| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183 | /* * Bignum routines for RSA and DH and stuff. */#include <stdio.h>#include <assert.h>#include <stdlib.h>#include <string.h>#include <limits.h>#include <ctype.h>#include "misc.h"#include "sshbn.h"#define BIGNUM_INTERNALtypedef BignumInt *Bignum;#include "ssh.h"BignumInt bnZero[1] = { 0 };BignumInt bnOne[2] = { 1, 1 };BignumInt bnTen[2] = { 1, 10 };/* * The Bignum format is an array of `BignumInt'. The first * element of the array counts the remaining elements. The * remaining elements express the actual number, base 2^BIGNUM_INT_BITS, _least_ * significant digit first. (So it's trivial to extract the bit * with value 2^n for any n.) * * All Bignums in this module are positive. Negative numbers must * be dealt with outside it. * * INVARIANT: the most significant word of any Bignum must be * nonzero. */Bignum Zero = bnZero, One = bnOne, Ten = bnTen;static Bignum newbn(int length){    Bignum b;    assert(length >= 0 && length < INT_MAX / BIGNUM_INT_BITS);    b = snewn(length + 1, BignumInt);    memset(b, 0, (length + 1) * sizeof(*b));    b[0] = length;    return b;}void bn_restore_invariant(Bignum b){    while (b[0] > 1 && b[b[0]] == 0)	b[0]--;}Bignum copybn(Bignum orig){    Bignum b = snewn(orig[0] + 1, BignumInt);    if (!b)	abort();		       /* FIXME */    memcpy(b, orig, (orig[0] + 1) * sizeof(*b));    return b;}void freebn(Bignum b){    /*     * Burn the evidence, just in case.     */    smemclr(b, sizeof(b[0]) * (b[0] + 1));    sfree(b);}Bignum bn_power_2(int n){    Bignum ret;    assert(n >= 0);    ret = newbn(n / BIGNUM_INT_BITS + 1);    bignum_set_bit(ret, n, 1);    return ret;}/* * Internal addition. Sets c = a - b, where 'a', 'b' and 'c' are all * big-endian arrays of 'len' BignumInts. Returns the carry off the * top. */static BignumCarry internal_add(const BignumInt *a, const BignumInt *b,                                BignumInt *c, int len){    int i;    BignumCarry carry = 0;    for (i = len-1; i >= 0; i--)        BignumADC(c[i], carry, a[i], b[i], carry);    return (BignumInt)carry;}/* * Internal subtraction. Sets c = a - b, where 'a', 'b' and 'c' are * all big-endian arrays of 'len' BignumInts. Any borrow from the top * is ignored. */static void internal_sub(const BignumInt *a, const BignumInt *b,                         BignumInt *c, int len){    int i;    BignumCarry carry = 1;    for (i = len-1; i >= 0; i--)        BignumADC(c[i], carry, a[i], ~b[i], carry);}/* * Compute c = a * b. * Input is in the first len words of a and b. * Result is returned in the first 2*len words of c. * * 'scratch' must point to an array of BignumInt of size at least * mul_compute_scratch(len). (This covers the needs of internal_mul * and all its recursive calls to itself.) */#define KARATSUBA_THRESHOLD 50static int mul_compute_scratch(int len){    int ret = 0;    while (len > KARATSUBA_THRESHOLD) {        int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */        int midlen = botlen + 1;        ret += 4*midlen;        len = midlen;    }    return ret;}static void internal_mul(const BignumInt *a, const BignumInt *b,			 BignumInt *c, int len, BignumInt *scratch){    if (len > KARATSUBA_THRESHOLD) {        int i;        /*         * Karatsuba divide-and-conquer algorithm. Cut each input in         * half, so that it's expressed as two big 'digits' in a giant         * base D:         *         *   a = a_1 D + a_0         *   b = b_1 D + b_0         *         * Then the product is of course         *         *  ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0         *         * and we compute the three coefficients by recursively         * calling ourself to do half-length multiplications.         *         * The clever bit that makes this worth doing is that we only         * need _one_ half-length multiplication for the central         * coefficient rather than the two that it obviouly looks         * like, because we can use a single multiplication to compute         *         *   (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0         *         * and then we subtract the other two coefficients (a_1 b_1         * and a_0 b_0) which we were computing anyway.         *         * Hence we get to multiply two numbers of length N in about         * three times as much work as it takes to multiply numbers of         * length N/2, which is obviously better than the four times         * as much work it would take if we just did a long         * conventional multiply.         */        int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */        int midlen = botlen + 1;        BignumCarry carry;#ifdef KARA_DEBUG        int i;#endif        /*         * The coefficients a_1 b_1 and a_0 b_0 just avoid overlapping         * in the output array, so we can compute them immediately in         * place.         */#ifdef KARA_DEBUG        printf("a1,a0 = 0x");        for (i = 0; i < len; i++) {            if (i == toplen) printf(", 0x");            printf("%0*x", BIGNUM_INT_BITS/4, a[i]);        }        printf("\n");        printf("b1,b0 = 0x");        for (i = 0; i < len; i++) {            if (i == toplen) printf(", 0x");            printf("%0*x", BIGNUM_INT_BITS/4, b[i]);        }        printf("\n");#endif        /* a_1 b_1 */        internal_mul(a, b, c, toplen, scratch);#ifdef KARA_DEBUG        printf("a1b1 = 0x");        for (i = 0; i < 2*toplen; i++) {            printf("%0*x", BIGNUM_INT_BITS/4, c[i]);        }        printf("\n");#endif        /* a_0 b_0 */        internal_mul(a + toplen, b + toplen, c + 2*toplen, botlen, scratch);#ifdef KARA_DEBUG        printf("a0b0 = 0x");        for (i = 0; i < 2*botlen; i++) {            printf("%0*x", BIGNUM_INT_BITS/4, c[2*toplen+i]);        }        printf("\n");#endif        /* Zero padding. midlen exceeds toplen by at most 2, so just         * zero the first two words of each input and the rest will be         * copied over. */        scratch[0] = scratch[1] = scratch[midlen] = scratch[midlen+1] = 0;        for (i = 0; i < toplen; i++) {            scratch[midlen - toplen + i] = a[i]; /* a_1 */            scratch[2*midlen - toplen + i] = b[i]; /* b_1 */        }        /* compute a_1 + a_0 */        scratch[0] = internal_add(scratch+1, a+toplen, scratch+1, botlen);#ifdef KARA_DEBUG        printf("a1plusa0 = 0x");        for (i = 0; i < midlen; i++) {            printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);        }        printf("\n");#endif        /* compute b_1 + b_0 */        scratch[midlen] = internal_add(scratch+midlen+1, b+toplen,                                       scratch+midlen+1, botlen);#ifdef KARA_DEBUG        printf("b1plusb0 = 0x");        for (i = 0; i < midlen; i++) {            printf("%0*x", BIGNUM_INT_BITS/4, scratch[midlen+i]);        }        printf("\n");#endif        /*         * Now we can do the third multiplication.         */        internal_mul(scratch, scratch + midlen, scratch + 2*midlen, midlen,                     scratch + 4*midlen);#ifdef KARA_DEBUG        printf("a1plusa0timesb1plusb0 = 0x");        for (i = 0; i < 2*midlen; i++) {            printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);        }        printf("\n");#endif        /*         * Now we can reuse the first half of 'scratch' to compute the         * sum of the outer two coefficients, to subtract from that         * product to obtain the middle one.         */        scratch[0] = scratch[1] = scratch[2] = scratch[3] = 0;        for (i = 0; i < 2*toplen; i++)            scratch[2*midlen - 2*toplen + i] = c[i];        scratch[1] = internal_add(scratch+2, c + 2*toplen,                                  scratch+2, 2*botlen);#ifdef KARA_DEBUG        printf("a1b1plusa0b0 = 0x");        for (i = 0; i < 2*midlen; i++) {            printf("%0*x", BIGNUM_INT_BITS/4, scratch[i]);        }        printf("\n");#endif        internal_sub(scratch + 2*midlen, scratch,                     scratch + 2*midlen, 2*midlen);#ifdef KARA_DEBUG        printf("a1b0plusa0b1 = 0x");        for (i = 0; i < 2*midlen; i++) {            printf("%0*x", BIGNUM_INT_BITS/4, scratch[2*midlen+i]);        }        printf("\n");#endif        /*         * And now all we need to do is to add that middle coefficient         * back into the output. We may have to propagate a carry         * further up the output, but we can be sure it won't         * propagate right the way off the top.         */        carry = internal_add(c + 2*len - botlen - 2*midlen,                             scratch + 2*midlen,                             c + 2*len - botlen - 2*midlen, 2*midlen);        i = 2*len - botlen - 2*midlen - 1;        while (carry) {            assert(i >= 0);            BignumADC(c[i], carry, c[i], 0, carry);            i--;        }#ifdef KARA_DEBUG        printf("ab = 0x");        for (i = 0; i < 2*len; i++) {            printf("%0*x", BIGNUM_INT_BITS/4, c[i]);        }        printf("\n");#endif    } else {        int i;        BignumInt carry;        const BignumInt *ap, *bp;        BignumInt *cp, *cps;        /*         * Multiply in the ordinary O(N^2) way.         */        for (i = 0; i < 2 * len; i++)            c[i] = 0;        for (cps = c + 2*len, ap = a + len; ap-- > a; cps--) {            carry = 0;            for (cp = cps, bp = b + len; cp--, bp-- > b ;)                BignumMULADD2(carry, *cp, *ap, *bp, *cp, carry);            *cp = carry;        }    }}/* * Variant form of internal_mul used for the initial step of * Montgomery reduction. Only bothers outputting 'len' words * (everything above that is thrown away). */static void internal_mul_low(const BignumInt *a, const BignumInt *b,                             BignumInt *c, int len, BignumInt *scratch){    if (len > KARATSUBA_THRESHOLD) {        int i;        /*         * Karatsuba-aware version of internal_mul_low. As before, we         * express each input value as a shifted combination of two         * halves:         *         *   a = a_1 D + a_0         *   b = b_1 D + b_0         *         * Then the full product is, as before,         *         *  ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0         *         * Provided we choose D on the large side (so that a_0 and b_0         * are _at least_ as long as a_1 and b_1), we don't need the         * topmost term at all, and we only need half of the middle         * term. So there's no point in doing the proper Karatsuba         * optimisation which computes the middle term using the top         * one, because we'd take as long computing the top one as         * just computing the middle one directly.         *         * So instead, we do a much more obvious thing: we call the         * fully optimised internal_mul to compute a_0 b_0, and we         * recursively call ourself to compute the _bottom halves_ of         * a_1 b_0 and a_0 b_1, each of which we add into the result         * in the obvious way.         *         * In other words, there's no actual Karatsuba _optimisation_         * in this function; the only benefit in doing it this way is         * that we call internal_mul proper for a large part of the         * work, and _that_ can optimise its operation.         */        int toplen = len/2, botlen = len - toplen; /* botlen is the bigger */        /*         * Scratch space for the various bits and pieces we're going         * to be adding together: we need botlen*2 words for a_0 b_0         * (though we may end up throwing away its topmost word), and         * toplen words for each of a_1 b_0 and a_0 b_1. That adds up         * to exactly 2*len.         */        /* a_0 b_0 */        internal_mul(a + toplen, b + toplen, scratch + 2*toplen, botlen,                     scratch + 2*len);        /* a_1 b_0 */        internal_mul_low(a, b + len - toplen, scratch + toplen, toplen,                         scratch + 2*len);        /* a_0 b_1 */        internal_mul_low(a + len - toplen, b, scratch, toplen,                         scratch + 2*len);        /* Copy the bottom half of the big coefficient into place */        for (i = 0; i < botlen; i++)            c[toplen + i] = scratch[2*toplen + botlen + i];        /* Add the two small coefficients, throwing away the returned carry */        internal_add(scratch, scratch + toplen, scratch, toplen);        /* And add that to the large coefficient, leaving the result in c. */        internal_add(scratch, scratch + 2*toplen + botlen - toplen,                     c, toplen);    } else {        int i;        BignumInt carry;        const BignumInt *ap, *bp;        BignumInt *cp, *cps;        /*         * Multiply in the ordinary O(N^2) way.         */        for (i = 0; i < len; i++)            c[i] = 0;        for (cps = c + len, ap = a + len; ap-- > a; cps--) {            carry = 0;            for (cp = cps, bp = b + len; bp--, cp-- > c ;)                BignumMULADD2(carry, *cp, *ap, *bp, *cp, carry);        }    }}/* * Montgomery reduction. Expects x to be a big-endian array of 2*len * BignumInts whose value satisfies 0 <= x < rn (where r = 2^(len * * BIGNUM_INT_BITS) is the Montgomery base). Returns in the same array * a value x' which is congruent to xr^{-1} mod n, and satisfies 0 <= * x' < n. * * 'n' and 'mninv' should be big-endian arrays of 'len' BignumInts * each, containing respectively n and the multiplicative inverse of * -n mod r. * * 'tmp' is an array of BignumInt used as scratch space, of length at * least 3*len + mul_compute_scratch(len). */static void monty_reduce(BignumInt *x, const BignumInt *n,                         const BignumInt *mninv, BignumInt *tmp, int len){    int i;    BignumInt carry;    /*     * Multiply x by (-n)^{-1} mod r. This gives us a value m such     * that mn is congruent to -x mod r. Hence, mn+x is an exact     * multiple of r, and is also (obviously) congruent to x mod n.     */    internal_mul_low(x + len, mninv, tmp, len, tmp + 3*len);    /*     * Compute t = (mn+x)/r in ordinary, non-modular, integer     * arithmetic. By construction this is exact, and is congruent mod     * n to x * r^{-1}, i.e. the answer we want.     *     * The following multiply leaves that answer in the _most_     * significant half of the 'x' array, so then we must shift it     * down.     */    internal_mul(tmp, n, tmp+len, len, tmp + 3*len);    carry = internal_add(x, tmp+len, x, 2*len);    for (i = 0; i < len; i++)        x[len + i] = x[i], x[i] = 0;    /*     * Reduce t mod n. This doesn't require a full-on division by n,     * but merely a test and single optional subtraction, since we can     * show that 0 <= t < 2n.     *     * Proof:     *  + we computed m mod r, so 0 <= m < r.     *  + so 0 <= mn < rn, obviously     *  + hence we only need 0 <= x < rn to guarantee that 0 <= mn+x < 2rn     *  + yielding 0 <= (mn+x)/r < 2n as required.     */    if (!carry) {        for (i = 0; i < len; i++)            if (x[len + i] != n[i])                break;    }    if (carry || i >= len || x[len + i] > n[i])        internal_sub(x+len, n, x+len, len);}static void internal_add_shifted(BignumInt *number,				 BignumInt n, int shift){    int word = 1 + (shift / BIGNUM_INT_BITS);    int bshift = shift % BIGNUM_INT_BITS;    BignumInt addendh, addendl;    BignumCarry carry;    addendl = n << bshift;    addendh = (bshift == 0 ? 0 : n >> (BIGNUM_INT_BITS - bshift));    assert(word <= number[0]);    BignumADC(number[word], carry, number[word], addendl, 0);    word++;    if (!addendh && !carry)        return;    assert(word <= number[0]);    BignumADC(number[word], carry, number[word], addendh, carry);    word++;    while (carry) {        assert(word <= number[0]);        BignumADC(number[word], carry, number[word], 0, carry);	word++;    }}static int bn_clz(BignumInt x){    /*     * Count the leading zero bits in x. Equivalently, how far left     * would we need to shift x to make its top bit set?     *     * Precondition: x != 0.     */    /* FIXME: would be nice to put in some compiler intrinsics under     * ifdef here */    int i, ret = 0;    for (i = BIGNUM_INT_BITS / 2; i != 0; i >>= 1) {        if ((x >> (BIGNUM_INT_BITS-i)) == 0) {            x <<= i;            ret += i;        }    }    return ret;}static BignumInt reciprocal_word(BignumInt d){    BignumInt dshort, recip, prodh, prodl;    int corrections;    /*     * Input: a BignumInt value d, with its top bit set.     */    assert(d >> (BIGNUM_INT_BITS-1) == 1);    /*     * Output: a value, shifted to fill a BignumInt, which is strictly     * less than 1/(d+1), i.e. is an *under*-estimate (but by as     * little as possible within the constraints) of the reciprocal of     * any number whose first BIGNUM_INT_BITS bits match d.     *     * Ideally we'd like to _totally_ fill BignumInt, i.e. always     * return a value with the top bit set. Unfortunately we can't     * quite guarantee that for all inputs and also return a fixed     * exponent. So instead we take our reciprocal to be     * 2^(BIGNUM_INT_BITS*2-1) / d, so that it has the top bit clear     * only in the exceptional case where d takes exactly the maximum     * value BIGNUM_INT_MASK; in that case, the top bit is clear and     * the next bit down is set.     */    /*     * Start by computing a half-length version of the answer, by     * straightforward division within a BignumInt.     */    dshort = (d >> (BIGNUM_INT_BITS/2)) + 1;    recip = (BIGNUM_TOP_BIT + dshort - 1) / dshort;    recip <<= BIGNUM_INT_BITS - BIGNUM_INT_BITS/2;    /*     * Newton-Raphson iteration to improve that starting reciprocal     * estimate: take f(x) = d - 1/x, and then the N-R formula gives     * x_new = x - f(x)/f'(x) = x - (d-1/x)/(1/x^2) = x(2-d*x). Or,     * taking our fixed-point representation into account, take f(x)     * to be d - K/x (where K = 2^(BIGNUM_INT_BITS*2-1) as discussed     * above) and then we get (2K - d*x) * x/K.     *     * Newton-Raphson doubles the number of correct bits at every     * iteration, and the initial division above already gave us half     * the output word, so it's only worth doing one iteration.     */    BignumMULADD(prodh, prodl, recip, d, recip);    prodl = ~prodl;    prodh = ~prodh;    {        BignumCarry c;        BignumADC(prodl, c, prodl, 1, 0);        prodh += c;    }    BignumMUL(prodh, prodl, prodh, recip);    recip = (prodh << 1) | (prodl >> (BIGNUM_INT_BITS-1));    /*     * Now make sure we have the best possible reciprocal estimate,     * before we return it. We might have been off by a handful either     * way - not enough to bother with any better-thought-out kind of     * correction loop.     */    BignumMULADD(prodh, prodl, recip, d, recip);    corrections = 0;    if (prodh >= BIGNUM_TOP_BIT) {        do {            BignumCarry c = 1;            BignumADC(prodl, c, prodl, ~d, c); prodh += BIGNUM_INT_MASK + c;            recip--;            corrections++;        } while (prodh >= ((BignumInt)1 << (BIGNUM_INT_BITS-1)));    } else {        while (1) {            BignumInt newprodh, newprodl;            BignumCarry c = 0;            BignumADC(newprodl, c, prodl, d, c); newprodh = prodh + c;            if (newprodh >= BIGNUM_TOP_BIT)                break;            prodh = newprodh;            prodl = newprodl;            recip++;            corrections++;        }    }    return recip;}/* * Compute a = a % m. * Input in first alen words of a and first mlen words of m. * Output in first alen words of a * (of which first alen-mlen words will be zero). * Quotient is accumulated in the `quotient' array, which is a Bignum * rather than the internal bigendian format. * * 'recip' must be the result of calling reciprocal_word() on the top * BIGNUM_INT_BITS of the modulus (denoted m0 in comments below), with * the topmost set bit normalised to the MSB of the input to * reciprocal_word. 'rshift' is how far left the top nonzero word of * the modulus had to be shifted to set that top bit. */static void internal_mod(BignumInt *a, int alen,			 BignumInt *m, int mlen,			 BignumInt *quot, BignumInt recip, int rshift){    int i, k;#ifdef DIVISION_DEBUG    {        int d;        printf("start division, m=0x");        for (d = 0; d < mlen; d++)            printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)m[d]);        printf(", recip=%#0*llx, rshift=%d\n",               BIGNUM_INT_BITS/4, (unsigned long long)recip, rshift);    }#endif    /*     * Repeatedly use that reciprocal estimate to get a decent number     * of quotient bits, and subtract off the resulting multiple of m.     *     * Normally we expect to terminate this loop by means of finding     * out q=0 part way through, but one way in which we might not get     * that far in the first place is if the input a is actually zero,     * in which case we'll discard zero words from the front of a     * until we reach the termination condition in the for statement     * here.     */    for (i = 0; i <= alen - mlen ;) {	BignumInt product;        BignumInt aword, q;        int shift, full_bitoffset, bitoffset, wordoffset;#ifdef DIVISION_DEBUG        {            int d;            printf("main loop, a=0x");            for (d = 0; d < alen; d++)                printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)a[d]);            printf("\n");        }#endif        if (a[i] == 0) {#ifdef DIVISION_DEBUG            printf("zero word at i=%d\n", i);#endif            i++;            continue;        }        aword = a[i];        shift = bn_clz(aword);        aword <<= shift;        if (shift > 0 && i+1 < alen)            aword |= a[i+1] >> (BIGNUM_INT_BITS - shift);        {            BignumInt unused;            BignumMUL(q, unused, recip, aword);            (void)unused;        }#ifdef DIVISION_DEBUG        printf("i=%d, aword=%#0*llx, shift=%d, q=%#0*llx\n",               i, BIGNUM_INT_BITS/4, (unsigned long long)aword,               shift, BIGNUM_INT_BITS/4, (unsigned long long)q);#endif        /*         * Work out the right bit and word offsets to use when         * subtracting q*m from a.         *         * aword was taken from a[i], which means its LSB was at bit         * position (alen-1-i) * BIGNUM_INT_BITS. But then we shifted         * it left by 'shift', so now the low bit of aword corresponds         * to bit position (alen-1-i) * BIGNUM_INT_BITS - shift, i.e.         * aword is approximately equal to a / 2^(that).         *         * m0 comes from the top word of mod, so its LSB is at bit         * position (mlen-1) * BIGNUM_INT_BITS - rshift, i.e. it can         * be considered to be m / 2^(that power). 'recip' is the         * reciprocal of m0, times 2^(BIGNUM_INT_BITS*2-1), i.e. it's         * about 2^((mlen+1) * BIGNUM_INT_BITS - rshift - 1) / m.         *         * Hence, recip * aword is approximately equal to the product         * of those, which simplifies to         *         * a/m * 2^((mlen+2+i-alen)*BIGNUM_INT_BITS + shift - rshift - 1)         *         * But we've also shifted recip*aword down by BIGNUM_INT_BITS         * to form q, so we have         *         * q ~= a/m * 2^((mlen+1+i-alen)*BIGNUM_INT_BITS + shift - rshift - 1)         *         * and hence, when we now compute q*m, it will be about         * a*2^(all that lot), i.e. the negation of that expression is         * how far left we have to shift the product q*m to make it         * approximately equal to a.         */        full_bitoffset = -((mlen+1+i-alen)*BIGNUM_INT_BITS + shift-rshift-1);#ifdef DIVISION_DEBUG        printf("full_bitoffset=%d\n", full_bitoffset);#endif        if (full_bitoffset < 0) {            /*             * If we find ourselves needing to shift q*m _right_, that             * means we've reached the bottom of the quotient. Clip q             * so that its right shift becomes zero, and if that means             * q becomes _actually_ zero, this loop is done.             */            if (full_bitoffset <= -BIGNUM_INT_BITS)                break;            q >>= -full_bitoffset;            full_bitoffset = 0;            if (!q)                break;#ifdef DIVISION_DEBUG            printf("now full_bitoffset=%d, q=%#0*llx\n",                   full_bitoffset, BIGNUM_INT_BITS/4, (unsigned long long)q);#endif        }        wordoffset = full_bitoffset / BIGNUM_INT_BITS;        bitoffset = full_bitoffset % BIGNUM_INT_BITS;#ifdef DIVISION_DEBUG        printf("wordoffset=%d, bitoffset=%d\n", wordoffset, bitoffset);#endif        /* wordoffset as computed above is the offset between the LSWs         * of m and a. But in fact m and a are stored MSW-first, so we         * need to adjust it to be the offset between the actual array         * indices, and flip the sign too. */        wordoffset = alen - mlen - wordoffset;        if (bitoffset == 0) {            BignumCarry c = 1;            BignumInt prev_hi_word = 0;            for (k = mlen - 1; wordoffset+k >= i; k--) {                BignumInt mword = k<0 ? 0 : m[k];                BignumMULADD(prev_hi_word, product, q, mword, prev_hi_word);#ifdef DIVISION_DEBUG                printf("  aligned sub: product word for m[%d] = %#0*llx\n",                       k, BIGNUM_INT_BITS/4,                       (unsigned long long)product);#endif#ifdef DIVISION_DEBUG                printf("  aligned sub: subtrahend for a[%d] = %#0*llx\n",                       wordoffset+k, BIGNUM_INT_BITS/4,                       (unsigned long long)product);#endif                BignumADC(a[wordoffset+k], c, a[wordoffset+k], ~product, c);            }        } else {            BignumInt add_word = 0;            BignumInt c = 1;            BignumInt prev_hi_word = 0;            for (k = mlen - 1; wordoffset+k >= i; k--) {                BignumInt mword = k<0 ? 0 : m[k];                BignumMULADD(prev_hi_word, product, q, mword, prev_hi_word);#ifdef DIVISION_DEBUG                printf("  unaligned sub: product word for m[%d] = %#0*llx\n",                       k, BIGNUM_INT_BITS/4,                       (unsigned long long)product);#endif                add_word |= product << bitoffset;#ifdef DIVISION_DEBUG                printf("  unaligned sub: subtrahend for a[%d] = %#0*llx\n",                       wordoffset+k,                       BIGNUM_INT_BITS/4, (unsigned long long)add_word);#endif                BignumADC(a[wordoffset+k], c, a[wordoffset+k], ~add_word, c);                add_word = product >> (BIGNUM_INT_BITS - bitoffset);            }        }	if (quot) {#ifdef DIVISION_DEBUG            printf("adding quotient word %#0*llx << %d\n",                   BIGNUM_INT_BITS/4, (unsigned long long)q, full_bitoffset);#endif	    internal_add_shifted(quot, q, full_bitoffset);#ifdef DIVISION_DEBUG            {                int d;                printf("now quot=0x");                for (d = quot[0]; d > 0; d--)                    printf("%0*llx", BIGNUM_INT_BITS/4,                           (unsigned long long)quot[d]);                printf("\n");            }#endif        }    }#ifdef DIVISION_DEBUG    {        int d;        printf("end main loop, a=0x");        for (d = 0; d < alen; d++)            printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)a[d]);        if (quot) {            printf(", quot=0x");            for (d = quot[0]; d > 0; d--)                printf("%0*llx", BIGNUM_INT_BITS/4,                       (unsigned long long)quot[d]);        }        printf("\n");    }#endif    /*     * The above loop should terminate with the remaining value in a     * being strictly less than 2*m (if a >= 2*m then we should always     * have managed to get a nonzero q word), but we can't guarantee     * that it will be strictly less than m: consider a case where the     * remainder is 1, and another where the remainder is m-1. By the     * time a contains a value that's _about m_, you clearly can't     * distinguish those cases by looking at only the top word of a -     * you have to go all the way down to the bottom before you find     * out whether it's just less or just more than m.     *     * Hence, we now do a final fixup in which we subtract one last     * copy of m, or don't, accordingly. We should never have to     * subtract more than one copy of m here.     */    for (i = 0; i < alen; i++) {        /* Compare a with m, word by word, from the MSW down. As soon         * as we encounter a difference, we know whether we need the         * fixup. */        int mindex = mlen-alen+i;        BignumInt mword = mindex < 0 ? 0 : m[mindex];        if (a[i] < mword) {#ifdef DIVISION_DEBUG            printf("final fixup not needed, a < m\n");#endif            return;        } else if (a[i] > mword) {#ifdef DIVISION_DEBUG            printf("final fixup is needed, a > m\n");#endif            break;        }        /* If neither of those cases happened, the words are the same,         * so keep going and look at the next one. */    }#ifdef DIVISION_DEBUG    if (i == mlen) /* if we printed neither of the above diagnostics */        printf("final fixup is needed, a == m\n");#endif    /*     * If we got here without returning, then a >= m, so we must     * subtract m, and increment the quotient.     */    {        BignumCarry c = 1;        for (i = alen - 1; i >= 0; i--) {            int mindex = mlen-alen+i;            BignumInt mword = mindex < 0 ? 0 : m[mindex];            BignumADC(a[i], c, a[i], ~mword, c);        }    }    if (quot)        internal_add_shifted(quot, 1, 0);#ifdef DIVISION_DEBUG    {        int d;        printf("after final fixup, a=0x");        for (d = 0; d < alen; d++)            printf("%0*llx", BIGNUM_INT_BITS/4, (unsigned long long)a[d]);        if (quot) {            printf(", quot=0x");            for (d = quot[0]; d > 0; d--)                printf("%0*llx", BIGNUM_INT_BITS/4,                       (unsigned long long)quot[d]);        }        printf("\n");    }#endif}/* * Compute (base ^ exp) % mod, the pedestrian way. */Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod){    BignumInt *a, *b, *n, *m, *scratch;    BignumInt recip;    int rshift;    int mlen, scratchlen, i, j;    Bignum base, result;    /*     * The most significant word of mod needs to be non-zero. It     * should already be, but let's make sure.     */    assert(mod[mod[0]] != 0);    /*     * Make sure the base is smaller than the modulus, by reducing     * it modulo the modulus if not.     */    base = bigmod(base_in, mod);    /* Allocate m of size mlen, copy mod to m */    /* We use big endian internally */    mlen = mod[0];    m = snewn(mlen, BignumInt);    for (j = 0; j < mlen; j++)	m[j] = mod[mod[0] - j];    /* Allocate n of size mlen, copy base to n */    n = snewn(mlen, BignumInt);    i = mlen - base[0];    for (j = 0; j < i; j++)	n[j] = 0;    for (j = 0; j < (int)base[0]; j++)	n[i + j] = base[base[0] - j];    /* Allocate a and b of size 2*mlen. Set a = 1 */    a = snewn(2 * mlen, BignumInt);    b = snewn(2 * mlen, BignumInt);    for (i = 0; i < 2 * mlen; i++)	a[i] = 0;    a[2 * mlen - 1] = 1;    /* Scratch space for multiplies */    scratchlen = mul_compute_scratch(mlen);    scratch = snewn(scratchlen, BignumInt);    /* Skip leading zero bits of exp. */    i = 0;    j = BIGNUM_INT_BITS-1;    while (i < (int)exp[0] && (exp[exp[0] - i] & ((BignumInt)1 << j)) == 0) {	j--;	if (j < 0) {	    i++;	    j = BIGNUM_INT_BITS-1;	}    }    /* Compute reciprocal of the top full word of the modulus */    {        BignumInt m0 = m[0];        rshift = bn_clz(m0);        if (rshift) {            m0 <<= rshift;            if (mlen > 1)                m0 |= m[1] >> (BIGNUM_INT_BITS - rshift);        }        recip = reciprocal_word(m0);    }    /* Main computation */    while (i < (int)exp[0]) {	while (j >= 0) {	    internal_mul(a + mlen, a + mlen, b, mlen, scratch);	    internal_mod(b, mlen * 2, m, mlen, NULL, recip, rshift);	    if ((exp[exp[0] - i] & ((BignumInt)1 << j)) != 0) {		internal_mul(b + mlen, n, a, mlen, scratch);		internal_mod(a, mlen * 2, m, mlen, NULL, recip, rshift);	    } else {		BignumInt *t;		t = a;		a = b;		b = t;	    }	    j--;	}	i++;	j = BIGNUM_INT_BITS-1;    }    /* Copy result to buffer */    result = newbn(mod[0]);    for (i = 0; i < mlen; i++)	result[result[0] - i] = a[i + mlen];    while (result[0] > 1 && result[result[0]] == 0)	result[0]--;    /* Free temporary arrays */    smemclr(a, 2 * mlen * sizeof(*a));    sfree(a);    smemclr(scratch, scratchlen * sizeof(*scratch));    sfree(scratch);    smemclr(b, 2 * mlen * sizeof(*b));    sfree(b);    smemclr(m, mlen * sizeof(*m));    sfree(m);    smemclr(n, mlen * sizeof(*n));    sfree(n);    freebn(base);    return result;}/* * Compute (base ^ exp) % mod. Uses the Montgomery multiplication * technique where possible, falling back to modpow_simple otherwise. */Bignum modpow(Bignum base_in, Bignum exp, Bignum mod){    BignumInt *a, *b, *x, *n, *mninv, *scratch;    int len, scratchlen, i, j;    Bignum base, base2, r, rn, inv, result;    /*     * The most significant word of mod needs to be non-zero. It     * should already be, but let's make sure.     */    assert(mod[mod[0]] != 0);    /*     * mod had better be odd, or we can't do Montgomery multiplication     * using a power of two at all.     */    if (!(mod[1] & 1))        return modpow_simple(base_in, exp, mod);    /*     * Make sure the base is smaller than the modulus, by reducing     * it modulo the modulus if not.     */    base = bigmod(base_in, mod);    /*     * Compute the inverse of n mod r, for monty_reduce. (In fact we     * want the inverse of _minus_ n mod r, but we'll sort that out     * below.)     */    len = mod[0];    r = bn_power_2(BIGNUM_INT_BITS * len);    inv = modinv(mod, r);    assert(inv); /* cannot fail, since mod is odd and r is a power of 2 */    /*     * Multiply the base by r mod n, to get it into Montgomery     * representation.     */    base2 = modmul(base, r, mod);    freebn(base);    base = base2;    rn = bigmod(r, mod);               /* r mod n, i.e. Montgomerified 1 */    freebn(r);                         /* won't need this any more */    /*     * Set up internal arrays of the right lengths, in big-endian     * format, containing the base, the modulus, and the modulus's     * inverse.     */    n = snewn(len, BignumInt);    for (j = 0; j < len; j++)	n[len - 1 - j] = mod[j + 1];    mninv = snewn(len, BignumInt);    for (j = 0; j < len; j++)	mninv[len - 1 - j] = (j < (int)inv[0] ? inv[j + 1] : 0);    freebn(inv);         /* we don't need this copy of it any more */    /* Now negate mninv mod r, so it's the inverse of -n rather than +n. */    x = snewn(len, BignumInt);    for (j = 0; j < len; j++)        x[j] = 0;    internal_sub(x, mninv, mninv, len);    /* x = snewn(len, BignumInt); */ /* already done above */    for (j = 0; j < len; j++)	x[len - 1 - j] = (j < (int)base[0] ? base[j + 1] : 0);    freebn(base);        /* we don't need this copy of it any more */    a = snewn(2*len, BignumInt);    b = snewn(2*len, BignumInt);    for (j = 0; j < len; j++)	a[2*len - 1 - j] = (j < (int)rn[0] ? rn[j + 1] : 0);    freebn(rn);    /* Scratch space for multiplies */    scratchlen = 3*len + mul_compute_scratch(len);    scratch = snewn(scratchlen, BignumInt);    /* Skip leading zero bits of exp. */    i = 0;    j = BIGNUM_INT_BITS-1;    while (i < (int)exp[0] && (exp[exp[0] - i] & ((BignumInt)1 << j)) == 0) {	j--;	if (j < 0) {	    i++;	    j = BIGNUM_INT_BITS-1;	}    }    /* Main computation */    while (i < (int)exp[0]) {	while (j >= 0) {	    internal_mul(a + len, a + len, b, len, scratch);            monty_reduce(b, n, mninv, scratch, len);	    if ((exp[exp[0] - i] & ((BignumInt)1 << j)) != 0) {                internal_mul(b + len, x, a, len,  scratch);                monty_reduce(a, n, mninv, scratch, len);	    } else {		BignumInt *t;		t = a;		a = b;		b = t;	    }	    j--;	}	i++;	j = BIGNUM_INT_BITS-1;    }    /*     * Final monty_reduce to get back from the adjusted Montgomery     * representation.     */    monty_reduce(a, n, mninv, scratch, len);    /* Copy result to buffer */    result = newbn(mod[0]);    for (i = 0; i < len; i++)	result[result[0] - i] = a[i + len];    while (result[0] > 1 && result[result[0]] == 0)	result[0]--;    /* Free temporary arrays */    smemclr(scratch, scratchlen * sizeof(*scratch));    sfree(scratch);    smemclr(a, 2 * len * sizeof(*a));    sfree(a);    smemclr(b, 2 * len * sizeof(*b));    sfree(b);    smemclr(mninv, len * sizeof(*mninv));    sfree(mninv);    smemclr(n, len * sizeof(*n));    sfree(n);    smemclr(x, len * sizeof(*x));    sfree(x);    return result;}/* * Compute (p * q) % mod. * The most significant word of mod MUST be non-zero. * We assume that the result array is the same size as the mod array. */Bignum modmul(Bignum p, Bignum q, Bignum mod){    BignumInt *a, *n, *m, *o, *scratch;    BignumInt recip;    int rshift, scratchlen;    int pqlen, mlen, rlen, i, j;    Bignum result;    /*     * The most significant word of mod needs to be non-zero. It     * should already be, but let's make sure.     */    assert(mod[mod[0]] != 0);    /* Allocate m of size mlen, copy mod to m */    /* We use big endian internally */    mlen = mod[0];    m = snewn(mlen, BignumInt);    for (j = 0; j < mlen; j++)	m[j] = mod[mod[0] - j];    pqlen = (p[0] > q[0] ? p[0] : q[0]);    /*     * Make sure that we're allowing enough space. The shifting below     * will underflow the vectors we allocate if pqlen is too small.     */    if (2*pqlen <= mlen)        pqlen = mlen/2 + 1;    /* Allocate n of size pqlen, copy p to n */    n = snewn(pqlen, BignumInt);    i = pqlen - p[0];    for (j = 0; j < i; j++)	n[j] = 0;    for (j = 0; j < (int)p[0]; j++)	n[i + j] = p[p[0] - j];    /* Allocate o of size pqlen, copy q to o */    o = snewn(pqlen, BignumInt);    i = pqlen - q[0];    for (j = 0; j < i; j++)	o[j] = 0;    for (j = 0; j < (int)q[0]; j++)	o[i + j] = q[q[0] - j];    /* Allocate a of size 2*pqlen for result */    a = snewn(2 * pqlen, BignumInt);    /* Scratch space for multiplies */    scratchlen = mul_compute_scratch(pqlen);    scratch = snewn(scratchlen, BignumInt);    /* Compute reciprocal of the top full word of the modulus */    {        BignumInt m0 = m[0];        rshift = bn_clz(m0);        if (rshift) {            m0 <<= rshift;            if (mlen > 1)                m0 |= m[1] >> (BIGNUM_INT_BITS - rshift);        }        recip = reciprocal_word(m0);    }    /* Main computation */    internal_mul(n, o, a, pqlen, scratch);    internal_mod(a, pqlen * 2, m, mlen, NULL, recip, rshift);    /* Copy result to buffer */    rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2);    result = newbn(rlen);    for (i = 0; i < rlen; i++)	result[result[0] - i] = a[i + 2 * pqlen - rlen];    while (result[0] > 1 && result[result[0]] == 0)	result[0]--;    /* Free temporary arrays */    smemclr(scratch, scratchlen * sizeof(*scratch));    sfree(scratch);    smemclr(a, 2 * pqlen * sizeof(*a));    sfree(a);    smemclr(m, mlen * sizeof(*m));    sfree(m);    smemclr(n, pqlen * sizeof(*n));    sfree(n);    smemclr(o, pqlen * sizeof(*o));    sfree(o);    return result;}Bignum modsub(const Bignum a, const Bignum b, const Bignum n){    Bignum a1, b1, ret;    if (bignum_cmp(a, n) >= 0) a1 = bigmod(a, n);    else a1 = a;    if (bignum_cmp(b, n) >= 0) b1 = bigmod(b, n);    else b1 = b;    if (bignum_cmp(a1, b1) >= 0) /* a >= b */    {        ret = bigsub(a1, b1);    }    else    {        /* Handle going round the corner of the modulus without having         * negative support in Bignum */        Bignum tmp = bigsub(n, b1);        assert(tmp);        ret = bigadd(tmp, a1);        freebn(tmp);    }    if (a != a1) freebn(a1);    if (b != b1) freebn(b1);    return ret;}/* * Compute p % mod. * The most significant word of mod MUST be non-zero. * We assume that the result array is the same size as the mod array. * We optionally write out a quotient if `quotient' is non-NULL. * We can avoid writing out the result if `result' is NULL. */static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient){    BignumInt *n, *m;    BignumInt recip;    int rshift;    int plen, mlen, i, j;    /*     * The most significant word of mod needs to be non-zero. It     * should already be, but let's make sure.     */    assert(mod[mod[0]] != 0);    /* Allocate m of size mlen, copy mod to m */    /* We use big endian internally */    mlen = mod[0];    m = snewn(mlen, BignumInt);    for (j = 0; j < mlen; j++)	m[j] = mod[mod[0] - j];    plen = p[0];    /* Ensure plen > mlen */    if (plen <= mlen)	plen = mlen + 1;    /* Allocate n of size plen, copy p to n */    n = snewn(plen, BignumInt);    for (j = 0; j < plen; j++)	n[j] = 0;    for (j = 1; j <= (int)p[0]; j++)	n[plen - j] = p[j];    /* Compute reciprocal of the top full word of the modulus */    {        BignumInt m0 = m[0];        rshift = bn_clz(m0);        if (rshift) {            m0 <<= rshift;            if (mlen > 1)                m0 |= m[1] >> (BIGNUM_INT_BITS - rshift);        }        recip = reciprocal_word(m0);    }    /* Main computation */    internal_mod(n, plen, m, mlen, quotient, recip, rshift);    /* Copy result to buffer */    if (result) {	for (i = 1; i <= (int)result[0]; i++) {	    int j = plen - i;	    result[i] = j >= 0 ? n[j] : 0;	}    }    /* Free temporary arrays */    smemclr(m, mlen * sizeof(*m));    sfree(m);    smemclr(n, plen * sizeof(*n));    sfree(n);}/* * Decrement a number. */void decbn(Bignum bn){    int i = 1;    while (i < (int)bn[0] && bn[i] == 0)	bn[i++] = BIGNUM_INT_MASK;    bn[i]--;}Bignum bignum_from_bytes(const unsigned char *data, int nbytes){    Bignum result;    int w, i;    assert(nbytes >= 0 && nbytes < INT_MAX/8);    w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */    result = newbn(w);    for (i = 1; i <= w; i++)	result[i] = 0;    for (i = nbytes; i--;) {	unsigned char byte = *data++;	result[1 + i / BIGNUM_INT_BYTES] |=            (BignumInt)byte << (8*i % BIGNUM_INT_BITS);    }    bn_restore_invariant(result);    return result;}Bignum bignum_from_bytes_le(const unsigned char *data, int nbytes){    Bignum result;    int w, i;    assert(nbytes >= 0 && nbytes < INT_MAX/8);    w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */    result = newbn(w);    for (i = 1; i <= w; i++)        result[i] = 0;    for (i = 0; i < nbytes; ++i) {        unsigned char byte = *data++;        result[1 + i / BIGNUM_INT_BYTES] |=            (BignumInt)byte << (8*i % BIGNUM_INT_BITS);    }    bn_restore_invariant(result);    return result;}Bignum bignum_from_decimal(const char *decimal){    Bignum result = copybn(Zero);    while (*decimal) {        Bignum tmp, tmp2;        if (!isdigit((unsigned char)*decimal)) {            freebn(result);            return 0;        }        tmp = bigmul(result, Ten);        tmp2 = bignum_from_long(*decimal - '0');        freebn(result);        result = bigadd(tmp, tmp2);        freebn(tmp);        freebn(tmp2);        decimal++;    }    return result;}Bignum bignum_random_in_range(const Bignum lower, const Bignum upper){    Bignum ret = NULL;    unsigned char *bytes;    int upper_len = bignum_bitcount(upper);    int upper_bytes = upper_len / 8;    int upper_bits = upper_len % 8;    if (upper_bits) ++upper_bytes;    bytes = snewn(upper_bytes, unsigned char);    do {        int i;        if (ret) freebn(ret);        for (i = 0; i < upper_bytes; ++i)        {            bytes[i] = (unsigned char)random_byte();        }        /* Mask the top to reduce failure rate to 50/50 */        if (upper_bits)        {            bytes[i - 1] &= 0xFF >> (8 - upper_bits);        }        ret = bignum_from_bytes(bytes, upper_bytes);    } while (bignum_cmp(ret, lower) < 0 || bignum_cmp(ret, upper) > 0);    smemclr(bytes, upper_bytes);    sfree(bytes);    return ret;}/* * Read an SSH-1-format bignum from a data buffer. Return the number * of bytes consumed, or -1 if there wasn't enough data. */int ssh1_read_bignum(const unsigned char *data, int len, Bignum * result){    const unsigned char *p = data;    int i;    int w, b;    if (len < 2)	return -1;    w = 0;    for (i = 0; i < 2; i++)	w = (w << 8) + *p++;    b = (w + 7) / 8;		       /* bits -> bytes */    if (len < b+2)	return -1;    if (!result)		       /* just return length */	return b + 2;    *result = bignum_from_bytes(p, b);    return p + b - data;}/* * Return the bit count of a bignum, for SSH-1 encoding. */int bignum_bitcount(Bignum bn){    int bitcount = bn[0] * BIGNUM_INT_BITS - 1;    while (bitcount >= 0	   && (bn[bitcount / BIGNUM_INT_BITS + 1] >> (bitcount % BIGNUM_INT_BITS)) == 0) bitcount--;    return bitcount + 1;}/* * Return the byte length of a bignum when SSH-1 encoded. */int ssh1_bignum_length(Bignum bn){    return 2 + (bignum_bitcount(bn) + 7) / 8;}/* * Return the byte length of a bignum when SSH-2 encoded. */int ssh2_bignum_length(Bignum bn){    return 4 + (bignum_bitcount(bn) + 8) / 8;}/* * Return a byte from a bignum; 0 is least significant, etc. */int bignum_byte(Bignum bn, int i){    if (i < 0 || i >= (int)(BIGNUM_INT_BYTES * bn[0]))	return 0;		       /* beyond the end */    else	return (bn[i / BIGNUM_INT_BYTES + 1] >>		((i % BIGNUM_INT_BYTES)*8)) & 0xFF;}/* * Return a bit from a bignum; 0 is least significant, etc. */int bignum_bit(Bignum bn, int i){    if (i < 0 || i >= (int)(BIGNUM_INT_BITS * bn[0]))	return 0;		       /* beyond the end */    else	return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1;}/* * Set a bit in a bignum; 0 is least significant, etc. */void bignum_set_bit(Bignum bn, int bitnum, int value){    if (bitnum < 0 || bitnum >= (int)(BIGNUM_INT_BITS * bn[0])) {        if (value) abort();		       /* beyond the end */    } else {	int v = bitnum / BIGNUM_INT_BITS + 1;	BignumInt mask = (BignumInt)1 << (bitnum % BIGNUM_INT_BITS);	if (value)	    bn[v] |= mask;	else	    bn[v] &= ~mask;    }}/* * Write a SSH-1-format bignum into a buffer. It is assumed the * buffer is big enough. Returns the number of bytes used. */int ssh1_write_bignum(void *data, Bignum bn){    unsigned char *p = data;    int len = ssh1_bignum_length(bn);    int i;    int bitc = bignum_bitcount(bn);    *p++ = (bitc >> 8) & 0xFF;    *p++ = (bitc) & 0xFF;    for (i = len - 2; i--;)	*p++ = bignum_byte(bn, i);    return len;}/* * Compare two bignums. Returns like strcmp. */int bignum_cmp(Bignum a, Bignum b){    int amax = a[0], bmax = b[0];    int i;    /* Annoyingly we have two representations of zero */    if (amax == 1 && a[amax] == 0)        amax = 0;    if (bmax == 1 && b[bmax] == 0)        bmax = 0;    assert(amax == 0 || a[amax] != 0);    assert(bmax == 0 || b[bmax] != 0);    i = (amax > bmax ? amax : bmax);    while (i) {	BignumInt aval = (i > amax ? 0 : a[i]);	BignumInt bval = (i > bmax ? 0 : b[i]);	if (aval < bval)	    return -1;	if (aval > bval)	    return +1;	i--;    }    return 0;}/* * Right-shift one bignum to form another. */Bignum bignum_rshift(Bignum a, int shift){    Bignum ret;    int i, shiftw, shiftb, shiftbb, bits;    BignumInt ai, ai1;    assert(shift >= 0);    bits = bignum_bitcount(a) - shift;    ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);    if (ret) {	shiftw = shift / BIGNUM_INT_BITS;	shiftb = shift % BIGNUM_INT_BITS;	shiftbb = BIGNUM_INT_BITS - shiftb;	ai1 = a[shiftw + 1];	for (i = 1; i <= (int)ret[0]; i++) {	    ai = ai1;	    ai1 = (i + shiftw + 1 <= (int)a[0] ? a[i + shiftw + 1] : 0);	    ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & BIGNUM_INT_MASK;	}    }    return ret;}/* * Left-shift one bignum to form another. */Bignum bignum_lshift(Bignum a, int shift){    Bignum ret;    int bits, shiftWords, shiftBits;    assert(shift >= 0);    bits = bignum_bitcount(a) + shift;    ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);    shiftWords = shift / BIGNUM_INT_BITS;    shiftBits = shift % BIGNUM_INT_BITS;    if (shiftBits == 0)    {        memcpy(&ret[1 + shiftWords], &a[1], sizeof(BignumInt) * a[0]);    }    else    {        int i;        BignumInt carry = 0;        /* Remember that Bignum[0] is length, so add 1 */        for (i = shiftWords + 1; i < ((int)a[0]) + shiftWords + 1; ++i)        {            BignumInt from = a[i - shiftWords];            ret[i] = (from << shiftBits) | carry;            carry = from >> (BIGNUM_INT_BITS - shiftBits);        }        if (carry) ret[i] = carry;    }    return ret;}/* * Non-modular multiplication and addition. */Bignum bigmuladd(Bignum a, Bignum b, Bignum addend){    int alen = a[0], blen = b[0];    int mlen = (alen > blen ? alen : blen);    int rlen, i, maxspot;    int wslen;    BignumInt *workspace;    Bignum ret;    /* mlen space