| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206 | /* * Zlib (RFC1950 / RFC1951) compression for PuTTY. *  * There will no doubt be criticism of my decision to reimplement * Zlib compression from scratch instead of using the existing zlib * code. People will cry `reinventing the wheel'; they'll claim * that the `fundamental basis of OSS' is code reuse; they'll want * to see a really good reason for me having chosen not to use the * existing code. *  * Well, here are my reasons. Firstly, I don't want to link the * whole of zlib into the PuTTY binary; PuTTY is justifiably proud * of its small size and I think zlib contains a lot of unnecessary * baggage for the kind of compression that SSH requires. *  * Secondly, I also don't like the alternative of using zlib.dll. * Another thing PuTTY is justifiably proud of is its ease of * installation, and the last thing I want to do is to start * mandating DLLs. Not only that, but there are two _kinds_ of * zlib.dll kicking around, one with C calling conventions on the * exported functions and another with WINAPI conventions, and * there would be a significant danger of getting the wrong one. *  * Thirdly, there seems to be a difference of opinion on the IETF * secsh mailing list about the correct way to round off a * compressed packet and start the next. In particular, there's * some talk of switching to a mechanism zlib isn't currently * capable of supporting (see below for an explanation). Given that * sort of uncertainty, I thought it might be better to have code * that will support even the zlib-incompatible worst case. *  * Fourthly, it's a _second implementation_. Second implementations * are fundamentally a Good Thing in standardisation efforts. The * difference of opinion mentioned above has arisen _precisely_ * because there has been only one zlib implementation and * everybody has used it. I don't intend that this should happen * again. */#include <stdlib.h>#include <string.h>#include <assert.h>#include "defs.h"#include "ssh.h"/* ---------------------------------------------------------------------- * Basic LZ77 code. This bit is designed modularly, so it could be * ripped out and used in a different LZ77 compressor. Go to it, * and good luck :-) */struct LZ77InternalContext;struct LZ77Context {    struct LZ77InternalContext *ictx;    void *userdata;    void (*literal) (struct LZ77Context * ctx, unsigned char c);    void (*match) (struct LZ77Context * ctx, int distance, int len);};/* * Initialise the private fields of an LZ77Context. It's up to the * user to initialise the public fields. */static int lz77_init(struct LZ77Context *ctx);/* * Supply data to be compressed. Will update the private fields of * the LZ77Context, and will call literal() and match() to output. * If `compress' is false, it will never emit a match, but will * instead call literal() for everything. */static void lz77_compress(struct LZ77Context *ctx,			  const unsigned char *data, int len);/* * Modifiable parameters. */#define WINSIZE 32768		       /* window size. Must be power of 2! */#define HASHMAX 2039		       /* one more than max hash value */#define MAXMATCH 32		       /* how many matches we track */#define HASHCHARS 3		       /* how many chars make a hash *//* * This compressor takes a less slapdash approach than the * gzip/zlib one. Rather than allowing our hash chains to fall into * disuse near the far end, we keep them doubly linked so we can * _find_ the far end, and then every time we add a new byte to the * window (thus rolling round by one and removing the previous * byte), we can carefully remove the hash chain entry. */#define INVALID -1		       /* invalid hash _and_ invalid offset */struct WindowEntry {    short next, prev;		       /* array indices within the window */    short hashval;};struct HashEntry {    short first;		       /* window index of first in chain */};struct Match {    int distance, len;};struct LZ77InternalContext {    struct WindowEntry win[WINSIZE];    unsigned char data[WINSIZE];    int winpos;    struct HashEntry hashtab[HASHMAX];    unsigned char pending[HASHCHARS];    int npending;};static int lz77_hash(const unsigned char *data){    return (257 * data[0] + 