FIRST#define GET_BIGNUMINT_LSB_FIRST GET_64BIT_LSB_FIRST#define PUT_BIGNUMINT_MSB_FIRST PUT_64BIT_MSB_FIRST#define PUT_BIGNUMINT_LSB_FIRST PUT_64BIT_LSB_FIRST#else  #error Ran out of options for GET_BIGNUMINT_xSB_FIRST#endif/* * Common code across _most_ branches of the ifdef: define a set of * statement macros in terms of the BignumDblInt type provided. In * this case, we also define BignumCarry to be the same thing as * BignumInt, for simplicity. */#ifdef DEFINE_BIGNUMDBLINT  typedef BignumInt BignumCarry;  #define BignumADC(ret, retc, a, b, c) do                        \      {                                                           \          DEFINE_BIGNUMDBLINT;                                    \          BignumDblInt ADC_temp = (BignumInt)(a);                 \          ADC_temp += (BignumInt)(b);                             \          ADC_temp += (c);                                        \          (ret) = (BignumInt)ADC_temp;                            \          (retc) = (BignumCarry)(ADC_temp >> BIGNUM_INT_BITS);    \      } while (0)    #define BignumMUL(rh, rl, a, b) do                              \      {                                                           \          DEFINE_BIGNUMDBLINT;                                    \          BignumDblInt MUL_temp = (BignumInt)(a);                 \          MUL_temp *= (BignumInt)(b);                             \          (rh) = (BignumInt)(MUL_temp >> BIGNUM_INT_BITS);        \          (rl) = (BignumInt)(MUL_temp);                           \      } while (0)    #define BignumMULADD(rh, rl, a, b, addend) do                   \      {                                                           \          DEFINE_BIGNUMDBLINT;                                    \          BignumDblInt MUL_temp = (BignumInt)(a);                 \          MUL_temp *= (BignumInt)(b);                             \          MUL_temp += (BignumInt)(addend);                        \          (rh) = (BignumInt)(MUL_temp >> BIGNUM_INT_BITS);        \          (rl) = (BignumInt)(MUL_temp);                           \      } while (0)    #define BignumMULADD2(rh, rl, a, b, addend1, addend2) do        \      {                                                           \          DEFINE_BIGNUMDBLINT;                                    \          BignumDblInt MUL_temp = (BignumInt)(a);                 \          MUL_temp *= (BignumInt)(b);                             \          MUL_temp += (BignumInt)(addend1);                       \          MUL_temp += (BignumInt)(addend2);                       \          (rh) = (BignumInt)(MUL_temp >> BIGNUM_INT_BITS);        \          (rl) = (BignumInt)(MUL_temp);                           \      } while (0)#endif /* DEFINE_BIGNUMDBLINT *//* ---------------------------------------------------------------------- * Data structures used inside bignum.c. */struct mp_int {    size_t nw;    BignumInt *w;};struct MontyContext {    /*     * The actual modulus.     */    mp_int *m;    /*     * Montgomery multiplication works by selecting a value r > m,     * coprime to m, which is really easy to divide by. In binary     * arithmetic, that means making it a power of 2; in fact we make     * it a whole number of BignumInt.     *     * We don't store r directly as an mp_int (there's no need). But     * its value is 2^rbits; we also store rw = rbits/BIGNUM_INT_BITS     * (the corresponding word offset within an mp_int).     *     * pw is the number of words needed to store an mp_int you're     * doing reduction on: it has to be big enough to hold the sum of     * an input value up to m^2 plus an extra addend up to m*r.     */    size_t rbits, rw, pw;    /*     * The key step in Montgomery reduction requires the inverse of -m     * mod r.     */    mp_int *minus_minv_mod_r;    /*     * r^1, r^2 and r^3 mod m, which are used for various purposes.     *     * (Annoyingly, this is one of the rare cases where it would have     * been nicer to have a Pascal-style 1-indexed array. I couldn't     * _quite_ bring myself to put a gratuitous zero element in here.     * So you just have to live with getting r^k by taking the [k-1]th     * element of this array.)     */    mp_int *powers_of_r_mod_m[3];    /*     * Persistent scratch space from which monty_* functions can     * allocate storage for intermediate values.     */    mp_int *scratch;};
 |