sshsh512.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369
  1. /*
  2. * SHA-512 algorithm as described at
  3. *
  4. * http://csrc.nist.gov/cryptval/shs.html
  5. *
  6. * Modifications made for SHA-384 also
  7. */
  8. #include <assert.h>
  9. #include "ssh.h"
  10. #define BLKSIZE 128
  11. typedef struct {
  12. uint64_t h[8];
  13. unsigned char block[BLKSIZE];
  14. int blkused;
  15. uint64_t lenhi, lenlo;
  16. BinarySink_IMPLEMENTATION;
  17. } SHA512_State;
  18. /*
  19. * Arithmetic implementations. Note that AND, XOR and NOT can
  20. * overlap destination with one source, but the others can't.
  21. */
  22. #define add(r,x,y) ( r = (x) + (y) )
  23. #define rorB(r,x,y) ( r = ((x) >> (y)) | ((x) << (64-(y))) )
  24. #define rorL(r,x,y) ( r = ((x) >> (y)) | ((x) << (64-(y))) )
  25. #define shrB(r,x,y) ( r = (x) >> (y) )
  26. #define shrL(r,x,y) ( r = (x) >> (y) )
  27. #define and(r,x,y) ( r = (x) & (y) )
  28. #define xor(r,x,y) ( r = (x) ^ (y) )
  29. #define not(r,x) ( r = ~(x) )
  30. #define INIT(h,l) ((((uint64_t)(h)) << 32) | (l))
  31. #define BUILD(r,h,l) ( r = ((((uint64_t)(h)) << 32) | (l)) )
  32. #define EXTRACT(h,l,r) ( h = (r) >> 32, l = (r) & 0xFFFFFFFFU )
  33. /* ----------------------------------------------------------------------
  34. * Core SHA512 algorithm: processes 16-doubleword blocks into a
  35. * message digest.
  36. */
  37. #define Ch(r,t,x,y,z) ( not(t,x), and(r,t,z), and(t,x,y), xor(r,r,t) )
  38. #define Maj(r,t,x,y,z) ( and(r,x,y), and(t,x,z), xor(r,r,t), \
  39. and(t,y,z), xor(r,r,t) )
  40. #define bigsigma0(r,t,x) ( rorL(r,x,28), rorB(t,x,34), xor(r,r,t), \
  41. rorB(t,x,39), xor(r,r,t) )
  42. #define bigsigma1(r,t,x) ( rorL(r,x,14), rorL(t,x,18), xor(r,r,t), \
  43. rorB(t,x,41), xor(r,r,t) )
  44. #define smallsigma0(r,t,x) ( rorL(r,x,1), rorL(t,x,8), xor(r,r,t), \
  45. shrL(t,x,7), xor(r,r,t) )
  46. #define smallsigma1(r,t,x) ( rorL(r,x,19), rorB(t,x,61), xor(r,r,t), \
  47. shrL(t,x,6), xor(r,r,t) )
  48. static void SHA512_Core_Init(SHA512_State *s) {
  49. static const uint64_t iv[] = {
  50. INIT(0x6a09e667, 0xf3bcc908),
  51. INIT(0xbb67ae85, 0x84caa73b),
  52. INIT(0x3c6ef372, 0xfe94f82b),
  53. INIT(0xa54ff53a, 0x5f1d36f1),
  54. INIT(0x510e527f, 0xade682d1),
  55. INIT(0x9b05688c, 0x2b3e6c1f),
  56. INIT(0x1f83d9ab, 0xfb41bd6b),
  57. INIT(0x5be0cd19, 0x137e2179),
  58. };
  59. int i;
  60. for (i = 0; i < 8; i++)
  61. s->h[i] = iv[i];
  62. }
  63. static void SHA384_Core_Init(SHA512_State *s) {
  64. static const uint64_t iv[] = {
  65. INIT(0xcbbb9d5d, 0xc1059ed8),
  66. INIT(0x629a292a, 0x367cd507),
  67. INIT(0x9159015a, 0x3070dd17),
  68. INIT(0x152fecd8, 0xf70e5939),
  69. INIT(0x67332667, 0xffc00b31),
  70. INIT(0x8eb44a87, 0x68581511),
  71. INIT(0xdb0c2e0d, 0x64f98fa7),
  72. INIT(0x47b5481d, 0xbefa4fa4),
  73. };
  74. int i;