263 * data[1] + 269 * data[2]) % HASHMAX;}static int lz77_init(struct LZ77Context *ctx){    struct LZ77InternalContext *st;    int i;    st = snew(struct LZ77InternalContext);    if (!st)	return 0;    ctx->ictx = st;    for (i = 0; i < WINSIZE; i++)	st->win[i].next = st->win[i].prev = st->win[i].hashval = INVALID;    for (i = 0; i < HASHMAX; i++)	st->hashtab[i].first = INVALID;    st->winpos = 0;    st->npending = 0;    return 1;}static void lz77_advance(struct LZ77InternalContext *st,			 unsigned char c, int hash){    int off;    /*     * Remove the hash entry at winpos from the tail of its chain,     * or empty the chain if it's the only thing on the chain.     */    if (st->win[st->winpos].prev != INVALID) {	st->win[st->win[st->winpos].prev].next = INVALID;    } else if (st->win[st->winpos].hashval != INVALID) {	st->hashtab[st->win[st->winpos].hashval].first = INVALID;    }    /*     * Create a new entry at winpos and add it to the head of its     * hash chain.     */    st->win[st->winpos].hashval = hash;    st->win[st->winpos].prev = INVALID;    off = st->win[st->winpos].next = st->hashtab[hash].first;    st->hashtab[hash].first = st->winpos;    if (off != INVALID)	st->win[off].prev = st->winpos;    st->data[st->winpos] = c;    /*     * Advance the window pointer.     */    st->winpos = (st->winpos + 1) & (WINSIZE - 1);}#define CHARAT(k) ( (k)<0 ? st->data[(st->winpos+k)&(WINSIZE-1)] : data[k] )static void lz77_compress(struct LZ77Context *ctx,			  const unsigned char *data, int len){    struct LZ77InternalContext *st = ctx->ictx;    int i, distance, off, nmatch, matchlen, advance;    struct Match defermatch, matches[MAXMATCH];    int deferchr;    assert(st->npending <= HASHCHARS);    /*     * Add any pending characters from last time to the window. (We     * might not be able to.)     *     * This leaves st->pending empty in the usual case (when len >=     * HASHCHARS); otherwise it leaves st->pending empty enough that     * adding all the remaining 'len' characters will not push it past     * HASHCHARS in size.     */    for (i = 0; i < st->npending; i++) {	unsigned char foo[HASHCHARS];	int j;	if (len + st->npending - i < HASHCHARS) {	    /* Update the pending array. */	    for (j = i; j < st->npending; j++)		st->pending[j - i] = st->pending[j];	    break;	}	for (j = 0; j < HASHCHARS; j++)	    foo[j] = (i + j < st->npending ? st->pending[i + j] :		      data[i + j - st->npending]);	lz77_advance(st, foo[0], lz77_hash(foo));    }    st->npending -= i;    defermatch.distance = 0; /* appease compiler */    defermatch.len = 0;    deferchr = '\0';    while (len > 0) {	if (len >= HASHCHARS) {	    /*	     * Hash the next few characters.	     */	    int hash = lz77_hash(data);	    /*	     * Look the hash up in the corresponding hash chain and see	     * what we can find.	     */	    nmatch = 0;	    for (off = st->hashtab[hash].first;		 off != INVALID; off = st->win[off].next) {		/* distance = 1       if off == st->winpos-1 */		/* distance = WINSIZE if off == st->winpos   */		distance =		    WINSIZE - (off + WINSIZE - st->winpos) % WINSIZE;		for (i = 0; i < HASHCHARS; i++)		    if (CHARAT(i) != CHARAT(i - distance))			break;		if (i == HASHCHARS) {		    matches[nmatch].distance = distance;		    matches[nmatch].len = 3;		    if (++nmatch >= MAXMATCH)			break;		}	    }	} else {	    nmatch = 0;	}	if (nmatch > 0) {	    /*	     * We've now filled up matches[] with nmatch potential	     * matches. Follow them down to find the longest. (We	     * assume here that it's always worth favouring a	     * longer match over a shorter one.)	     */	    matchlen = HASHCHARS;	    while (matchlen < len) {		int j;		for (i = j = 0; i < nmatch; i++) {		    if (CHARAT(matchlen) ==			CHARAT(matchlen - matches[i].distance)) {			matches[j++] = matches[i];		    }		}		if (j == 0)		    break;		matchlen++;		nmatch = j;	    }	    /*	     * We've now got all the longest matches. We favour the	     * shorter distances, which means we go with matches[0].	     * So see if we want to defer it or throw it away.	     */	    matches[0].len = matchlen;	    if (defermatch.len > 0) {		if (matches[0].len > defermatch.len + 1) {		    /* We have a better match. Emit the deferred char,		     * and defer this match. */		    ctx->literal(ctx, (unsigned char) deferchr);		    defermatch = matches[0];		    deferchr = data[0];		    advance = 1;		} else {		    /* We don't have a better match. Do the deferred one. */		    ctx->match(ctx, defermatch.distance, defermatch.len);		    advance = defermatch.len - 1;		    defermatch.len = 0;		}	    } else {		/* There was no deferred match. Defer this one. */		defermatch = matches[0];		deferchr = data[0];		advance = 1;	    }	} else {	    /*	     * We found no matches. Emit the deferred match, if	     * any; otherwise emit a literal.	     */	    if (defermatch.len > 0) {		ctx->match(ctx, defermatch.distance, defermatch.len);		advance = defermatch.len - 1;		defermatch.len = 0;	    } else {		ctx->literal(ctx, data[0]);		advance = 1;	    }	}	/*	 * Now advance the position by `advance' characters,	 * keeping the window and hash chains consistent.	 */	while (advance > 0) {	    if (len >= HASHCHARS) {		lz77_advance(st, *data, lz77_hash(data));	    } else {                assert(st->npending < HASHCHARS);		st->pending[st->npending++] = *data;	    }	    data++;	    len--;	    advance--;	}    }}/* ---------------------------------------------------------------------- * Zlib compression. We always use the static Huffman tree option. * Mostly this is because it's hard to scan a block in advance to * work out better trees; dynamic trees are great when you're * compressing a large file under no significant time constraint, * but when you're compressing little bits in real time, things get * hairier. *  * I suppose it's possible that I could compute Huffman trees based * on the frequencies in the _previous_ block, as a sort of * heuristic, but I'm not confident that the gain would balance out * having to transmit the trees. */struct Outbuf {    strbuf *outbuf;    unsigned long outbits;    int noutbits;    bool firstblock;};static void outbits(struct Outbuf *out, unsigned long bits, int nbits){    assert(out->noutbits + nbits <= 32);    out->outbits |= bits << out->noutbits;    out->noutbits += nbits;    while (out->noutbits >= 8) {        put_byte(out->outbuf, out->outbits & 0xFF);	out->outbits >>= 8;	out->noutbits -= 8;    }}static const unsigned char mirrorbytes[256] = {    0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,    0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,    0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,    0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,    0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,    0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,    0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,    0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,    0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,    0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,    0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,    0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,    0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,    0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,    0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,    0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,    0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,    0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,    0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,    0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,    0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,    0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,    0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,    0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,    0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,    0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,    0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,    0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,    0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,    0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,    0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,    0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,};typedef struct {    short code, extrabits;    int