| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965 | /* * sshaes.c - implementation of AES */#include <assert.h>#include <stdlib.h>#include "ssh.h"#include "mpint_i.h"               /* we reuse the BignumInt system *//* * Start by deciding whether we can support hardware AES at all. */#define HW_AES_NONE 0#define HW_AES_NI 1#define HW_AES_NEON 2#ifdef _FORCE_AES_NI#   define HW_AES HW_AES_NI#elif defined(__clang__)#   if __has_attribute(target) && __has_include(<wmmintrin.h>) &&       \    (defined(__x86_64__) || defined(__i386))#       define HW_AES HW_AES_NI#   endif#elif defined(__GNUC__)#    if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4)) && \    (defined(__x86_64__) || defined(__i386))#       define HW_AES HW_AES_NI#    endif#elif defined (_MSC_VER)#   if (defined(_M_X64) || defined(_M_IX86)) && _MSC_FULL_VER >= 150030729#      define HW_AES HW_AES_NI#   endif#endif#define HW_AES HW_AES_NI // WINSCP#ifdef _FORCE_AES_NEON#   define HW_AES HW_AES_NEON#elif defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__    /* Arm can potentially support both endiannesses, but this code     * hasn't been tested on anything but little. If anyone wants to     * run big-endian, they'll need to fix it first. */#elif defined __ARM_FEATURE_CRYPTO    /* If the Arm crypto extension is available already, we can     * support NEON AES without having to enable anything by hand */#   define HW_AES HW_AES_NEON#elif defined(__clang__)#   if __has_attribute(target) && __has_include(<arm_neon.h>) &&       \    (defined(__aarch64__))        /* clang can enable the crypto extension in AArch64 using         * __attribute__((target)) */#       define HW_AES HW_AES_NEON#       define USE_CLANG_ATTR_TARGET_AARCH64#   endif#elif defined _MSC_VER    /* Visual Studio supports the crypto extension when targeting     * AArch64, but as of VS2017, the AArch32 header doesn't quite     * manage it (declaring the aese/aesd intrinsics without a round     * key operand). */#   if defined _M_ARM64#       define HW_AES HW_AES_NEON#       if defined _M_ARM64#           define USE_ARM64_NEON_H /* unusual header name in this case */#       endif#   endif#endif#if defined _FORCE_SOFTWARE_AES || !defined HW_AES#   undef HW_AES#   define HW_AES HW_AES_NONE#endif#if HW_AES == HW_AES_NI#define HW_NAME_SUFFIX " (AES-NI accelerated)"#elif HW_AES == HW_AES_NEON#define HW_NAME_SUFFIX " (NEON accelerated)"#else#define HW_NAME_SUFFIX " (!NONEXISTENT ACCELERATED VERSION!)"#endif/* * Vtable collection for AES. For each SSH-level cipher id (i.e. * combination of key length and cipher mode), we provide three * vtables: one for the pure software implementation, one using * hardware acceleration (if available), and a top-level one which is * never actually instantiated, and only contains a new() method whose * job is to decide whihc of the other two to return an actual * instance of. */static ssh_cipher *aes_select(const ssh_cipheralg *alg);static ssh_cipher *aes_sw_new(const ssh_cipheralg *alg);static void aes_sw_free(ssh_cipher *);static void aes_sw_setiv_cbc(ssh_cipher *, const void *iv);static void aes_sw_setiv_sdctr(ssh_cipher *, const void *iv);static void aes_sw_setkey(ssh_cipher *, const void *key);/*WINSCP static*/ ssh_cipher *aes_hw_new(const ssh_cipheralg *alg);/*WINSCP static*/ void aes_hw_free(ssh_cipher *);/*WINSCP static*/ void aes_hw_setiv_cbc(ssh_cipher *, const void *iv);/*WINSCP static*/ void aes_hw_setiv_sdctr(ssh_cipher *, const void *iv);/*WINSCP static*/ void aes_hw_setkey(ssh_cipher *, const void *key);#ifndef WINSCP_VSstruct aes_extra {    const ssh_cipheralg *sw, *hw;};#define VTABLES_INNER(cid, pid, bits, name, encsuffix,                  \                      decsuffix, setiv, flags)                          \    /*WINSCP static*/ void cid##_sw##encsuffix(ssh_cipher *, void *blk, int len);  \    /*WINSCP static*/ void cid##_sw##decsuffix(ssh_cipher *, void *blk, int len);  \    const ssh_cipheralg ssh_##cid##_sw = {                              \        aes_sw_new, aes_sw_free, aes_sw_##setiv, aes_sw_setkey,         \        cid##_sw##encsuffix, cid##_sw##decsuffix, NULL, NULL,           \        pid, 16, bits, bits/8, flags, name " (unaccelerated)",          \        NULL, NULL };                                                   \                                                                        \    /*WINSCP static*/ void cid##_hw##encsuffix(ssh_cipher *, void *blk, int len);  \    /*WINSCP static*/ void cid##_hw##decsuffix(ssh_cipher *, void *blk, int len);  \    const ssh_cipheralg ssh_##cid##_hw = {                              \        aes_hw_new, aes_hw_free, aes_hw_##setiv, aes_hw_setkey,         \        cid##_hw##encsuffix, cid##_hw##decsuffix, NULL, NULL,           \        pid, 16, bits, bits/8, flags, name HW_NAME_SUFFIX,              \        NULL, NULL };                                                   \                                                                        \    const struct aes_extra extra_##cid = {                              \        &ssh_##cid##_sw, &ssh_##cid##_hw };                             \                                                                        \    const ssh_cipheralg ssh_##cid = {                                   \        aes_select, NULL, NULL, NULL, NULL, NULL, NULL, NULL,           \        pid, 16, bits, bits/8, flags, name " (dummy selector vtable)",  \        NULL, &extra_##cid };                                           \#define VTABLES(keylen)                                                 \    VTABLES_INNER(aes ## keylen ## _cbc, "aes" #keylen "-cbc",          \                  keylen, "AES-" #keylen " CBC", _encrypt, _decrypt,    \                  setiv_cbc, SSH_CIPHER_IS_CBC)                         \    VTABLES_INNER(aes ## keylen ## _sdctr, "aes" #keylen "-ctr",        \                  keylen, "AES-" #keylen " SDCTR",,, setiv_sdctr, 0)VTABLES(128)VTABLES(192)VTABLES(256)static const ssh_cipheralg ssh_rijndael_lysator = {    /* Same as aes256_cbc, but with a different protocol ID */    aes_select, NULL, NULL, NULL, NULL, NULL, NULL, NULL,    "[email protected]", 16, 256, 256/8, 0,    "AES-256 CBC (dummy selector vtable)", NULL, &extra_aes256_cbc};static const ssh_cipheralg *const aes_list[] = {    &ssh_aes256_sdctr,    &ssh_aes256_cbc,    &ssh_rijndael_lysator,    &ssh_aes192_sdctr,    &ssh_aes192_cbc,    &ssh_aes128_sdctr,    &ssh_aes128_cbc,};const ssh2_ciphers ssh2_aes = { lenof(aes_list), aes_list };#endif/* * The actual query function that asks if hardware acceleration is * available. *//*WINSCP static*/ bool aes_hw_available(void);/* * The top-level selection function, caching the results of * aes_hw_available() so it only has to run once. */static bool aes_hw_available_cached(void){    static bool initialised = false;    static bool hw_available;    if (!initialised) {        hw_available = aes_hw_available();        initialised = true;    }    return hw_available;}#ifndef WINSCP_VSstatic ssh_cipher *aes_select(const ssh_cipheralg *alg){    const struct aes_extra *extra = (const struct aes_extra *)alg->extra;    const ssh_cipheralg *real_alg =        aes_hw_available_cached() ? extra->hw : extra->sw;    return ssh_cipher_new(real_alg);}#endif/* ---------------------------------------------------------------------- * Definitions likely to be helpful to multiple implementations. */#define REP2(x) x x#define REP4(x) REP2(REP2(x))#define REP8(x) REP2(REP4(x))#define REP9(x) REP8(x) x#define REP11(x) REP8(x) REP2(x) x#define REP13(x) REP8(x) REP4(x) xstatic const uint8_t key_setup_round_constants[] = {    /* The first few powers of X in GF(2^8), used during key setup.     * This can safely be a lookup table without side channel risks,     * because key setup iterates through it once in a standard way     * regardless of the key. */    0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,};#define MAXROUNDKEYS 15/* ---------------------------------------------------------------------- * Software implementation of AES. * * This implementation uses a bit-sliced representation. Instead of * the obvious approach of storing the cipher state so that each byte * (or field element, or entry in the cipher matrix) occupies 8 * contiguous bits in a machine integer somewhere, we organise the * cipher state as an array of 8 integers, in such a way that each * logical byte of the cipher state occupies one bit in each integer, * all at the same position. This allows us to do parallel logic on * all bytes of the state by doing bitwise operations between the 8 * integers; in particular, the S-box (SubBytes) lookup is done this * way, which takes about 110 operations - but for those 110 bitwise * ops you get 64 S-box lookups, not just one. */#define SLICE_PARALLELISM (BIGNUM_INT_BYTES / 2)#ifdef WINSCP_VS#ifdef BITSLICED_DEBUG/* Dump function that undoes the bitslicing transform, so you can see * the logical data represented by a set of slice words. */static inline void dumpslices_uint16_t(    const char *prefix, const uint16_t slices[8]){    printf("%-30s", prefix);    for (unsigned byte = 0; byte < 16; byte++) {        unsigned byteval = 0;        for (unsigned bit = 0; bit < 8; bit++)            byteval |= (1 & (slices[bit] >> byte)) << bit;        printf("%02x", byteval);    }    printf("\n");}static inline void dumpslices_BignumInt(    const char *prefix, const BignumInt slices[8]){    printf("%-30s", prefix);    for (unsigned iter = 0; iter < SLICE_PARALLELISM; iter++) {        for (unsigned byte = 0; byte < 16; byte++) {            unsigned byteval = 0;            for (unsigned bit = 0; bit < 8; bit++)                