  75. for (i = 0; i < 8; i++)
  76. s->h[i] = iv[i];
  77. }
  78. static void SHA512_Block(SHA512_State *s, uint64_t *block) {
  79. uint64_t w[80];
  80. uint64_t a,b,c,d,e,f,g,h;
  81. static const uint64_t k[] = {
  82. INIT(0x428a2f98, 0xd728ae22), INIT(0x71374491, 0x23ef65cd),
  83. INIT(0xb5c0fbcf, 0xec4d3b2f), INIT(0xe9b5dba5, 0x8189dbbc),
  84. INIT(0x3956c25b, 0xf348b538), INIT(0x59f111f1, 0xb605d019),
  85. INIT(0x923f82a4, 0xaf194f9b), INIT(0xab1c5ed5, 0xda6d8118),
  86. INIT(0xd807aa98, 0xa3030242), INIT(0x12835b01, 0x45706fbe),
  87. INIT(0x243185be, 0x4ee4b28c), INIT(0x550c7dc3, 0xd5ffb4e2),
  88. INIT(0x72be5d74, 0xf27b896f), INIT(0x80deb1fe, 0x3b1696b1),
  89. INIT(0x9bdc06a7, 0x25c71235), INIT(0xc19bf174, 0xcf692694),
  90. INIT(0xe49b69c1, 0x9ef14ad2), INIT(0xefbe4786, 0x384f25e3),
  91. INIT(0x0fc19dc6, 0x8b8cd5b5), INIT(0x240ca1cc, 0x77ac9c65),
  92. INIT(0x2de92c6f, 0x592b0275), INIT(0x4a7484aa, 0x6ea6e483),
  93. INIT(0x5cb0a9dc, 0xbd41fbd4), INIT(0x76f988da, 0x831153b5),
  94. INIT(0x983e5152, 0xee66dfab), INIT(0xa831c66d, 0x2db43210),
  95. INIT(0xb00327c8, 0x98fb213f), INIT(0xbf597fc7, 0xbeef0ee4),
  96. INIT(0xc6e00bf3, 0x3da88fc2), INIT(0xd5a79147, 0x930aa725),
  97. INIT(0x06ca6351, 0xe003826f), INIT(0x14292967, 0x0a0e6e70),
  98. INIT(0x27b70a85, 0x46d22ffc), INIT(0x2e1b2138, 0x5c26c926),
  99. INIT(0x4d2c6dfc, 0x5ac42aed), INIT(0x53380d13, 0x9d95b3df),
  100. INIT(0x650a7354, 0x8baf63de), INIT(0x766a0abb, 0x3c77b2a8),
  101. INIT(0x81c2c92e, 0x47edaee6), INIT(0x92722c85, 0x1482353b),
  102. INIT(0xa2bfe8a1, 0x4cf10364), INIT(0xa81a664b, 0xbc423001),
  103. INIT(0xc24b8b70, 0xd0f89791), INIT(0xc76c51a3, 0x0654be30),
  104. INIT(0xd192e819, 0xd6ef5218), INIT(0xd6990624, 0x5565a910),
  105. INIT(0xf40e3585, 0x5771202a), INIT(0x106aa070, 0x32bbd1b8),
  106. INIT(0x19a4c116, 0xb8d2d0c8), INIT(0x1e376c08, 0x5141ab53),
  107. INIT(0x2748774c, 0xdf8eeb99), INIT(0x34b0bcb5, 0xe19b48a8),
  108. INIT(0x391c0cb3, 0xc5c95a63), INIT(0x4ed8aa4a, 0xe3418acb),
  109. INIT(0x5b9cca4f, 0x7763e373), INIT(0x682e6ff3, 0xd6b2b8a3),
  110. INIT(0x748f82ee, 0x5defb2fc), INIT(0x78a5636f, 0x43172f60),
  111. INIT(0x84c87814, 0xa1f0ab72), INIT(0x8cc70208, 0x1a6439ec),
  112. INIT(0x90befffa, 0x23631e28), INIT(0xa4506ceb, 0xde82bde9),
  113. INIT(0xbef9a3f7, 0xb2c67915), INIT(0xc67178f2, 0xe372532b),
  114. INIT(0xca273ece, 0xea26619c), INIT(0xd186b8c7, 0x21c0c207),
  115. INIT(0xeada7dd6, 0xcde0eb1e), INIT(0xf57d4f7f, 0xee6ed178),
  116. INIT(0x06f067aa, 0x72176fba), INIT(0x0a637dc5, 0xa2c898a6),
  117. INIT(0x113f9804, 0xbef90dae), INIT(0x1b710b35, 0x131c471b),
  118. INIT(0x28db77f5, 0x23047d84), INIT(0x32caab7b, 0x40c72493),
  119. INIT(0x3c9ebe0a, 0x15c9bebc), INIT(0x431d67c4, 0x9c100d4c),
  120. INIT(0x4cc5d4be, 0xcb3e42b6), INIT(0x597f299c, 0xfc657e2a),
  121. INIT(0x5fcb6fab, 0x3ad6faec), INIT(0x6c44198c, 0x4a475817),