min, max;} coderecord;static const coderecord lencodes[] = {    {257, 0, 3, 3},    {258, 0, 4, 4},    {259, 0, 5, 5},    {260, 0, 6, 6},    {261, 0, 7, 7},    {262, 0, 8, 8},    {263, 0, 9, 9},    {264, 0, 10, 10},    {265, 1, 11, 12},    {266, 1, 13, 14},    {267, 1, 15, 16},    {268, 1, 17, 18},    {269, 2, 19, 22},    {270, 2, 23, 26},    {271, 2, 27, 30},    {272, 2, 31, 34},    {273, 3, 35, 42},    {274, 3, 43, 50},    {275, 3, 51, 58},    {276, 3, 59, 66},    {277, 4, 67, 82},    {278, 4, 83, 98},    {279, 4, 99, 114},    {280, 4, 115, 130},    {281, 5, 131, 162},    {282, 5, 163, 194},    {283, 5, 195, 226},    {284, 5, 227, 257},    {285, 0, 258, 258},};static const coderecord distcodes[] = {    {0, 0, 1, 1},    {1, 0, 2, 2},    {2, 0, 3, 3},    {3, 0, 4, 4},    {4, 1, 5, 6},    {5, 1, 7, 8},    {6, 2, 9, 12},    {7, 2, 13, 16},    {8, 3, 17, 24},    {9, 3, 25, 32},    {10, 4, 33, 48},    {11, 4, 49, 64},    {12, 5, 65, 96},    {13, 5, 97, 128},    {14, 6, 129, 192},    {15, 6, 193, 256},    {16, 7, 257, 384},    {17, 7, 385, 512},    {18, 8, 513, 768},    {19, 8, 769, 1024},    {20, 9, 1025, 1536},    {21, 9, 1537, 2048},    {22, 10, 2049, 3072},    {23, 10, 3073, 4096},    {24, 11, 4097, 6144},    {25, 11, 6145, 8192},    {26, 12, 8193, 12288},    {27, 12, 12289, 16384},    {28, 13, 16385, 24576},    {29, 13, 24577, 32768},};static void zlib_literal(struct LZ77Context *ectx, unsigned char c){    struct Outbuf *out = (struct Outbuf *) ectx->userdata;    if (c <= 143) {	/* 0 through 143 are 8 bits long starting at 00110000. */	outbits(out, mirrorbytes[0x30 + c], 8);    } else {	/* 144 through 255 are 9 bits long starting at 110010000. */	outbits(out, 1 + 2 * mirrorbytes[0x90 - 144 + c], 9);    }}static void zlib_match(struct LZ77Context *ectx, int distance, int len){    const coderecord *d, *l;    int i, j, k;    struct Outbuf *out = (struct Outbuf *) ectx->userdata;    while (len > 0) {	int thislen;	/*	 * We can transmit matches of lengths 3 through 258	 * inclusive. So if len exceeds 258, we must transmit in	 * several steps, with 258 or less in each step.	 * 	 * Specifically: if len >= 261, we can transmit 258 and be	 * sure of having at least 3 left for the next step. And if	 * len <= 258, we can just transmit len. But if len == 259	 * or 260, we must transmit len-3.	 */	thislen = (len > 260 ? 258 : len <= 258 ? len : len - 3);	len -= thislen;	/*	 * Binary-search to find which length code we're	 * transmitting.	 */	i = -1;	j = lenof(lencodes);	while (1) {	    assert(j - i >= 2);	    k = (j + i) / 2;	    if (thislen < lencodes[k].min)		j = k;	    else if (thislen > lencodes[k].max)		i = k;	    else {		l = &lencodes[k];		break;		       /* found it! */	    }	}	/*	 * Transmit the length code. 256-279 are seven bits	 * starting at 0000000; 280-287 are eight bits starting at	 * 11000000.	 */	if (l->code <= 279) {	    outbits(out, mirrorbytes[(l->code - 256) * 2], 7);	} else {	    outbits(out, mirrorbytes[0xc0 - 280 + l->code], 8);	}	/*	 * Transmit the extra bits.	 */	if (l->extrabits)	    outbits(out, thislen - l->min, l->extrabits);	/*	 * Binary-search to find which distance code we're	 * transmitting.	 */	i = -1;	j = lenof(distcodes);	while (1) {	    assert(j - i >= 2);	    k = (j + i) / 2;	    if (distance < distcodes[k].min)		j = k;	    else if (distance > distcodes[k].max)		i = k;	    else {		d = &distcodes[k];		break;		       /* found it! */	    }	}	/*	 * Transmit the distance code. Five bits starting at 00000.	 */	outbits(out, mirrorbytes[d->code * 8], 5);	/*	 * Transmit the extra bits.	 */	if (d->extrabits)	    outbits(out, distance - d->min, d->extrabits);    }}struct ssh_zlib_compressor {    struct LZ77Context ectx;    ssh_compressor sc;};ssh_compressor *zlib_compress_init(void){    struct Outbuf *out;    struct ssh_zlib_compressor *comp = snew(struct ssh_zlib_compressor);    lz77_init(&comp->ectx);    comp->sc.vt = &ssh_zlib;    comp->ectx.literal = zlib_literal;    comp->ectx.match = zlib_match;    out = snew(struct Outbuf);    out->outbuf = NULL;    out->outbits = out->noutbits = 0;    out->firstblock = true;    comp->ectx.userdata = out;    return &comp->sc;}void zlib_compress_cleanup(ssh_compressor *sc){    struct