byteval |= (1 & (slices[bit] >> (iter*16+byte))) << bit;            printf("%02x", byteval);        }        if (iter+1 < SLICE_PARALLELISM)            printf(" ");    }    printf("\n");}#else#define dumpslices_uintN_t(prefix, slices) ((void)0)#define dumpslices_BignumInt(prefix, slices) ((void)0)#endif/* ----- * Bit-slicing transformation: convert between an array of 16 uint8_t * and an array of 8 uint16_t, so as to interchange the bit index * within each element and the element index within the array. (That * is, bit j of input[i] == bit i of output[j]. */#define SWAPWORDS(shift) do                                     \    {                                                           \        uint64_t mask = ~(uint64_t)0 / ((1ULL << shift) + 1);   \        uint64_t diff = ((i0 >> shift) ^ i1) & mask;            \        i0 ^= diff << shift;                                    \        i1 ^= diff;                                             \    } while (0)#define SWAPINWORD(i, bigshift, smallshift) do                  \    {                                                           \        uint64_t mask = ~(uint64_t)0;                           \        mask /= ((1ULL << bigshift) + 1);                       \        mask /= ((1ULL << smallshift) + 1);                     \        mask <<= smallshift;                                    \        unsigned shift = bigshift - smallshift;                 \        uint64_t diff = ((i >> shift) ^ i) & mask;              \        i ^= diff ^ (diff << shift);                            \    } while (0)#define TO_BITSLICES(slices, bytes, uintN_t, assign_op, shift) do       \    {                                                                   \        uint64_t i0 = GET_64BIT_LSB_FIRST(bytes);                       \        uint64_t i1 = GET_64BIT_LSB_FIRST(bytes + 8);                   \        SWAPINWORD(i0, 8, 1);                                           \        SWAPINWORD(i1, 8, 1);                                           \        SWAPINWORD(i0, 16, 2);                                          \        SWAPINWORD(i1, 16, 2);                                          \        SWAPINWORD(i0, 32, 4);                                          \        SWAPINWORD(i1, 32, 4);                                          \        SWAPWORDS(8);                                                   \        slices[0] assign_op (uintN_t)((i0 >>  0) & 0xFFFF) << (shift);  \        slices[2] assign_op (uintN_t)((i0 >> 16) & 0xFFFF) << (shift);  \        slices[4] assign_op (uintN_t)((i0 >> 32) & 0xFFFF) << (shift);  \        slices[6] assign_op (uintN_t)((i0 >> 48) & 0xFFFF) << (shift);  \        slices[1] assign_op (uintN_t)((i1 >>  0) & 0xFFFF) << (shift);  \        slices[3] assign_op (uintN_t)((i1 >> 16) & 0xFFFF) << (shift);  \        slices[5] assign_op (uintN_t)((i1 >> 32) & 0xFFFF) << (shift);  \        slices[7] assign_op (uintN_t)((i1 >> 48) & 0xFFFF) << (shift);  \    } while (0)#define FROM_BITSLICES(bytes, slices, shift) do                 \    {                                                           \        uint64_t i1 = ((slices[7] >> (shift)) & 0xFFFF);        \        i1 = (i1 << 16) | ((slices[5] >> (shift)) & 0xFFFF);    \        i1 = (i1 << 16) | ((slices[3] >> (shift)) & 0xFFFF);    \        i1 = (i1 << 16) | ((slices[1] >> (shift)) & 0xFFFF);    \        uint64_t i0 = ((slices[6] >> (shift)) & 0xFFFF);        \        i0 = (i0 << 16) | ((slices[4] >> (shift)) & 0xFFFF);    \        i0 = (i0 << 16) | ((slices[2] >> (shift)) & 0xFFFF);    \        i0 = (i0 << 16) | ((slices[0] >> (shift)) & 0xFFFF);    \        SWAPWORDS(8);                                           \        SWAPINWORD(i0, 32, 4);                                  \        SWAPINWORD(i1, 32, 4);                                  \        SWAPINWORD(i0, 16, 2);                                  \        SWAPINWORD(i1, 16, 2);                                  \        SWAPINWORD(i0, 8, 1);                                   \        SWAPINWORD(i1, 8, 1);                                   \        PUT_64BIT_LSB_FIRST(bytes, i0);                         \        PUT_64BIT_LSB_FIRST((bytes) + 8, i1);                   \    } while (0)/* ----- * Some macros that will be useful repeatedly. *//* Iterate a unary transformation over all 8 slices. */#define ITERATE(MACRO, output, input, uintN_t) do       \    {                                                   \        MACRO(output[0], input[0], uintN_t);            \        MACRO(output[1], input[1], uintN_t);            \        MACRO(output[2], input[2], uintN_t);            \        MACRO(output[3], input[3], uintN_t);            \        MACRO(output[4], input[4], uintN_t);            \        MACRO(output[5], input[5], uintN_t);            \        MACRO(output[6], input[6], uintN_t);            \        MACRO(output[7], input[7], uintN_t);            \    } while (0)/* Simply add (i.e. XOR) two whole sets of slices together. */#define BITSLICED_ADD(output, lhs, rhs) do      \    {                                           \        output[0] = lhs[0] ^ rhs[0];            \        output[1] = lhs[1] ^ rhs[1];            \        output[2] = lhs[2] ^ rhs[2];            \        output[3] = lhs[3] ^ rhs[3];            \        output[4] = lhs[4] ^ rhs[4];            \        output[5] = lhs[5] ^ rhs[5];            \        output[6] = lhs[6] ^ rhs[6];            \        output[7] = lhs[7] ^ rhs[7];            \    } while (0)/* ----- * The AES S-box, in pure bitwise logic so that it can be run in * parallel on whole words full of bit-sliced field elements. * * Source: 'A new combinational logic minimization technique with * applications to cryptology', https://eprint.iacr.org/2009/191 * * As a minor speed optimisation, I use a modified version of the * S-box which omits the additive constant 0x63, i.e. this S-box * consists of only the field inversion and linear map components. * Instead, the addition of the constant is deferred until after the * subsequent ShiftRows and MixColumns stages, so that it happens at * the same time as adding the next round key - and then we just make * it _part_ of the round key, so it doesn't cost any extra * instructions to add. * * (Obviously adding a constant to each byte commutes with ShiftRows, * which only permutes the bytes. It also commutes with MixColumns: * that's not quite so obvious, but since the effect of MixColumns is * to multiply a constant polynomial M into each column, it is obvious * that adding some polynomial K and then multiplying by M is * equivalent to multiplying by M and then adding the product KM. And * in fact, since the coefficients of M happen to sum to 1, it turns * out that KM = K, so we don't even have to change the constant when * we move it to the far side of MixColumns.) * * Of course, one knock-on effect of this is that the use of the S-box * *during* key setup has to be corrected by manually adding on the * constant afterwards! *//* Initial linear transformation for the forward S-box, from Fig 2 of * the paper. */#define SBOX_FORWARD_TOP_TRANSFORM(input, uintN_t)      \        uintN_t y14 = input[4] ^ input[2];              \        uintN_t y13 = input[7] ^ input[1];              \        uintN_t y9 = input[7] ^ input[4];               \        uintN_t y8 = input[7] ^ input[2];               \        uintN_t t0 = input[6] ^ input[5];               \        uintN_t y1 = t0 ^ input[0];                     \        uintN_t y4 = y1 ^ input[4];                     \        uintN_t y12 = y13 ^ y14;                        \        uintN_t y2 = y1 ^ input[7];                     \        uintN_t y5 = y1 ^ input[1];                     \        uintN_t y3 = y5 ^ y8;                           \        uintN_t t1 = input[3] ^ y12;                    \        uintN_t y15 = t1 ^ input[2];                    \        uintN_t y20 = t1 ^ input[6];                    \        uintN_t y6 = y15 ^ input[0];                    \        uintN_t y10 = y15 ^ t0;                         \        uintN_t y11 = y20 ^ y9;                         \        uintN_t y7 = input[0] ^ y11;                    \        uintN_t y17 = y10 ^ y11;                        \        uintN_t y19 = y10 ^ y8;                         \        uintN_t y16 = t0 ^ y11;                         \        uintN_t y21 = y13 ^ y16;                        \        uintN_t y18 = input[7] ^ y16;                   \        /* Make a copy of input[0] under a new name, because the core         * will refer to it, and in the inverse version of the S-box         * the corresponding value will be one of the calculated ones         * and not in input[0] itself. */               \        uintN_t i0 = input[0];                          \        /* end *//* Core nonlinear component, from Fig 3 of the paper. */#define SBOX_CORE(uintN_t)                              \        uintN_t t2 = y12 & y15;                         \        uintN_t t3 = y3 & y6;                           \        uintN_t t4 = t3 ^ t2;                           \        uintN_t t5 = y4 & i0;                           \        uintN_t t6 = t5 ^ t2;                           \        uintN_t t7 = y13 & y16;                         \        uintN_t t8 = y5 & y1;                           \        uintN_t t9 = t8 ^ t7;                           \        uintN_t t10 = y2 & y7;                          \        uintN_t t11 = t10 ^ t7;                         \        uintN_t t12 = y9 & y11;                         \        uintN_t t13 = y14 & y17;                        \        uintN_t t14 = t13 ^ t12;                        \        uintN_t t15 = y8 & y10;                         \        uintN_t t16 = t15 ^ t12;                        \        uintN_t t17 = t4 ^ t14;                         \        uintN_t t18 = t6 ^ t16;                         \        uintN_t t19 = t9 ^ t14;                         \        uintN_t t20 = t11 ^ t16;                        \        uintN_t t21 = t17 ^ y20;                        \        uintN_t t22 = t18 ^ y19;                        \        uintN_t t23 = t19 ^ y21;                        \        uintN_t t24 = t20 ^ y18;                        \        uintN_t t25 = t21 ^ t22;                        \        uintN_t t26 = t21 & t23;                        \        uintN_t t27 = t24 ^ t26;                        \        uintN_t t28 = t25 & t27;                        \        uintN_t t29 = t28 ^ t22;                        \        uintN_t t30 = t23 ^ t24;                        \        uintN_t t31 = t22 ^ t26;                        \        uintN_t t32 = t31 & t30;                        \        uintN_t t33 = t32 ^ t24;                        \        uintN_t t34 = t23 ^ t33;                        \        uintN_t t35 = t27 ^ t33;                        \        uintN_t t36 = t24 & t35;                        \        uintN_t t37 = t36 ^ t34;                        \        uintN_t t38 = t27 ^ t36;                        \        uintN_t t39 = t29 & t38;                        \        uintN_t t40 = t25 ^ t39;                        \        uintN_t t41 = t40 ^ t37;                        \        uintN_t t42 = t29 ^ t33;                        \        uintN_t t43 = t29 ^ t40;                        \        uintN_t t44 = t33 ^ t37;                        \        uintN_t t45 = t42 ^ t41;                        \        uintN_t z0 = t44 & y15;                         \        uintN_t z1 = t37 & y6;                          \        uintN_t z2 = t33 & i0;                          \        uintN_t z3 = t43 & y16;                         \        uintN_t z4 = t40 & y1;                          \        uintN_t z5 = t29 & y7;                          \        uintN_t z6 = t42 & y11;                         \        uintN_t z7 = t45 & y17;                         \        uintN_t z8 = t41 & y10;                         \        uintN_t z9 = t44 & y12;                         \        uintN_t z10 = t37 & y3;                         \        uintN_t z11 = t33 & y4;                         \        uintN_t z12 = t43 & y13;                        \        uintN_t z13 = t40 & y5;                         \        uintN_t z14 = t29 & y2;                         \        uintN_t z15 = t42 & y9;                         \        uintN_t z16 = t45 & y14;                        \        uintN_t z17 = t41 & y8;                         \        /* end *//* Final linear transformation for the forward S-box, from Fig 4 of * the paper. */#define SBOX_FORWARD_BOTTOM_TRANSFORM(output, uintN_t)   \        uintN_t t46 = z15 ^ z16;                        \        uintN_t t47 = z10 ^ z11;                        \        uintN_t t48 = z5 ^ z13;                         \        uintN_t t49 = z9 ^ z10;                         \        uintN_t t50 = z2 ^ z12;                         \        uintN_t t51 = z2 ^ z5;                          \        uintN_t t52 = z7 ^ z8;                          \        uintN_t t53 = z0 ^ z3;                          \        uintN_t t54 = z6 ^ z7;                          \        uintN_t t55 = z16 ^ z17;                        \        uintN_t t56 = z12 ^ t48;                        \        uintN_t t57 = t50 ^ t53;                        \        uintN_t t58 = z4 ^ t46;                         \        uintN_t t59 = z3 ^ t54;                         \        uintN_t t60 = t46 ^ t57;                        \        uintN_t t61 = z14 ^ t57;                        \        uintN_t t62 = t52 ^ t58;                        \        uintN_t t63 = t49 ^ t58;                        \        uintN_t t64 = z4 ^ t59;                         \        uintN_t t65 = t61 ^ t62;                        \        uintN_t t66 = z1 ^ t63;                         \        output[7] = t59 ^ t63;                          \        output[1] = t56 ^ t62;                          \        output[0] = t48 ^ t60;                          \        uintN_t t67 = t64 ^ t65;                        \        output[4] = t53 ^ t66;                          \        output[3] = t51 ^ t66;                          \        output[2] = t47 ^ t65;                          \        output[6] = t64 ^ output[4];                    \        output[5] = t55 ^ t67;                          \        /* end */#define BITSLICED_SUBBYTES(output, input, uintN_t) do { \        SBOX_FORWARD_TOP_TRANSFORM(input, uintN_t);      \        SBOX_CORE(uintN_t);                             \        SBOX_FORWARD_BOTTOM_TRANSFORM(output, uintN_t);  \    } while (0)/* * Initial and final linear transformations for the backward S-box. I * generated these myself, by implementing the linear-transform * optimisation algorithm in the paper, and applying it to the * matrices calculated by _their_ top and bottom transformations, pre- * and post-multiplied as appropriate by the linear map in the inverse * S_box. */#define SBOX_BACKWARD_TOP_TRANSFORM(input, uintN_t)     \    uintN_t y5 = input[4] ^ input[6];                   \    uintN_t y19 = input[3] ^ input[0];                  \    uintN_t itmp8 = y5 ^ input[0];                      \    uintN_t y4 = itmp8 ^ input[1];                      \    uintN_t y9 = input[4] ^ input[3];                   \    uintN_t y2 = y9 ^ y4;                               \    uintN_t itmp9 = y2 ^ input[7];                      \    uintN_t y1 = y9 ^ input[0];                         \    uintN_t y6 = y5 ^ input[7];                         \    uintN_t y18 = y9 ^ input[5];                        \    uintN_t y7 = y18 ^ y2;                              \    uintN_t y16 = y7 ^ y1;                              \    uintN_t y21 = y7 ^ input[1];                        \    uintN_t y3 = input[4] ^ input[7];                   \    uintN_t y13 = y16 ^ y21;                            \    uintN_t y8 = input[4] ^ y6;                         \    uintN_t y10 = y8 ^ y19;                             \    uintN_t y14 = y8 ^ y9;                              \    uintN_t y20 = itmp9 ^ input[2];                     \    uintN_t y11 = y9 ^ y20;                             \    uintN_t i0 = y11 ^ y7;                              \    uintN_t y15 = i0 ^ y6;                              \    uintN_t y17 = y16 ^ y15;                            \    uintN_t y12 = itmp9 ^ input[3];                     \    /* end */#define SBOX_BACKWARD_BOTTOM_TRANSFORM(output, uintN_t) \    uintN_t otmp18 = z15 ^ z6;                          \    uintN_t otmp19 = z13 ^ otmp18;                      \    uintN_t otmp20 = z12 ^ otmp19;                      \    uintN_t otmp21 = z16 ^ otmp20;                      \    uintN_t otmp22 = z8 ^ otmp21;                       \    uintN_t otmp23 = z0 ^ otmp22;                       \    uintN_t otmp24 = otmp22 ^ z3;                       \    uintN_t otmp25 = otmp24 ^ z4;                       \    uintN_t otmp26 = otmp25 ^ z2;                       \    uintN_t otmp27 = z1 ^ otmp26;                       \    uintN_t otmp28 = z14 ^ otmp27;                      \    uintN_t otmp29 = otmp28 ^ z10;                      \    output[4] = z2 ^ otmp23;                            \    output[7] = z5 ^ otmp24;                            \    uintN_t otmp30 = z11 ^ otmp29;                      \    output[5] = z13 ^ otmp30;                           \    uintN_t otmp31 = otmp25 ^ z8;                       \    output[1] = z7 ^ otmp31;                            \    uintN_t otmp32 = z11 ^ z9;                          \    uintN_t otmp33 = z17 ^ otmp32;                      \    uintN_t otmp34 = otmp30 ^ otmp33;                   \    output[0] = z15 ^ otmp33;                           \    uintN_t otmp35 = z12 ^ otmp34;                      \    output[6] = otmp35 ^ z16;                           \    uintN_t otmp36 = z1 ^ otmp23;                       \    uintN_t otmp37 = z5 ^ otmp36;                       \    output[2] = z4 ^ otmp37;                            \    uintN_t otmp38 = z11 ^ output[1];                   \    uintN_t otmp39 = z2 ^ otmp38;                       \    uintN_t otmp40 = z17 ^ otmp39;                      \    uintN_t otmp41 = z0 ^ otmp40;                       \    uintN_t otmp42 = z5 ^ otmp41;                       \    uintN_t otmp43 = otmp42 ^ z10;                      \    uintN_t otmp44 = otmp43 ^ z3;                       \    output[3] = otmp44 ^ z16;                           \    /* end */#define BITSLICED_INVSUBBYTES(output, input, uintN_t) do {      \        SBOX_BACKWARD_TOP_TRANSFORM(input, uintN_t);             \        SBOX_CORE(uintN_t);                                     \        SBOX_BACKWARD_BOTTOM_TRANSFORM(output, uintN_t);         \    } while (0)/* ----- * The ShiftRows transformation. This operates independently on each * bit slice. */#define SINGLE_BITSLICE_SHIFTROWS(output, input, uintN_t) do            \    {                                                                   \        uintN_t mask, mask2, mask3, diff, x = (input);                  \        /* Rotate rows 2 and 3 by 16 bits */                            \        mask = 0x00CC * (((uintN_t)~(uintN_t)0) / 0xFFFF);              \        diff = ((x >> 8) ^ x) & mask;                                   \        x ^= diff ^ (diff << 8);                                        \        /* Rotate rows 1 and 3 by 8 bits */                             \        mask  = 0x0AAA * (((uintN_t)~(uintN_t)0) / 0xFFFF);             \        mask2 = 0xA000 * (((uintN_t)~(uintN_t)0) / 0xFFFF);             \        mask3 = 0x5555 * (((uintN_t)~(uintN_t)0) / 0xFFFF);             \        x = ((x >> 4) & mask) | ((x << 12) & mask2) | (x & mask3);      \        /* Write output */                                              \        (output) = x;                                                   \    } while (0)#define SINGLE_BITSLICE_INVSHIFTROWS(output, input, uintN_t) do         \    {                                                                   \        uintN_t mask, mask2, mask3, diff, x = (input);                  \        /* Rotate rows 2 and 3 by 16 bits */                            \        mask = 0x00CC * (((uintN_t)~(uintN_t)0) / 0xFFFF);              \        diff = ((x >> 8) ^ x) & mask;                                   \        x ^= diff ^ (diff << 8);                                        \        /* Rotate rows 1 and 3 by 8 bits, the opposite way to ShiftRows */ \        mask  = 0x000A * (((uintN_t)~(uintN_t)0) / 0xFFFF);             \        mask2 = 0xAAA0 * (((uintN_t)~(uintN_t)0) / 0xFFFF);             \        mask3 = 0x5555 * (((uintN_t)~(uintN_t)0) / 0xFFFF);             \        x = ((x >> 12) & mask) | ((x << 4) & mask2) | (x & mask3);      \        /* Write output */                                              \        (output) = x;                                                   \    } while (0)#define BITSLICED_SHIFTROWS(output, input, uintN_t) do                  \    {                                                                   \        ITERATE(SINGLE_BITSLICE_SHIFTROWS, output, input, uintN_t);     \    } while (0)#define BITSLICED_INVSHIFTROWS(output, input, uintN_t) do               \    {                                                                   \        ITERATE(SINGLE_BITSLICE_INVSHIFTROWS, output, input, uintN_t);  \    } while (0)/* ----- * The MixColumns transformation. This has to operate on all eight bit * slices at once, and also passes data back and forth between the * bits in an adjacent group of 4 within each slice. * * Notation: let F = GF(2)[X]/<X^8+X^4+X^3+X+1> be the finite field * used in AES, and let R = F[Y]/<Y^4+1> be the ring whose elements * represent the possible contents of a column of the matrix. I use X * and Y below in those senses, i.e. X is the value in F that * represents the byte 0x02, and Y is the value in R that cycles the * four bytes around by one if you multiply by it. *//* Multiply every column by Y^3, i.e. cycle it round one place to the * right. Operates on one bit slice at a time; you have to wrap it in * ITERATE to affect all the data at once. */#define BITSLICED_MUL_BY_Y3(output, input, uintN_t) do          \    {                                                           \        uintN_t mask, mask2, x;                                 \        mask  = 0x8 * (((uintN_t)~(uintN_t)0) / 0xF);           \        mask2 = 0x7 * (((uintN_t)~(uintN_t)0) / 0xF);           \        x = input;                                              \        output = ((x << 3) & mask) ^ ((x >> 1) & mask2);        \    } while (0)/* Multiply every column by Y^2. */#define BITSLICED_MUL_BY_Y2(output, input, uintN_t) do          \    {                                                           \        uintN_t mask, mask2, x;                                 \        mask  = 0xC * (((uintN_t)~(uintN_t)0) / 0xF);           \        mask2 = 0x3 * (((uintN_t)~(uintN_t)0) / 0xF);           \        x = input;                                              \        output = ((x << 2) & mask) ^ ((x >> 2) & mask2);        \    } while (0)#define BITSLICED_MUL_BY_1_Y3(output, input, uintN_t) do        \    {                                                           \        uintN_t tmp = input;                                    \        BITSLICED_MUL_BY_Y3(tmp, input, uintN_t);               \        output = input ^ tmp;                                   \    } while (0)/* Multiply every column by 1+Y^2. */#define BITSLICED_MUL_BY_1_Y2(output, input, uintN_t) do        \    {                                                           \        uintN_t tmp = input;                                    \        BITSLICED_MUL_BY_Y2(tmp, input, uintN_t);               \        output = input ^ tmp;                                   \    } while (0)/* Multiply every field element by X. This has to feed data between * slices, so it does the whole job in one go without needing ITERATE. */#define BITSLICED_MUL_BY_X(output, input, uintN_t) do   \    {                                                   \        uintN_t bit7 = input[7];                        \        output[7] = input[6];                           \        output[6] = input[5];                           \        output[5] = input[4];                           \        output[4] = input[3] ^ bit7;                    \        output[3] = input[2] ^ bit7;                    \        output[2] = input[1];                           \        output[1] = input[0] ^ bit7;                    \        output[0] =            bit7;                    \    } while (0)/* * The MixColumns constant is *   M = X + Y + Y^2 + (X+1)Y^3 * which we construct by rearranging it into *   M = 1 + (1+Y^3) [ X + (1+Y^2) ] */#define BITSLICED_MIXCOLUMNS(output, input, uintN_t) do         \    {                                                           \        uintN_t a[8], aX[8], b[8];                              \        /* a = input * (1+Y^3) */                               \        ITERATE(BITSLICED_MUL_BY_1_Y3, a, input, uintN_t);      \        /* aX = a * X */                                        \        BITSLICED_MUL_BY_X(aX, a, uintN_t);                     \        /* b = a * (1+Y^2) = input * (1+Y+Y^2+Y^3) */           \        ITERATE(BITSLICED_MUL_BY_1_Y2, b, a, uintN_t);          \        /* output = input + aX + b (reusing a as a temp */      \        BITSLICED_ADD(a, aX, b);                                \        BITSLICED_ADD(output, input, a);                        \    } while (0)/* * The InvMixColumns constant, written out longhand, is *   I = (X^3+X^2+X) + (X^3+1)Y + (X^3+X^2+1)Y^2 + (X^3+X+1)Y^3 * We represent this as *   I = (X^3+X^2+X+1)(Y^3+Y^2+Y+1) + 1 + X(Y+Y^2) + X^2(Y+Y^3) */#define BITSLICED_INVMIXCOLUMNS(output, input, uintN_t) do      \    {                                                           \        /* We need input * X^i for i=1,...,3 */                 \        uintN_t X[8], X2[8], X3[8];                             \        BITSLICED_MUL_BY_X(X, input, uintN_t);                  \        BITSLICED_MUL_BY_X(X2, X, uintN_t);                     \        BITSLICED_MUL_BY_X(X3, X2, uintN_t);                    \        /* Sum them all and multiply by 1+Y+Y^2+Y^3. */         \        uintN_t S[8];                                           \        BITSLICED_ADD(S, input, X);                             \        BITSLICED_ADD(S, S, X2);                                \        BITSLICED_ADD(S, S, X3);                                \        ITERATE(BITSLICED_MUL_BY_1_Y3, S, S, uintN_t);          \        ITERATE(BITSLICED_MUL_BY_1_Y2, S, S, uintN_t);          \        /* Compute the X(Y+Y^2) term. */                        \        uintN_t A[8];                                           \        ITERATE(BITSLICED_MUL_BY_1_Y3, A, X, uintN_t);          \        ITERATE(BITSLICED_MUL_BY_Y2, A, A, uintN_t);            \        /* Compute the X^2(Y+Y^3) term. */                      \        uintN_t B[8];                                           \        ITERATE(BITSLICED_MUL_BY_1_Y2, B, X2, uintN_t);         \        ITERATE(BITSLICED_MUL_BY_Y3, B, B, uintN_t);            \        /* And add all the pieces together. */                  \        BITSLICED_ADD(S, S, input);                             \        BITSLICED_ADD(S, S, A);                                 \        BITSLICED_ADD(output, S, B);                            \    } while (0)/* ----- * Put it all together into a cipher round. *//* Dummy macro to get rid of the MixColumns in the final round. */#define NO_MIXCOLUMNS(out, in, uintN_t) do {} while (0)#define ENCRYPT_ROUND_FN(suffix, uintN_t, mixcol_macro)                 \    static void aes_sliced_round_e_##suffix(                            \        uintN_t output[8], const uintN_t input[8], const uintN_t roundkey[8]) \    {                                                                   \        BITSLICED_SUBBYTES(output, input, uintN_t);                     \        BITSLICED_SHIFTROWS(output, output, uintN_t);                   \        mixcol_macro(output, output, uintN_t);                          \        BITSLICED_ADD(output, output, roundkey);                        \    }ENCRYPT_ROUND_FN(serial, uint16_t, BITSLICED_MIXCOLUMNS)ENCRYPT_ROUND_FN(serial_last, uint16_t, NO_MIXCOLUMNS)ENCRYPT_ROUND_FN(parallel, BignumInt, BITSLICED_MIXCOLUMNS)ENCRYPT_ROUND_FN(parallel_last, BignumInt, NO_MIXCOLUMNS)#define DECRYPT_ROUND_FN(suffix, uintN_t, mixcol_macro)                 \    static void aes_sliced_round_d_##suffix(                            \        uintN_t output[8], const uintN_t input[8], const uintN_t roundkey[8]) \    {                                                                   \        BITSLICED_ADD(output, input, roundkey);                         \        mixcol_macro(output, output, uintN_t);                          \        BITSLICED_INVSUBBYTES(output, output, uintN_t);                 \        BITSLICED_INVSHIFTROWS(output, output, uintN_t);                \    }#if 0 /* no cipher mode we support requires serial decryption */DECRYPT_ROUND_FN(serial, uint16_t, BITSLICED_INVMIXCOLUMNS)DECRYPT_ROUND_FN(serial_first, uint16_t, NO_MIXCOLUMNS)#endifDECRYPT_ROUND_FN(parallel, BignumInt, BITSLICED_INVMIXCOLUMNS)DECRYPT_ROUND_FN(parallel_first, BignumInt, NO_MIXCOLUMNS)#endif // WINSCP_VS/* ----- * Key setup function. */typedef struct aes_sliced_key aes_sliced_key;struct aes_sliced_key {    BignumInt roundkeys_parallel[MAXROUNDKEYS * 8];    uint16_t roundkeys_serial[MAXROUNDKEYS * 8];    unsigned rounds;};/*WINSCP static*/ void aes_sliced_key_setup(    aes_sliced_key *sk, const void *vkey, size_t keybits)#ifndef WINSCP_VS;#else{    const unsigned char *key = (const unsigned char *)vkey;    size_t key_words = keybits / 32;    sk->rounds = key_words + 6;    size_t sched_words = (sk->rounds + 1) * 4;    unsigned rconpos = 0;    uint16_t *outslices = sk->roundkeys_serial;    unsigned outshift = 0;    memset(sk->roundkeys_serial, 0, sizeof(sk->roundkeys_serial));    uint8_t inblk[16];    memset(inblk, 0, 16);    uint16_t slices[8];    for (size_t i = 0; i < sched_words; i++) {        /*         * Prepare a word of round key in the low 4 bits of each         * integer in slices[].         */	if (i < key_words) {            memcpy(inblk, key + 4*i, 4);            TO_BITSLICES(slices, inblk, uint16_t, =, 0);        } else {            unsigned wordindex, bitshift;            uint16_t *prevslices;            /* Fetch the (i-1)th key word */            wordindex = i-1;            bitshift = 4 * (wordindex & 3);            prevslices = sk->roundkeys_serial + 8 * (wordindex >> 2);            for (size_t i = 0; i < 8; i++)                slices[i] = prevslices[i] >> bitshift;            /* Decide what we're doing in this expansion stage */            bool rotate_and_round_constant = (i % key_words == 0);            bool sub = rotate_and_round_constant ||                (key_words == 8 && i % 8 == 4);            if (rotate_and_round_constant) {                for (size_t i = 0; i < 8; i++)                    slices[i] = ((slices[i] << 3) | (slices[i] >> 1)) & 0xF;            }            if (sub) {                /* Apply the SubBytes transform to the key word. But                 * here we need to apply the _full_ SubBytes from the                 * spec, including the constant which our S-box leaves                 * out. */                BITSLICED_SUBBYTES(slices, slices, uint16_t);                slices[0] ^= 0xFFFF;                slices[1] ^= 0xFFFF;                slices[5] ^= 0xFFFF;                slices[6] ^= 0xFFFF;            }            if (rotate_and_round_constant) {                assert(rconpos < lenof(key_setup_round_constants));                uint8_t rcon = key_setup_round_constants[rconpos++];                for (size_t i = 0; i < 8; i++)                    slices[i] ^= 1 & (rcon >> i);            }            /* Combine with the (i-Nk)th key word */            wordindex = i - key_words;            bitshift = 4 * (wordindex & 3);            prevslices = sk->roundkeys_serial + 8 * (wordindex >> 2);            for (size_t i = 0; i < 8; i++)                slices[i] ^= prevslices[i] >> bitshift;	}        /*         * Now copy it into sk.         */        for (unsigned b = 0; b < 8; b++)            outslices[b] |= (slices[b] & 0xF) << outshift;        outshift += 4;        if (outshift == 16) {            outshift = 0;            outslices += 8;        }    }    smemclr(inblk, sizeof(inblk));    smemclr(slices, sizeof(slices));    /*     * Add the S-box constant to every round key after the first one,     * compensating for it being left out in the main cipher.     */    for (size_t i = 8; i < 8 * (sched_words/4); i += 8) {        sk->roundkeys_serial[i+0] ^= 0xFFFF;        sk->roundkeys_serial[i+1] ^= 0xFFFF;        sk->roundkeys_serial[i+5] ^= 0xFFFF;        sk->roundkeys_serial[i+6] ^= 0xFFFF;    }    /*     * Replicate that set of round keys into larger integers for the     * parallel versions of the cipher.     */    for (size_t i = 0; i < 8 * (sched_words / 4); i++) {        sk->roundkeys_parallel[i] = sk->roundkeys_serial[i] *            ((BignumInt)~(BignumInt)0 / 0xFFFF);    }}#endif#ifdef WINSCP_VS/* ----- * The full cipher primitive, including transforming the input and * output to/from bit-sliced form. */#define ENCRYPT_FN(suffix, uintN_t, nblocks)                            \    static void aes_sliced_e_##suffix(                                  \        uint8_t *output, const uint8_t *input, const aes_sliced_key *sk) \    {                                                                   \        uintN_t state[8];                                               \        TO_BITSLICES(state, input, uintN_t, =, 0);                      \        for (unsigned i = 1; i < nblocks; i++) {                        \            input += 16;                                                \            TO_BITSLICES(state, input, uintN_t, |=, i*16);              \        }                                                               \        const uintN_t *keys = sk->roundkeys_##suffix;                   \        BITSLICED_ADD(state, state, keys);                              \        keys += 8;                                                      \        for (unsigned i = 0; i < sk->rounds-1; i++) {                   \            aes_sliced_round_e_##suffix(state, state, keys);            \            keys += 8;                                                  \        }                                                               \        aes_sliced_round_e_##suffix##_last(state, state, keys);         \        for (unsigned i = 0; i < nblocks; i++) {                        \            FROM_BITSLICES(output, state, i*16);                        \            output += 16;                                               \        }                                                               \    }#define DECRYPT_FN(suffix, uintN_t, nblocks)                            \    static void aes_sliced_d_##suffix(                                  \        uint8_t *output, const uint8_t *input, const aes_sliced_key *sk) \    {                                                                   \        uintN_t state[8];                                               \        TO_BITSLICES(state, input, uintN_t, =, 0);                      \        for (unsigned i = 1; i < nblocks; i++) {                        \            input += 16;                                                \            TO_BITSLICES(state, input, uintN_t, |=, i*16);              \        }                                                               \        const uintN_t *keys = sk->roundkeys_##suffix + 8*sk->rounds;    \        aes_sliced_round_d_##suffix##_first(state, state, keys);        \        keys -= 8;                                                      \        for (unsigned i = 0; i < sk->rounds-1; i++) {                   \            aes_sliced_round_d_##suffix(state, state, keys);            \            keys -= 8;                                                  \        }                                                               \        BITSLICED_ADD(state, state, keys);                              \        for (unsigned i = 0; i < nblocks; i++) {                        \            FROM_BITSLICES(output, state, i*16);                        \            output += 16;                                               \        }                                                               \    }ENCRYPT_FN(serial, uint16_t, 1)#if 0 /* no cipher mode we support requires serial decryption */DECRYPT_FN(serial, uint16_t, 1)#endifENCRYPT_FN(parallel, BignumInt, SLICE_PARALLELISM)DECRYPT_FN(parallel, BignumInt, SLICE_PARALLELISM)#endif // WINSCP_VS/* ----- * The SSH interface and the cipher modes. */#define SDCTR_WORDS (16 / BIGNUM_INT_BYTES)typedef struct aes_sw_context aes_sw_context;struct aes_sw_context {    aes_sliced_key sk;    union {        struct {            /* In CBC mode, the IV is just a copy of the last seen             * cipher block. */            uint8_t prevblk[16];        } cbc;        struct {            /* In SDCTR mode, we keep the counter itself in a form             * that's easy to increment. We also use the parallel             * version of the core AES function, so we'll encrypt             * multiple counter values in one go. That won't align             * nicely with the sizes of data we're asked to encrypt,             * so we must also store a cache of the last set of             * keystream blocks we generated, and our current position             * within that cache. */            BignumInt counter[SDCTR_WORDS];            uint8_t keystream[SLICE_PARALLELISM * 16];            uint8_t *keystream_pos;        } sdctr;    } iv;    ssh_cipher ciph;};#ifndef WINSCP_VSstatic ssh_cipher *aes_sw_new(const ssh_cipheralg *alg){    aes_sw_context *ctx = snew(aes_sw_context);    ctx->ciph.vt = alg;    return &ctx->ciph;}static void aes_sw_free(ssh_cipher *ciph){    aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);    smemclr(ctx, sizeof(*ctx));    sfree(ctx);}static void aes_sw_setkey(ssh_cipher *ciph, const void *vkey){    aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);    aes_sliced_key_setup(&ctx->sk, vkey, ctx->ciph.vt->real_keybits);}static void aes_sw_setiv_cbc(ssh_cipher *ciph, const void *iv){    aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);    memcpy(ctx->iv.cbc.prevblk, iv, 16);}static void aes_sw_setiv_sdctr(ssh_cipher *ciph, const void *viv){    aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);    const uint8_t *iv = (const uint8_t *)viv;    /* Import the initial counter value into the internal representation */    unsigned i; // WINSCP    for (i = 0; i < SDCTR_WORDS; i++)        ctx->iv.sdctr.counter[i] =            GET_BIGNUMINT_MSB_FIRST(                iv + 16 - BIGNUM_INT_BYTES - i*BIGNUM_INT_BYTES);    /* Set keystream_pos to indicate that the keystream cache is     * currently empty */    ctx->iv.sdctr.keystream_pos =        ctx->iv.sdctr.keystream + sizeof(ctx->iv.sdctr.keystream);}#endiftypedef void (*aes_sw_fn)(uint32_t v[4], const uint32_t *keysched);#ifdef WINSCP_VSstatic inline void memxor16(void *vout, const void *vlhs, const void *vrhs){    uint8_t *out = (uint8_t *)vout;    const uint8_t *lhs = (const uint8_t *)vlhs, *rhs = (const uint8_t *)vrhs;    uint64_t w;    w = GET_64BIT_LSB_FIRST(lhs);    w ^= GET_64BIT_LSB_FIRST(rhs);    PUT_64BIT_LSB_FIRST(out, w);    w = GET_64BIT_LSB_FIRST(lhs + 8);    w ^= GET_64BIT_LSB_FIRST(rhs + 8);    PUT_64BIT_LSB_FIRST(out + 8, w);}static inline void aes_cbc_sw_encrypt(    ssh_cipher *ciph, void *vblk, int blklen){    aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);    /*     * CBC encryption has to be done serially, because the input to     * each run of the cipher includes the output from the previous     * run.     */    for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;         blk < finish; blk += 16) {        /*         * We use the IV array itself as the location for the         * encryption, because there's no reason not to.         */        /* XOR the new plaintext block into the previous cipher block */        memxor16(ctx->iv.cbc.prevblk, ctx->iv.cbc.prevblk, blk);        /* Run the cipher over the result, which leaves it         * conveniently already stored in ctx->iv */        aes_sliced_e_serial(            ctx->iv.cbc.prevblk, ctx->iv.cbc.prevblk, &ctx->sk);        /* Copy it to the output location */        memcpy(blk, ctx->iv.cbc.prevblk, 16);    }}static inline void aes_cbc_sw_decrypt(    ssh_cipher *ciph, void *vblk, int blklen){    aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);    uint8_t *blk = (uint8_t *)vblk;    /*     * CBC decryption can run in parallel, because all the     * _ciphertext_ blocks are already available.     */    size_t blocks_remaining = blklen / 16;    uint8_t data[SLICE_PARALLELISM * 16];    /* Zeroing the data array is probably overcautious, but it avoids     * technically undefined behaviour from leaving it uninitialised     * if our very first iteration doesn't include enough cipher     * blocks to populate it fully */    memset(data, 0, sizeof(data));    while (blocks_remaining > 0) {        /* Number of blocks we'll handle in this iteration. If we're         * dealing with fewer than the maximum, it doesn't matter -         * it's harmless to run the full parallel cipher function         * anyway. */        size_t blocks = (blocks_remaining < SLICE_PARALLELISM ?                         blocks_remaining : SLICE_PARALLELISM);        /* Parallel-decrypt the input, in a separate array so we still         * have the cipher stream available for XORing. */        memcpy(data, blk, 16 * blocks);        aes_sliced_d_parallel(data, data, &ctx->sk);        /* Write the output and update the IV */        for (size_t i = 0; i < blocks; i++) {            uint8_t *decrypted = data + 16*i;            uint8_t *output = blk + 16*i;            memxor16(decrypted, decrypted, ctx->iv.cbc.prevblk);            memcpy(ctx->iv.cbc.prevblk, output, 16);            memcpy(output, decrypted, 16);        }        /* Advance the input pointer. */        blk += 16 * blocks;        blocks_remaining -= blocks;    }    smemclr(data, sizeof(data));}static inline void aes_sdctr_sw(    ssh_cipher *ciph, void *vblk, int blklen){    aes_sw_context *ctx = container_of(ciph, aes_sw_context, ciph);    /*     * SDCTR encrypt/decrypt loops round one block at a time XORing     * the keystream into the user's data, and periodically has to run     * a parallel encryption operation to get more keystream.     */    uint8_t *keystream_end =        ctx->iv.sdctr.keystream + sizeof(ctx->iv.sdctr.keystream);    for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;         blk < finish; blk += 16) {        if (ctx->iv.sdctr.keystream_pos == keystream_end) {            /*             * Generate some keystream.             */            for (uint8_t *block = ctx->iv.sdctr.keystream;                 block < keystream_end; block += 16) {                /* Format the counter value into the buffer. */                for (unsigned i = 0; i < SDCTR_WORDS; i++)                    PUT_BIGNUMINT_MSB_FIRST(                        block + 16 - BIGNUM_INT_BYTES - i*BIGNUM_INT_BYTES,                        ctx->iv.sdctr.counter[i]);                /* Increment the counter. */                BignumCarry carry = 1;                for (unsigned i = 0; i < SDCTR_WORDS; i++)                    BignumADC(ctx->iv.sdctr.counter[i], carry,                              ctx->iv.sdctr.counter[i], 0, carry);            }            /* Encrypt all those counter blocks. */            aes_sliced_e_parallel(ctx->iv.sdctr.keystream,                                  ctx->iv.sdctr.keystream, &ctx->sk);            /* Reset keystream_pos to the start of the buffer. */            ctx->iv.sdctr.keystream_pos = ctx->iv.sdctr.keystream;        }        memxor16(blk, blk, ctx->iv.sdctr.keystream_pos);        ctx->iv.sdctr.keystream_pos += 16;    }}#define SW_ENC_DEC(len)                                 \    /*WINSCP static*/ void aes##len##_cbc_sw_encrypt(              \        ssh_cipher *ciph, void *vblk, int blklen)       \    { aes_cbc_sw_encrypt(ciph, vblk, blklen); }         \    /*WINSCP static*/ void aes##len##_cbc_sw_decrypt(              \        ssh_cipher *ciph, void *vblk, int blklen)       \    { aes_cbc_sw_decrypt(ciph, vblk, blklen); }         \    /*WINSCP static*/ void aes##len##_sdctr_sw(                    \        ssh_cipher *ciph, void *vblk, int blklen)       \    { aes_sdctr_sw(ciph, vblk, blklen); }SW_ENC_DEC(128)SW_ENC_DEC(192)SW_ENC_DEC(256)#endif/* ---------------------------------------------------------------------- * Hardware-accelerated implementation of AES using x86 AES-NI. */#if HW_AES == HW_AES_NI#ifdef WINSCP_VS/* * Set target architecture for Clang and GCC */#if !defined(__clang__) && defined(__GNUC__)#    pragma GCC target("aes")#    pragma GCC target("sse4.1")#endif#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))#    define FUNC_ISA __attribute__ ((target("sse4.1,aes")))#else#    define FUNC_ISA#endif#include <wmmintrin.h>#include <smmintrin.h>#if defined(__clang__) || defined(__GNUC__)#include <cpuid.h>#define GET_CPU_ID(out) __cpuid(1, (out)[0], (out)[1], (out)[2], (out)[3])#else#define GET_CPU_ID(out) __cpuid(out, 1)#endifbool aes_hw_available(void){    /*     * Determine if AES is available on this CPU, by checking that     * both AES itself and SSE4.1 are supported.     */    unsigned int CPUInfo[4];    GET_CPU_ID(CPUInfo);    return (CPUInfo[2] & (1 << 25)) && (CPUInfo[2] & (1 << 19));}/* * Core AES-NI encrypt/decrypt functions, one per length and direction. */#define NI_CIPHER(len, dir, dirlong, repmacro)                          \    static FUNC_ISA inline __m128i aes_ni_##len##_##dir(                \        __m128i v, const __m128i *keysched)                             \    {                                                                   \        v = _mm_xor_si128(v, *keysched++);                              \        repmacro(v = _mm_aes##dirlong##_si128(v, *keysched++););        \        return _mm_aes##dirlong##last_si128(v, *keysched);              \    }NI_CIPHER(128, e, enc, REP9)NI_CIPHER(128, d, dec, REP9)NI_CIPHER(192, e, enc, REP11)NI_CIPHER(192, d, dec, REP11)NI_CIPHER(256, e, enc, REP13)NI_CIPHER(256, d, dec, REP13)/* * The main key expansion. */static FUNC_ISA void aes_ni_key_expand(    const unsigned char *key, size_t key_words,    __m128i *keysched_e, __m128i *keysched_d){    size_t rounds = key_words + 6;    size_t sched_words = (rounds + 1) * 4;    /*     * Store the key schedule as 32-bit integers during expansion, so     * that it's easy to refer back to individual previous words. We     * collect them into the final __m128i form at the end.     */    uint32_t sched[MAXROUNDKEYS * 4];    unsigned rconpos = 0;    for (size_t i = 0; i < sched_words; i++) {	if (i < key_words) {            sched[i] = GET_32BIT_LSB_FIRST(key + 4 * i);        } else {	    uint32_t temp = sched[i - 1];            bool rotate_and_round_constant = (i % key_words == 0);            bool only_sub = (key_words == 8 && i % 8 == 4);            if (rotate_and_round_constant) {                __m128i v = _mm_setr_epi32(0,temp,0,0);                v = _mm_aeskeygenassist_si128(v, 0);                temp = _mm_extract_epi32(v, 1);                assert(rconpos < lenof(key_setup_round_constants));                temp ^= key_setup_round_constants[rconpos++];            } else if (only_sub) {                __m128i v = _mm_setr_epi32(0,temp,0,0);                v = _mm_aeskeygenassist_si128(v, 0);                temp = _mm_extract_epi32(v, 0);            }            sched[i] = sched[i - key_words] ^ temp;	}    }    /*     * Combine the key schedule words into __m128i vectors and store     * them in the output context.     */    for (size_t round = 0; round <= rounds; round++)        keysched_e[round] = _mm_setr_epi32(            sched[4*round  ], sched[4*round+1],            sched[4*round+2], sched[4*round+3]);    smemclr(sched, sizeof(sched));    /*     * Now prepare the modified keys for the inverse cipher.     */    for (size_t eround = 0; eround <= rounds; eround++) {        size_t dround = rounds - eround;        __m128i rkey = keysched_e[eround];        if (eround && dround)      /* neither first nor last */            rkey = _mm_aesimc_si128(rkey);        keysched_d[dround] = rkey;    }}// WINSCP// WORKAROUND// Cannot use _mm_setr_epi* - it results in the constant being stored in .rdata segment.// objconv reports:// Warning 1060: Different alignments specified for same segment, %s. Using highest alignment.rdata// Despite that the code crashes.// This macro is based on:// Based on https://stackoverflow.com/q/35268036/850848#define _MM_SETR_EPI8(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, aa, ab, ac, ad, ae, af) \    { (char)a0, (char)a1, (char)a2, (char)a3, (char)a4, (char)a5, (char)a6, (char)a7, \      (char)a8, (char)a9, (char)aa, (char)ab, (char)ac, (char)ad, (char)ae, (char)af }/* * Auxiliary routine to increment the 128-bit counter used in SDCTR * mode. */static FUNC_ISA inline __m128i aes_ni_sdctr_increment(__m128i v){    const __m128i ONE = _MM_SETR_EPI8(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0); // WINSCP    const __m128i ZERO = _mm_setzero_si128();    /* Increment the low-order 64 bits of v */    v  = _mm_add_epi64(v, ONE);    /* Check if they've become zero */    __m128i cmp = _mm_cmpeq_epi64(v, ZERO);    /* If so, the low half of cmp is all 1s. Pack that into the high     * half of addend with zero in the low half. */    __m128i addend = _mm_unpacklo_epi64(ZERO, cmp);    /* And subtract that from v, which increments the high 64 bits iff     * the low 64 wrapped round. */    v = _mm_sub_epi64(v, addend);    return v;}/* * Auxiliary routine to reverse the byte order of a vector, so that * the SDCTR IV can be made big-endian for feeding to the cipher. */static FUNC_ISA inline __m128i aes_ni_sdctr_reverse(__m128i v){    const __m128i R = _MM_SETR_EPI8(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0); // WINSCP    v = _mm_shuffle_epi8(        v, R); // WINSCP    return v;}/* * The SSH interface and the cipher modes. */typedef struct aes_ni_context aes_ni_context;struct aes_ni_context {    __m128i keysched_e[MAXROUNDKEYS], keysched_d[MAXROUNDKEYS], iv;    void *pointer_to_free;    ssh_cipher ciph;};/*static WINSCP*/ ssh_cipher *aes_hw_new(const ssh_cipheralg *alg){    if (!aes_hw_available_cached())        return NULL;    /*     * The __m128i variables in the context structure need to be     * 16-byte aligned, but not all malloc implementations that this     * code has to work with will guarantee to return a 16-byte     * aligned pointer. So we over-allocate, manually realign the     * pointer ourselves, and store the original one inside the     * context so we know how to free it later.     */    void *allocation = smalloc(sizeof(aes_ni_context) + 15);    uintptr_t alloc_address = (uintptr_t)allocation;    uintptr_t aligned_address = (alloc_address + 15) & ~15;    aes_ni_context *ctx = (aes_ni_context *)aligned_address;    ctx->ciph.vt = alg;    ctx->pointer_to_free = allocation;    return &ctx->ciph;}/*static WINSCP*/ void aes_hw_free(ssh_cipher *ciph){    aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);    void *allocation = ctx->pointer_to_free;    smemclr(ctx, sizeof(*ctx));    sfree(allocation);}/*static WINSCP*/ void aes_hw_setkey(ssh_cipher *ciph, const void *vkey){    aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);    const unsigned char *key = (const unsigned char *)vkey;    aes_ni_key_expand(key, ctx->ciph.vt->real_keybits / 32,                      ctx->keysched_e, ctx->keysched_d);}/*static WINSCP*/ FUNC_ISA void aes_hw_setiv_cbc(ssh_cipher *ciph, const void *iv){    aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);    ctx->iv = _mm_loadu_si128(iv);}/*static WINSCP*/ FUNC_ISA void aes_hw_setiv_sdctr(ssh_cipher *ciph, const void *iv){    aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);    __m128i counter = _mm_loadu_si128(iv);    ctx->iv = aes_ni_sdctr_reverse(counter);}typedef __m128i (*aes_ni_fn)(__m128i v, const __m128i *keysched);static FUNC_ISA inline void aes_cbc_ni_encrypt(    ssh_cipher *ciph, void *vblk, int blklen, aes_ni_fn encrypt){    aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);    for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;         blk < finish; blk += 16) {        __m128i plaintext = _mm_loadu_si128((const __m128i *)blk);        __m128i cipher_input = _mm_xor_si128(plaintext, ctx->iv);        __m128i ciphertext = encrypt(cipher_input, ctx->keysched_e);        _mm_storeu_si128((__m128i *)blk, ciphertext);        ctx->iv = ciphertext;    }}static FUNC_ISA inline void aes_cbc_ni_decrypt(    ssh_cipher *ciph, void *vblk, int blklen, aes_ni_fn decrypt){    aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);    for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;         blk < finish; blk += 16) {        __m128i ciphertext = _mm_loadu_si128((const __m128i *)blk);        __m128i decrypted = decrypt(ciphertext, ctx->keysched_d);        __m128i plaintext = _mm_xor_si128(decrypted, ctx->iv);        _mm_storeu_si128((__m128i *)blk, plaintext);        ctx->iv = ciphertext;    }}static FUNC_ISA inline void aes_sdctr_ni(    ssh_cipher *ciph, void *vblk, int blklen, aes_ni_fn encrypt){    aes_ni_context *ctx = container_of(ciph, aes_ni_context, ciph);    for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;         blk < finish; blk += 16) {        __m128i counter = aes_ni_sdctr_reverse(ctx->iv);        __m128i keystream = encrypt(counter, ctx->keysched_e);        __m128i input = _mm_loadu_si128((const __m128i *)blk);        __m128i output = _mm_xor_si128(input, keystream);        _mm_storeu_si128((__m128i *)blk, output);        ctx->iv = aes_ni_sdctr_increment(ctx->iv);    }}#define NI_ENC_DEC(len)                                                 \    /*static WINSCP*/ FUNC_ISA void aes##len##_cbc_hw_encrypt(          \        ssh_cipher *ciph, void *vblk, int blklen)                       \    { aes_cbc_ni_encrypt(ciph, vblk, blklen, aes_ni_##len##_e); }       \    /*static WINSCP*/ FUNC_ISA void aes##len##_cbc_hw_decrypt(          \        ssh_cipher *ciph, void *vblk, int blklen)                       \    { aes_cbc_ni_decrypt(ciph, vblk, blklen, aes_ni_##len##_d); }       \    /*static WINSCP*/ FUNC_ISA void aes##len##_sdctr_hw(                \        ssh_cipher *ciph, void *vblk, int blklen)                       \    { aes_sdctr_ni(ciph, vblk, blklen, aes_ni_##len##_e); }             \NI_ENC_DEC(128)NI_ENC_DEC(192)NI_ENC_DEC(256)#endif // WINSCP_VS/* ---------------------------------------------------------------------- * Hardware-accelerated implementation of AES using Arm NEON. */#elif HW_AES == HW_AES_NEON/* * Manually set the target architecture, if we decided above that we * need to. */#ifdef USE_CLANG_ATTR_TARGET_AARCH64/* * A spot of cheating: redefine some ACLE feature macros before * including arm_neon.h. Otherwise we won't get the AES intrinsics * defined by that header, because it will be looking at the settings * for the whole translation unit rather than the ones we're going to * put on some particular functions using __attribute__((target)). */#define __ARM_NEON 1#define __ARM_FEATURE_CRYPTO 1#define FUNC_ISA __attribute__ ((target("neon,crypto")))#endif /* USE_CLANG_ATTR_TARGET_AARCH64 */#ifndef FUNC_ISA#define FUNC_ISA#endif#ifdef USE_ARM64_NEON_H#include <arm64_neon.h>#else#include <arm_neon.h>#endifstatic bool aes_hw_available(void){    /*     * For Arm, we delegate to a per-platform AES detection function,     * because it has to be implemented by asking the operating system     * rather than directly querying the CPU.     *     * That's because Arm systems commonly have multiple cores that     * are not all alike, so any method of querying whether NEON     * crypto instructions work on the _current_ CPU - even one as     * crude as just trying one and catching the SIGILL - wouldn't     * give an answer that you could still rely on the first time the     * OS migrated your process to another CPU.     */    return platform_aes_hw_available();}/* * Core NEON encrypt/decrypt functions, one per length and direction. */#define NEON_CIPHER(len, repmacro)                              \    static FUNC_ISA inline uint8x16_t aes_neon_##len##_e(       \        uint8x16_t v, const uint8x16_t *keysched)               \    {                                                           \        repmacro(v = vaesmcq_u8(vaeseq_u8(v, *keysched++)););   \        v = vaeseq_u8(v, *keysched++);                          \        return veorq_u8(v, *keysched);                          \    }                                                           \    static FUNC_ISA inline uint8x16_t aes_neon_##len##_d(       \        uint8x16_t v, const uint8x16_t *keysched)               \    {                                                           \        repmacro(v = vaesimcq_u8(vaesdq_u8(v, *keysched++)););  \        v = vaesdq_u8(v, *keysched++);                          \        return veorq_u8(v, *keysched);                          \    }NEON_CIPHER(128, REP9)NEON_CIPHER(192, REP11)NEON_CIPHER(256, REP13)/* * The main key expansion. */static FUNC_ISA void aes_neon_key_expand(    const unsigned char *key, size_t key_words,    uint8x16_t *keysched_e, uint8x16_t *keysched_d){    size_t rounds = key_words + 6;    size_t sched_words = (rounds + 1) * 4;    /*     * Store the key schedule as 32-bit integers during expansion, so     * that it's easy to refer back to individual previous words. We     * collect them into the final uint8x16_t form at the end.     */    uint32_t sched[MAXROUNDKEYS * 4];    unsigned rconpos = 0;    for (size_t i = 0; i < sched_words; i++) {	if (i < key_words) {            sched[i] = GET_32BIT_LSB_FIRST(key + 4 * i);        } else {	    uint32_t temp = sched[i - 1];            bool rotate_and_round_constant = (i % key_words == 0);            bool sub = rotate_and_round_constant ||                (key_words == 8 && i % 8 == 4);            if (rotate_and_round_constant)                temp = (temp << 24) | (temp >> 8);            if (sub) {                uint32x4_t v32 = vdupq_n_u32(temp);                uint8x16_t v8 = vreinterpretq_u8_u32(v32);                v8 = vaeseq_u8(v8, vdupq_n_u8(0));                v32 = vreinterpretq_u32_u8(v8);                temp = vget_lane_u32(vget_low_u32(v32), 0);            }            if (rotate_and_round_constant) {                assert(rconpos < lenof(key_setup_round_constants));                temp ^= key_setup_round_constants[rconpos++];            }            sched[i] = sched[i - key_words] ^ temp;	}    }    /*     * Combine the key schedule words into uint8x16_t vectors and     * store them in the output context.     */    for (size_t round = 0; round <= rounds; round++)        keysched_e[round] = vreinterpretq_u8_u32(vld1q_u32(sched + 4*round));    smemclr(sched, sizeof(sched));    /*     * Now prepare the modified keys for the inverse cipher.     */    for (size_t eround = 0; eround <= rounds; eround++) {        size_t dround = rounds - eround;        uint8x16_t rkey = keysched_e[eround];        if (eround && dround)      /* neither first nor last */            rkey = vaesimcq_u8(rkey);        keysched_d[dround] = rkey;    }}/* * Auxiliary routine to reverse the byte order of a vector, so that * the SDCTR IV can be made big-endian for feeding to the cipher. * * In fact we don't need to reverse the vector _all_ the way; we leave * the two lanes in MSW,LSW order, because that makes no difference to * the efficiency of the increment. That way we only have to reverse * bytes within each lane in this function. */static FUNC_ISA inline uint8x16_t aes_neon_sdctr_reverse(uint8x16_t v){    return vrev64q_u8(v);}/* * Auxiliary routine to increment the 128-bit counter used in SDCTR * mode. There's no instruction to treat a 128-bit vector as a single * long integer, so instead we have to increment the bottom half * unconditionally, and the top half if the bottom half started off as * all 1s (in which case there was about to be a carry). */static FUNC_ISA inline uint8x16_t aes_neon_sdctr_increment(uint8x16_t in){#ifdef __aarch64__    /* There will be a carry if the low 64 bits are all 1s. */    uint64x1_t all1 = vcreate_u64(0xFFFFFFFFFFFFFFFF);    uint64x1_t carry = vceq_u64(vget_high_u64(vreinterpretq_u64_u8(in)), all1);    /* Make a word whose bottom half is unconditionally all 1s, and     * the top half is 'carry', i.e. all 0s most of the time but all     * 1s if we need to increment the top half. Then that word is what     * we need to _subtract_ from the input counter. */    uint64x2_t subtrahend = vcombine_u64(carry, all1);#else    /* AArch32 doesn't have comparisons that operate on a 64-bit lane,     * so we start by comparing each 32-bit half of the low 64 bits     * _separately_ to all-1s. */    uint32x2_t all1 = vdup_n_u32(0xFFFFFFFF);    uint32x2_t carry = vceq_u32(        vget_high_u32(vreinterpretq_u32_u8(in)), all1);    /* Swap the 32-bit words of the compare output, and AND with the     * unswapped version. Now carry is all 1s iff the bottom half of     * the input counter was all 1s, and all 0s otherwise. */    carry = vand_u32(carry, vrev64_u32(carry));    /* Now make the vector to subtract in the same way as above. */    uint64x2_t subtrahend = vreinterpretq_u64_u32(vcombine_u32(carry, all1));#endif    return vreinterpretq_u8_u64(        vsubq_u64(vreinterpretq_u64_u8(in), subtrahend));}/* * The SSH interface and the cipher modes. */typedef struct aes_neon_context aes_neon_context;struct aes_neon_context {    uint8x16_t keysched_e[MAXROUNDKEYS], keysched_d[MAXROUNDKEYS], iv;    ssh_cipher ciph;};static ssh_cipher *aes_hw_new(const ssh_cipheralg *alg){    if (!aes_hw_available_cached())        return NULL;    aes_neon_context *ctx = snew(aes_neon_context);    ctx->ciph.vt = alg;    return &ctx->ciph;}static void aes_hw_free(ssh_cipher *ciph){    aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);    smemclr(ctx, sizeof(*ctx));    sfree(ctx);}static void aes_hw_setkey(ssh_cipher *ciph, const void *vkey){    aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);    const unsigned char *key = (const unsigned char *)vkey;    aes_neon_key_expand(key, ctx->ciph.vt->real_keybits / 32,                      ctx->keysched_e, ctx->keysched_d);}static FUNC_ISA void aes_hw_setiv_cbc(ssh_cipher *ciph, const void *iv){    aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);    ctx->iv = vld1q_u8(iv);}static FUNC_ISA void aes_hw_setiv_sdctr(ssh_cipher *ciph, const void *iv){    aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);    uint8x16_t counter = vld1q_u8(iv);    ctx->iv = aes_neon_sdctr_reverse(counter);}typedef uint8x16_t (*aes_neon_fn)(uint8x16_t v, const uint8x16_t *keysched);static FUNC_ISA inline void aes_cbc_neon_encrypt(    ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn encrypt){    aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);    for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;         blk < finish; blk += 16) {        uint8x16_t plaintext = vld1q_u8(blk);        uint8x16_t cipher_input = veorq_u8(plaintext, ctx->iv);        uint8x16_t ciphertext = encrypt(cipher_input, ctx->keysched_e);        vst1q_u8(blk, ciphertext);        ctx->iv = ciphertext;    }}static FUNC_ISA inline void aes_cbc_neon_decrypt(    ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn decrypt){    aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);    for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;         blk < finish; blk += 16) {        uint8x16_t ciphertext = vld1q_u8(blk);        uint8x16_t decrypted = decrypt(ciphertext, ctx->keysched_d);        uint8x16_t plaintext = veorq_u8(decrypted, ctx->iv);        vst1q_u8(blk, plaintext);        ctx->iv = ciphertext;    }}static FUNC_ISA inline void aes_sdctr_neon(    ssh_cipher *ciph, void *vblk, int blklen, aes_neon_fn encrypt){    aes_neon_context *ctx = container_of(ciph, aes_neon_context, ciph);    for (uint8_t *blk = (uint8_t *)vblk, *finish = blk + blklen;         blk < finish; blk += 16) {        uint8x16_t counter = aes_neon_sdctr_reverse(ctx->iv);        uint8x16_t keystream = encrypt(counter, ctx->keysched_e);        uint8x16_t input = vld1q_u8(blk);        uint8x16_t output = veorq_u8(input, keystream);        vst1q_u8(blk, output);        ctx->iv = aes_neon_sdctr_increment(ctx->iv);    }}#define NEON_ENC_DEC(len)                                               \    static FUNC_ISA void aes##len##_cbc_hw_encrypt(                     \        ssh_cipher *ciph, void *vblk, int blklen)                       \    { aes_cbc_neon_encrypt(ciph, vblk, blklen, aes_neon_##len##_e); }   \    static FUNC_ISA void aes##len##_cbc_hw_decrypt(                     \        ssh_cipher *ciph, void *vblk, int blklen)                       \    { aes_cbc_neon_decrypt(ciph, vblk, blklen, aes_neon_##len##_d); }   \    static FUNC_ISA void aes##len##_sdctr_hw(                           \        ssh_cipher *ciph, void *vblk, int blklen)                       \    { aes_sdctr_neon(ciph, vblk, blklen, aes_neon_##len##_e); }         \NEON_ENC_DEC(128)NEON_ENC_DEC(192)NEON_ENC_DEC(256)/* ---------------------------------------------------------------------- * Stub functions if we have no hardware-accelerated AES. In this * case, aes_hw_new returns NULL (though it should also never be * selected by aes_select, so the only thing that should even be * _able_ to call it is testcrypt). As a result, the remaining vtable * functions should never be called at all. */#elif HW_AES == HW_AES_NONEbool aes_hw_available(void){    return false;}static ssh_cipher *aes_hw_new(const ssh_cipheralg *alg){    return NULL;}#define STUB_BODY { unreachable("Should never be called"); }static void aes_hw_free(ssh_cipher *ciph) STUB_BODYstatic void aes_hw_setkey(ssh_cipher *ciph, const void *key) STUB_BODYstatic void aes_hw_setiv_cbc(ssh_cipher *ciph, const void *iv) STUB_BODYstatic void aes_hw_setiv_sdctr(ssh_cipher *ciph, const void *iv) STUB_BODY#define STUB_ENC_DEC(len)                                       \    static void aes##len##_cbc_hw_encrypt(                      \        ssh_cipher *ciph, void *vblk, int blklen) STUB_BODY     \    static void aes##len##_cbc_hw_decrypt(                      \        ssh_cipher *ciph, void *vblk, int blklen) STUB_BODY     \    static void aes##len##_sdctr_hw(                            \        ssh_cipher *ciph, void *vblk, int blklen) STUB_BODYSTUB_ENC_DEC(128)STUB_ENC_DEC(192)STUB_ENC_DEC(256)#endif /* HW_AES */#ifndef WINSCP_VS#ifdef MPEXT#include "puttyexp.h"AESContext * aes_make_context(){  ssh_cipher * cipher = ssh_cipher_new(&ssh_aes256_sdctr);  return cipher;}void aes_free_context(AESContext * ctx){  ssh_cipher * cipher = (ssh_cipher *)ctx;  ssh_cipher_free(cipher);}void aes_iv(AESContext * ctx, const void * iv){  ssh_cipher * cipher = (ssh_cipher *)ctx;  ssh_cipher_setiv(cipher, iv);}void call_aes_setup(AESContext * ctx, unsigned char * key, int keylen){  ssh_cipher * cipher = (ssh_cipher *)ctx;  assert(keylen == 32);  ssh_cipher_setkey(cipher, key);}void call_aes_sdctr(unsigned char *blk, int len, void *ctx){  ssh_cipher * cipher = (ssh_cipher *)ctx;  ssh_cipher_encrypt(cipher, blk, len);}#endif#endif // WINSCP_VS
 |