  122. };
  123. int t;
  124. for (t = 0; t < 16; t++)
  125. w[t] = block[t];
  126. for (t = 16; t < 80; t++) {
  127. uint64_t p, q, r, tmp;
  128. smallsigma1(p, tmp, w[t-2]);
  129. smallsigma0(q, tmp, w[t-15]);
  130. add(r, p, q);
  131. add(p, r, w[t-7]);
  132. add(w[t], p, w[t-16]);
  133. }
  134. a = s->h[0]; b = s->h[1]; c = s->h[2]; d = s->h[3];
  135. e = s->h[4]; f = s->h[5]; g = s->h[6]; h = s->h[7];
  136. for (t = 0; t < 80; t+=8) {
  137. uint64_t tmp, p, q, r;
  138. #define ROUND(j,a,b,c,d,e,f,g,h) \
  139. bigsigma1(p, tmp, e); \
  140. Ch(q, tmp, e, f, g); \
  141. add(r, p, q); \
  142. add(p, r, k[j]) ; \
  143. add(q, p, w[j]); \
  144. add(r, q, h); \
  145. bigsigma0(p, tmp, a); \
  146. Maj(tmp, q, a, b, c); \
  147. add(q, tmp, p); \
  148. add(p, r, d); \
  149. d = p; \
  150. add(h, q, r);
  151. ROUND(t+0, a,b,c,d,e,f,g,h);
  152. ROUND(t+1, h,a,b,c,d,e,f,g);
  153. ROUND(t+2, g,h,a,b,c,d,e,f);
  154. ROUND(t+3, f,g,h,a,b,c,d,e);
  155. ROUND(t+4, e,f,g,h,a,b,c,d);
  156. ROUND(t+5, d,e,f,g,h,a,b,c);
  157. ROUND(t+6, c,d,e,f,g,h,a,b);
  158. ROUND(t+7, b,c,d,e,f,g,h,a);
  159. }
  160. {
  161. uint64_t tmp;
  162. #define UPDATE(state, local) ( tmp = state, add(state, tmp, local) )
  163. UPDATE(s->h[0], a); UPDATE(s->h[1], b);
  164. UPDATE(s->h[2], c); UPDATE(s->h[3], d);
  165. UPDATE(s->h[4], e); UPDATE(s->h[5], f);
  166. UPDATE(s->h[6], g); UPDATE(s->h[7], h);
  167. }
  168. }
  169. /* ----------------------------------------------------------------------
  170. * Outer SHA512 algorithm: take an arbitrary length byte string,
  171. * convert it into 16-doubleword blocks with the prescribed padding
  172. * at the end, and pass those blocks to the core SHA512 algorithm.
  173. */
  174. static void SHA512_BinarySink_write(BinarySink *bs,
  175. const void *p, size_t len);
  176. void SHA512_Init(SHA512_State *s) {
  177. SHA512_Core_Init(s);
  178. s->blkused = 0;
  179. s->lenhi = s->lenlo = 0;
  180. BinarySink_INIT(s, SHA512_BinarySink_write);
  181. }
  182. void SHA384_Init(SHA512_State *s) {
  183. SHA384_Core_Init(s);
  184. s->blkused = 0;
  185. s->lenhi = s->lenlo = 0;
  186. BinarySink_INIT(s, SHA512_BinarySink_write);
  187. }
  188. static void SHA512_BinarySink_write(BinarySink *bs,
  189. const void *p, size_t len)
  190. {
  191. SHA512_State *s = BinarySink_DOWNCAST(bs, SHA512_State);
  192. unsigned char *q = (unsigned char *)p;
  193. uint64_t wordblock[16];
  194. int i;
  195. /*
  196. * Update the length field.
  197. */
  198. s->lenlo += len;
  199. s->lenhi += (s->lenlo < len);
  200. if (s->blkused && s->blkused+len < BLKSIZE) {
  201. /*
  202. * Trivial case: just add to the block.
  203. */
  204. memcpy(s->block + s->blkused, q, len);
  205. s->blkused += len;
  206. } else {
  207. /*
  208. * We must complete and process at least one block.