ssh_zlib_compressor *comp =        container_of(sc, struct ssh_zlib_compressor, sc);    struct Outbuf *out = (struct Outbuf *)comp->ectx.userdata;    if (out->outbuf)        strbuf_free(out->outbuf);    sfree(out);    sfree(comp->ectx.ictx);    sfree(comp);}void zlib_compress_block(ssh_compressor *sc,                         const unsigned char *block, int len,                         unsigned char **outblock, int *outlen,                         int minlen){    struct ssh_zlib_compressor *comp =        container_of(sc, struct ssh_zlib_compressor, sc);    struct Outbuf *out = (struct Outbuf *) comp->ectx.userdata;    bool in_block;    assert(!out->outbuf);    out->outbuf = strbuf_new_nm();    /*     * If this is the first block, output the Zlib (RFC1950) header     * bytes 78 9C. (Deflate compression, 32K window size, default     * algorithm.)     */    if (out->firstblock) {	outbits(out, 0x9C78, 16);	out->firstblock = false;	in_block = false;    } else	in_block = true;    if (!in_block) {        /*         * Start a Deflate (RFC1951) fixed-trees block. We         * transmit a zero bit (BFINAL=0), followed by a zero         * bit and a one bit (BTYPE=01). Of course these are in         * the wrong order (01 0).         */        outbits(out, 2, 3);    }    /*     * Do the compression.     */    lz77_compress(&comp->ectx, block, len);    /*     * End the block (by transmitting code 256, which is     * 0000000 in fixed-tree mode), and transmit some empty     * blocks to ensure we have emitted the byte containing the     * last piece of genuine data. There are three ways we can     * do this:     *     *  - Minimal flush. Output end-of-block and then open a     *    new static block. This takes 9 bits, which is     *    guaranteed to flush out the last genuine code in the     *    closed block; but allegedly zlib can't handle it.     *     *  - Zlib partial flush. Output EOB, open and close an     *    empty static block, and _then_ open the new block.     *    This is the best zlib can handle.     *     *  - Zlib sync flush. Output EOB, then an empty     *    _uncompressed_ block (000, then sync to byte     *    boundary, then send bytes 00 00 FF FF). Then open the     *    new block.     *     * For the moment, we will use Zlib partial flush.     */    outbits(out, 0, 7);	       /* close block */    outbits(out, 2, 3 + 7);    /* empty static block */    outbits(out, 2, 3);	       /* open new block */    /*     * If we've been asked to pad out the compressed data until it's     * at least a given length, do so by emitting further empty static     * blocks.     */    while (out->outbuf->len < minlen) {        outbits(out, 0, 7);	       /* close block */        outbits(out, 2, 3);	       /* open new static block */    }    *outlen = out->outbuf->len;    *outblock = (unsigned char *)strbuf_to_str(out->outbuf);    out->outbuf = NULL;}/* ---------------------------------------------------------------------- * Zlib decompression. Of course, even though our compressor always * uses static trees, our _decompressor_ has to be capable of * handling dynamic trees if it sees them. *//* * The way we work the Huffman decode is to have a table lookup on * the first N bits of the input stream (in the order they arrive, * of course, i.e. the first bit of the Huffman code is in bit 0). * Each table entry lists the number of bits to consume, plus * either an output code or a pointer to a secondary table. */struct zlib_table;struct zlib_tableentry;struct zlib_tableentry {    unsigned char nbits;    short code;    struct zlib_table *nexttable;};struct zlib_table {    int mask;			       /* mask applied to input bit stream */    struct zlib_tableentry *table;};#define MAXCODELEN 16#define MAXSYMS 288/* * Build a single-level decode table for elements * [minlength,maxlength) of the provided code/length tables, and * recurse to build subtables. */static struct zlib_table *zlib_mkonetab(int *codes, unsigned char *lengths,					int nsyms,					int pfx, int pfxbits, int bits){    struct zlib_table *tab = snew(struct zlib_table);    int pfxmask = (1 << pfxbits) - 1;    int nbits, i, j, code;    tab->table = snewn(1 << bits, struct zlib_tableentry);    tab->mask = (1 << bits) - 1;    for (code = 0; code <= tab->mask; code++) {	tab->table[code].code = -1;	tab->table[code].nbits = 0;	tab->table[code].nexttable = NULL;    }    for (i = 0; i < nsyms; i++) {	if (lengths[i] <= pfxbits || (codes[i] & pfxmask) != pfx)	    continue;	code = (codes[i] >> pfxbits) & tab->mask;	for (j = code; j <= tab->mask; j += 1 << (lengths[i] - pfxbits)) {	    tab->table[j].code = i;	    nbits = lengths[i] - pfxbits;	    if (tab->table[j].nbits < nbits)		tab->table[j].nbits = nbits;	}    }    for (code = 0; code <= tab->mask; code++) {	if (tab->table[code].nbits <= bits)	    continue;	/* Generate a subtable. */	tab->table[code].code = -1;	nbits = tab->table[code].nbits - bits;	if (nbits > 7)	    nbits = 7;	tab->table[code].nbits = bits;	tab->table[code].nexttable = zlib_mkonetab(codes, lengths, nsyms,						   pfx | (code << pfxbits),						   pfxbits + bits, nbits);    }    return tab;}/* * Build a decode table, given a set of Huffman tree lengths. */static struct zlib_table *zlib_mktable(unsigned char *lengths,				       int nlengths){    int count[MAXCODELEN], startcode[MAXCODELEN], codes[MAXSYMS];    int code, maxlen;    int i, j;    /* Count the codes of each length. */    maxlen = 0;    for (i = 1; i < MAXCODELEN; i++)	count[i] = 0;    for (i = 0; i < nlengths; i++) {	count[lengths[i]]++;	if (maxlen < lengths[i])	    maxlen = lengths[i];    }    /* Determine the starting code for each length block. */    code = 0;    for (i = 1; i < MAXCODELEN; i++) {	startcode[i] = code;	code += count[i];	code <<= 1;    }    /* Determine the code for each symbol. Mirrored, of course. */    for (i = 0; i < nlengths; i++) {	code = startcode[lengths[i]]++;	codes[i] = 0;	for (j = 0; j < lengths[i]; j++) {	    codes[i] = (codes[i] << 1) | (code & 1);	    code >>= 1;	}    }    /*     * Now we have the complete list of Huffman codes. Build a     * table.     */    return zlib_mkonetab(codes, lengths, nlengths, 0, 0,			 maxlen < 9 ? maxlen : 9);}static int zlib_freetable(struct zlib_table **ztab){    struct zlib_table *tab;    int code;    if (ztab == NULL)	return -1;    if (*ztab == NULL)	return 0;    tab = *ztab;    for (code = 0; code <= tab->mask; code++)	if (tab->table[code].nexttable != NULL)	    zlib_freetable(&tab->table[code].nexttable);    sfree(tab->table);    tab->table = NULL;    sfree(tab);    *ztab = NULL;    return (0);}struct zlib_decompress_ctx {    struct zlib_table *staticlentable, *staticdisttable;    struct zlib_table *currlentable, *currdisttable, *lenlentable;    enum {	START, OUTSIDEBLK,	TREES_HDR, TREES_LENLEN, TREES_LEN, TREES_LENREP,	INBLK, GOTLENSYM, GOTLEN, GOTDISTSYM,	UNCOMP_LEN, UNCOMP_NLEN, UNCOMP_DATA    } state;    int sym, hlit, hdist, hclen, lenptr, lenextrabits, lenaddon, len,	lenrep;    int uncomplen;    unsigned char lenlen[19];    unsigned char lengths[286 + 32];    unsigned long bits;    int nbits;    unsigned char window[WINSIZE];    int winpos;    strbuf *outblk;    ssh_decompressor dc;};ssh_decompressor *zlib_decompress_init(void){    struct zlib_decompress_ctx *dctx = snew(struct zlib_decompress_ctx);    unsigned char lengths[288];    memset(lengths, 8, 144);    memset(lengths + 144, 9, 256 - 144);    memset(lengths + 256, 7, 280 - 256);    memset(lengths + 280, 8, 288 - 280);    dctx->staticlentable = zlib_mktable(lengths, 288);    memset(lengths, 5, 32);    dctx->staticdisttable = zlib_mktable(lengths, 32);    dctx->state = START;		       /* even before header */    dctx->currlentable = dctx->currdisttable = dctx->lenlentable = NULL;    dctx->bits = 0;    dctx->nbits = 0;    dctx->winpos = 0;    dctx->outblk = NULL;    dctx->dc.vt = &ssh_zlib;    return &dctx->dc;}void zlib_decompress_cleanup(ssh_decompressor *dc){    struct zlib_decompress_ctx *dctx =        container_of(dc, struct zlib_decompress_ctx, dc);    if (dctx->currlentable && dctx->currlentable != dctx->staticlentable)	zlib_freetable(&dctx->currlentable);    if (dctx->currdisttable && dctx->currdisttable != dctx->staticdisttable)	zlib_freetable(&dctx->currdisttable);    if (dctx->lenlentable)	zlib_freetable(&dctx->lenlentable);    zlib_freetable(&dctx->staticlentable);    zlib_freetable(&dctx->staticdisttable);    if (dctx->outblk)        strbuf_free(dctx->outblk);    sfree(dctx);}static int zlib_huflookup(unsigned long *bitsp, int *nbitsp,		   struct zlib_table *tab){    unsigned long bits = *bitsp;    int nbits = *nbitsp;    while (1) {	struct zlib_tableentry *ent;	ent = &tab->table[bits & tab->mask];	if (ent->nbits > nbits)	    return -1;		       /* not enough data */	bits >>= ent->nbits;	nbits -= ent->nbits;	if (ent->code == -1)	    tab = ent->nexttable;	else {	    *bitsp = bits;	    *nbitsp = nbits;	    return ent->code;	}	if (!tab) {	    /*	     * There was a missing entry in the table, presumably	     * due to an invalid Huffman table description, and the	     * subsequent data has attempted to use the missing	     * entry. Return a decoding failure.	     */	    return -2;	}    }}static void zlib_emit_char(struct zlib_decompress_ctx *dctx, int c){    dctx->window[dctx->winpos] = c;    dctx->winpos = (dctx->winpos + 1) & (WINSIZE - 1);    put_byte(dctx->outblk, c);}#define EATBITS(n) ( dctx->nbits -= (n), dctx->bits >>= (n) )bool zlib_decompress_block(ssh_decompressor *dc,                           const unsigned char *block, int len,                           unsigned char **outblock, int *outlen){    struct zlib_decompress_ctx *dctx =        container_of(dc, struct zlib_decompress_ctx, dc);    const coderecord *rec;    int code, blktype, rep, dist, nlen, header;    static const unsigned char lenlenmap[] = {	16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15    };    assert(!dctx->outblk);    dctx->outblk = strbuf_new_nm();    while (len > 0 || dctx->nbits > 0) {	while (dctx->nbits < 24 && len > 0) {	    dctx->bits |= (*block++) << dctx->nbits;	    dctx->nbits += 8;	    len--;	}	switch (dctx->state) {	  case START:	    /* Expect 16-bit zlib header. */	    if (dctx->nbits < 16)		goto finished;	       /* done all we can */            /*             * The header is stored as a big-endian 16-bit integer,             * in contrast to the general little-endian policy in             * the rest of the format :-(             */            header = (((dctx->bits & 0xFF00) >> 8) |                      ((dctx->bits & 0x00FF) << 8));            EATBITS(16);            /*             * Check the header:             *             *  - bits 8-11 should be 1000 (Deflate/RFC1951)             *  - bits 12-15 should be at most 0111 (window size)             *  - bit 5 should be zero (no dictionary present)             *  - we don't care about bits 6-7 (compression rate)             *  - bits 0-4 should be set up to make the whole thing             *    a multiple of 31 (checksum).             */            if ((header & 0x0F00) != 0x0800 ||                (header & 0xF000) >  0x7000 ||                (header & 0x0020) != 0x0000 ||                (header % 31) != 0)                goto decode_error;	    dctx->state = OUTSIDEBLK;	    break;	  case OUTSIDEBLK:	    /* Expect 3-bit block header. */	    if (dctx->nbits < 3)		goto finished;	       /* done all we can */	    EATBITS(1);	    blktype = dctx->bits & 3;	    EATBITS(2);	    if (blktype == 0) {		int to_eat = dctx->nbits & 7;		dctx->state = UNCOMP_LEN;		EATBITS(to_eat);       /* align to byte boundary */	    } else if (blktype == 1) {		dctx->currlentable = dctx->staticlentable;		dctx->currdisttable = dctx->staticdisttable;		dctx->state = INBLK;	    } else if (blktype == 2) {		dctx->state = TREES_HDR;	    }	    break;	  case TREES_HDR:	    /*	     * Dynamic block header. Five bits of HLIT, five of	     * HDIST, four of HCLEN.	     */	    if (dctx->nbits < 5 + 5 + 4)		goto finished;	       /* done all we can */	    dctx->hlit = 257 + (dctx->bits & 31);	    EATBITS(5);	    dctx->hdist = 1 + (dctx->bits & 31);	    EATBITS(5);	    dctx->hclen = 4 + (dctx->bits & 15);	    EATBITS(4);	    dctx->lenptr = 0;	    dctx->state = TREES_LENLEN;	    memset(dctx->lenlen, 0, sizeof(dctx->lenlen));	    break;	  case TREES_LENLEN:	    if (dctx->nbits < 3)		goto finished;	    while (dctx->lenptr < dctx->hclen && dctx->nbits >= 3) {		dctx->lenlen[lenlenmap[dctx->lenptr++]] =		    (unsigned char) (dctx->bits & 7);		EATBITS(3);	    }	    if (dctx->lenptr == dctx->hclen) {		dctx->lenlentable = zlib_mktable(dctx->lenlen, 