  209. */
  210. while (s->blkused + len >= BLKSIZE) {
  211. memcpy(s->block + s->blkused, q, BLKSIZE - s->blkused);
  212. q += BLKSIZE - s->blkused;
  213. len -= BLKSIZE - s->blkused;
  214. /* Now process the block. Gather bytes big-endian into words */
  215. for (i = 0; i < 16; i++)
  216. wordblock[i] = GET_64BIT_MSB_FIRST(s->block + i*8);
  217. SHA512_Block(s, wordblock);
  218. s->blkused = 0;
  219. }
  220. memcpy(s->block, q, len);
  221. s->blkused = len;
  222. }
  223. }
  224. void SHA512_Final(SHA512_State *s, unsigned char *digest) {
  225. int i;
  226. int pad;
  227. unsigned char c[BLKSIZE];
  228. uint64_t lenhi, lenlo;
  229. if (s->blkused >= BLKSIZE-16)
  230. pad = (BLKSIZE-16) + BLKSIZE - s->blkused;
  231. else
  232. pad = (BLKSIZE-16) - s->blkused;
  233. lenhi = (s->lenhi << 3) | (s->lenlo >> (32-3));
  234. lenlo = (s->lenlo << 3);
  235. memset(c, 0, pad);
  236. c[0] = 0x80;
  237. put_data(s, &c, pad);
  238. put_uint64(s, lenhi);
  239. put_uint64(s, lenlo);
  240. for (i = 0; i < 8; i++)
  241. PUT_64BIT_MSB_FIRST(digest + i*8, s->h[i]);
  242. }
  243. void SHA384_Final(SHA512_State *s, unsigned char *digest) {
  244. unsigned char biggerDigest[512 / 8];
  245. SHA512_Final(s, biggerDigest);
  246. memcpy(digest, biggerDigest, 384 / 8);
  247. }
  248. void SHA512_Simple(const void *p, int len, unsigned char *output) {
  249. SHA512_State s;
  250. SHA512_Init(&s);
  251. put_data(&s, p, len);
  252. SHA512_Final(&s, output);
  253. smemclr(&s, sizeof(s));
  254. }
  255. void SHA384_Simple(const void *p, int len, unsigned char *output) {
  256. SHA512_State s;
  257. SHA384_Init(&s);
  258. put_data(&s, p, len);
  259. SHA384_Final(&s, output);
  260. smemclr(&s, sizeof(s));
  261. }
  262. /*
  263. * Thin abstraction for things where hashes are pluggable.
  264. */
  265. struct sha512_hash {
  266. SHA512_State state;
  267. ssh_hash hash;
  268. };
  269. static ssh_hash *sha512_new(const ssh_hashalg *alg)
  270. {
  271. struct sha512_hash *h = snew(struct sha512_hash);
  272. SHA512_Init(&h->state);
  273. h->hash.vt = alg;
  274. BinarySink_DELEGATE_INIT(&h->hash, &h->state);
  275. return &h->hash;
  276. }
  277. static ssh_hash *sha512_copy(ssh_hash *hashold)
  278. {
  279. struct sha512_hash *hold, *hnew;
  280. ssh_hash *hashnew = sha512_new(hashold->vt);
  281. hold = container_of(hashold, struct sha512_hash, hash);
  282. hnew = container_of(hashnew, struct sha512_hash, hash);
  283. hnew->state = hold->state;
  284. BinarySink_COPIED(&hnew->state);
  285. return hashnew;
  286. }
  287. static void sha512_free(ssh_hash *hash)
  288. {
  289. struct sha512_hash *h = container_of(hash, struct sha512_hash, hash);
  290. smemclr(h, sizeof(*h));
  291. sfree(h);
  292. }
  293. static void sha512_final(ssh_hash *hash, unsigned char *output)
  294. {
  295. struct sha512_hash *h = container_of(hash, struct sha512_hash, hash);
  296. SHA512_Final(&h->state, output);
  297. sha512_free(hash);
  298. }
  299. const ssh_hashalg ssh_sha512 = {
  300. sha512_new, sha512_copy, sha512_final, sha512_free,
  301. 64, BLKSIZE, HASHALG_NAMES_BARE("SHA-512"),
  302. };
  303. static ssh_hash *sha384_new(const ssh_hashalg *alg)
  304. {
  305. struct sha512_hash *h = snew(struct sha512_hash);
  306. SHA384_Init(&h->state);
  307. h->hash.vt = alg;
  308. BinarySink_DELEGATE_INIT(&h->hash, &h->state);
  309. return &h->hash;
  310. }
  311. static void sha384_final(ssh_hash *hash, unsigned char *output)
  312. {
  313. struct sha512_hash *h = container_of(hash, struct sha512_hash, hash);
  314. SHA384_Final(&h->state, output);
  315. sha512_free(hash);
  316. }
  317. const ssh_hashalg ssh_sha384 = {
  318. sha384_new, sha512_copy, sha384_final, sha512_free,
  319. 48, BLKSIZE, HASHALG_NAMES_BARE("SHA-384"),
  320. };