19);		dctx->state = TREES_LEN;		dctx->lenptr = 0;	    }	    break;	  case TREES_LEN:	    if (dctx->lenptr >= dctx->hlit + dctx->hdist) {		dctx->currlentable = zlib_mktable(dctx->lengths, dctx->hlit);		dctx->currdisttable = zlib_mktable(dctx->lengths + dctx->hlit,						  dctx->hdist);		zlib_freetable(&dctx->lenlentable);		dctx->lenlentable = NULL;		dctx->state = INBLK;		break;	    }	    code =		zlib_huflookup(&dctx->bits, &dctx->nbits, dctx->lenlentable);	    if (code == -1)		goto finished;	    if (code == -2)		goto decode_error;	    if (code < 16)		dctx->lengths[dctx->lenptr++] = code;	    else {		dctx->lenextrabits = (code == 16 ? 2 : code == 17 ? 3 : 7);		dctx->lenaddon = (code == 18 ? 11 : 3);		dctx->lenrep = (code == 16 && dctx->lenptr > 0 ?			       dctx->lengths[dctx->lenptr - 1] : 0);		dctx->state = TREES_LENREP;	    }	    break;	  case TREES_LENREP:	    if (dctx->nbits < dctx->lenextrabits)		goto finished;	    rep =		dctx->lenaddon +		(dctx->bits & ((1 << dctx->lenextrabits) - 1));	    EATBITS(dctx->lenextrabits);	    while (rep > 0 && dctx->lenptr < dctx->hlit + dctx->hdist) {		dctx->lengths[dctx->lenptr] = dctx->lenrep;		dctx->lenptr++;		rep--;	    }	    dctx->state = TREES_LEN;	    break;	  case INBLK:	    code =		zlib_huflookup(&dctx->bits, &dctx->nbits, dctx->currlentable);	    if (code == -1)		goto finished;	    if (code == -2)		goto decode_error;	    if (code < 256)		zlib_emit_char(dctx, code);	    else if (code == 256) {		dctx->state = OUTSIDEBLK;		if (dctx->currlentable != dctx->staticlentable) {		    zlib_freetable(&dctx->currlentable);		    dctx->currlentable = NULL;		}		if (dctx->currdisttable != dctx->staticdisttable) {		    zlib_freetable(&dctx->currdisttable);		    dctx->currdisttable = NULL;		}	    } else if (code < 286) {   /* static tree can give >285; ignore */		dctx->state = GOTLENSYM;		dctx->sym = code;	    }	    break;	  case GOTLENSYM:	    rec = &lencodes[dctx->sym - 257];	    if (dctx->nbits < rec->extrabits)		goto finished;	    dctx->len =		rec->min + (dctx->bits & ((1 << rec->extrabits) - 1));	    EATBITS(rec->extrabits);	    dctx->state = GOTLEN;	    break;	  case GOTLEN:	    code =		zlib_huflookup(&dctx->bits, &dctx->nbits,			       dctx->currdisttable);	    if (code == -1)		goto finished;	    if (code == -2)		goto decode_error;	    if (code >= 30)            /* dist symbols 30 and 31 are invalid */		goto decode_error;	    dctx->state = GOTDISTSYM;	    dctx->sym = code;	    break;	  case GOTDISTSYM:	    rec = &distcodes[dctx->sym];	    if (dctx->nbits < rec->extrabits)		goto finished;	    dist = rec->min + (dctx->bits & ((1 << rec->extrabits) - 1));	    EATBITS(rec->extrabits);	    dctx->state = INBLK;	    while (dctx->len--)		zlib_emit_char(dctx, dctx->window[(dctx->winpos - dist) &						  (WINSIZE - 1)]);	    break;	  case UNCOMP_LEN:	    /*	     * Uncompressed block. We expect to see a 16-bit LEN.	     */	    if (dctx->nbits < 16)		goto finished;	    dctx->uncomplen = dctx->bits & 0xFFFF;	    EATBITS(16);	    dctx->state = UNCOMP_NLEN;	    break;	  case UNCOMP_NLEN:	    /*	     * Uncompressed block. We expect to see a 16-bit NLEN,	     * which should be the one's complement of the previous	     * LEN.	     */	    if (dctx->nbits < 16)		goto finished;	    nlen = dctx->bits & 0xFFFF;	    EATBITS(16);	    if (dctx->uncomplen != (nlen ^ 0xFFFF))		goto decode_error;	    if (dctx->uncomplen == 0)		dctx->state = OUTSIDEBLK;	/* block is empty */	    else		dctx->state = UNCOMP_DATA;	    break;	  case UNCOMP_DATA:	    if (dctx->nbits < 8)		goto finished;	    zlib_emit_char(dctx, dctx->bits & 0xFF);	    EATBITS(8);	    if (--dctx->uncomplen == 0)		dctx->state = OUTSIDEBLK;	/* end of uncompressed block */	    break;	}    }  finished:    *outlen = dctx->outblk->len;    *outblock = (unsigned char *)strbuf_to_str(dctx->outblk);    dctx->outblk = NULL;    return true;  decode_error:    *outblock = NULL;    *outlen = 0;    return false;}const ssh_compression_alg ssh_zlib = {    "zlib",    "[email protected]", /* delayed version */    zlib_compress_init,    zlib_compress_cleanup,    zlib_compress_block,    zlib_decompress_init,    zlib_decompress_cleanup,    zlib_decompress_block,    "zlib (RFC1950)"};
 |