for a, mlen space for b, 2*mlen for result,     * plus scratch space for multiplication */    wslen = mlen * 4 + mul_compute_scratch(mlen);    workspace = snewn(wslen, BignumInt);    for (i = 0; i < mlen; i++) {	workspace[0 * mlen + i] = (mlen - i <= (int)a[0] ? a[mlen - i] : 0);	workspace[1 * mlen + i] = (mlen - i <= (int)b[0] ? b[mlen - i] : 0);    }    internal_mul(workspace + 0 * mlen, workspace + 1 * mlen,		 workspace + 2 * mlen, mlen, workspace + 4 * mlen);    /* now just copy the result back */    rlen = alen + blen + 1;    if (addend && rlen <= (int)addend[0])	rlen = addend[0] + 1;    ret = newbn(rlen);    maxspot = 0;    for (i = 1; i <= (int)ret[0]; i++) {	ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0);	if (ret[i] != 0)	    maxspot = i;    }    ret[0] = maxspot;    /* now add in the addend, if any */    if (addend) {	BignumCarry carry = 0;	for (i = 1; i <= rlen; i++) {            BignumInt retword = (i <= (int)ret[0] ? ret[i] : 0);            BignumInt addword = (i <= (int)addend[0] ? addend[i] : 0);            BignumADC(ret[i], carry, retword, addword, carry);	    if (ret[i] != 0 && i > maxspot)		maxspot = i;	}    }    ret[0] = maxspot;    smemclr(workspace, wslen * sizeof(*workspace));    sfree(workspace);    return ret;}/* * Non-modular multiplication. */Bignum bigmul(Bignum a, Bignum b){    return bigmuladd(a, b, NULL);}/* * Simple addition. */Bignum bigadd(Bignum a, Bignum b){    int alen = a[0], blen = b[0];    int rlen = (alen > blen ? alen : blen) + 1;    int i, maxspot;    Bignum ret;    BignumCarry carry;    ret = newbn(rlen);    carry = 0;    maxspot = 0;    for (i = 1; i <= rlen; i++) {        BignumInt aword = (i <= (int)a[0] ? a[i] : 0);        BignumInt bword = (i <= (int)b[0] ? b[i] : 0);        BignumADC(ret[i], carry, aword, bword, carry);        if (ret[i] != 0 && i > maxspot)            maxspot = i;    }    ret[0] = maxspot;    return ret;}/* * Subtraction. Returns a-b, or NULL if the result would come out * negative (recall that this entire bignum module only handles * positive numbers). */Bignum bigsub(Bignum a, Bignum b){    int alen = a[0], blen = b[0];    int rlen = (alen > blen ? alen : blen);    int i, maxspot;    Bignum ret;    BignumCarry carry;    ret = newbn(rlen);    carry = 1;    maxspot = 0;    for (i = 1; i <= rlen; i++) {        BignumInt aword = (i <= (int)a[0] ? a[i] : 0);        BignumInt bword = (i <= (int)b[0] ? b[i] : 0);        BignumADC(ret[i], carry, aword, ~bword, carry);        if (ret[i] != 0 && i > maxspot)            maxspot = i;    }    ret[0] = maxspot;    if (!carry) {        freebn(ret);        return NULL;    }    return ret;}/* * Create a bignum which is the bitmask covering another one. That * is, the smallest integer which is >= N and is also one less than * a power of two. */Bignum bignum_bitmask(Bignum n){    Bignum ret = copybn(n);    int i;    BignumInt j;    i = ret[0];    while (n[i] == 0 && i > 0)	i--;    if (i <= 0)	return ret;		       /* input was zero */    j = 1;    while (j < n[i])	j = 2 * j + 1;    ret[i] = j;    while (--i > 0)	ret[i] = BIGNUM_INT_MASK;    return ret;}/* * Convert an unsigned long into a bignum. */Bignum bignum_from_long(unsigned long n){    const int maxwords =        (sizeof(unsigned long) + sizeof(BignumInt) - 1) / sizeof(BignumInt);    Bignum ret;    int i;    ret = newbn(maxwords);    ret[0] = 0;    for (i = 0; i < maxwords; i++) {        ret[i+1] = n >> (i * BIGNUM_INT_BITS);        if (ret[i+1] != 0)            ret[0] = i+1;    }    return ret;}/* * Add a long to a bignum. */Bignum bignum_add_long(Bignum number, unsigned long n){    const int maxwords =        (sizeof(unsigned long) + sizeof(BignumInt) - 1) / sizeof(BignumInt);    Bignum ret;    int words, i;    BignumCarry carry;    words = number[0];    if (words < maxwords)        words = maxwords;    words++;    ret = newbn(words);    carry = 0;    ret[0] = 0;    for (i = 0; i < words; i++) {        BignumInt nword = (i < maxwords ? n >> (i * BIGNUM_INT_BITS) : 0);        BignumInt numword = (i < number[0] ? number[i+1] : 0);        BignumADC(ret[i+1], carry, numword, nword, carry);	if (ret[i+1] != 0)            ret[0] = i+1;    }    return ret;}/* * Compute the residue of a bignum, modulo a (max 16-bit) short. */unsigned short bignum_mod_short(Bignum number, unsigned short modulus){    unsigned long mod = modulus, r = 0;    /* Precompute (BIGNUM_INT_MASK+1) % mod */    unsigned long base_r = (BIGNUM_INT_MASK - modulus + 1) % mod;    int i;    for (i = number[0]; i > 0; i--) {        /*         * Conceptually, ((r << BIGNUM_INT_BITS) + number[i]) % mod         */        r = ((r * base_r) + (number[i] % mod)) % mod;    }    return (unsigned short) r;}#ifdef DEBUGvoid diagbn(char *prefix, Bignum md){    int i, nibbles, morenibbles;    static const char hex[] = "0123456789ABCDEF";    debug(("%s0x", prefix ? prefix : ""));    nibbles = (3 + bignum_bitcount(md)) / 4;    if (nibbles < 1)	nibbles = 1;    morenibbles = 4 * md[0] - nibbles;    for (i = 0; i < morenibbles; i++)	debug(("-"));    for (i = nibbles; i--;)	debug(("%c",	       hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF]));    if (prefix)	debug(("\n"));}#endif/* * Simple division. */Bignum bigdiv(Bignum a, Bignum b){    Bignum q = newbn(a[0]);    bigdivmod(a, b, NULL, q);    while (q[0] > 1 && q[q[0]] == 0)        q[0]--;    return q;}/* * Simple remainder. */Bignum bigmod(Bignum a, Bignum b){    Bignum r = newbn(b[0]);    bigdivmod(a, b, r, NULL);    while (r[0] > 1 && r[r[0]] == 0)        r[0]--;    return r;}/* * Greatest common divisor. */Bignum biggcd(Bignum av, Bignum bv){    Bignum a = copybn(av);    Bignum b = copybn(bv);    while (bignum_cmp(b, Zero) != 0) {	Bignum t = newbn(b[0]);	bigdivmod(a, b, t, NULL);	while (t[0] > 1 && t[t[0]] == 0)	    t[0]--;	freebn(a);	a = b;	b = t;    }    freebn(b);    return a;}/* * Modular inverse, using Euclid's extended algorithm. */Bignum modinv(Bignum number, Bignum modulus){    Bignum a = copybn(modulus);    Bignum b = copybn(number);    Bignum xp = copybn(Zero);    Bignum x = copybn(One);    int sign = +1;    assert(number[number[0]] != 0);    assert(modulus[modulus[0]] != 0);    while (bignum_cmp(b, One) != 0) {	Bignum t, q;        if (bignum_cmp(b, Zero) == 0) {            /*             * Found a common factor between the inputs, so we cannot             * return a modular inverse at all.             */            freebn(b);            freebn(a);            freebn(xp);            freebn(x);            return NULL;        }        t = newbn(b[0]);	q = newbn(a[0]);	bigdivmod(a, b, t, q);	while (t[0] > 1 && t[t[0]] == 0)	    t[0]--;	while (q[0] > 1 && q[q[0]] == 0)	    q[0]--;	freebn(a);	a = b;	b = t;	t = xp;	xp = x;	x = bigmuladd(q, xp, t);	sign = -sign;	freebn(t);	freebn(q);    }    freebn(b);    freebn(a);    freebn(xp);    /* now we know that sign * x == 1, and that x < modulus */    if (sign < 0) {	/* set a new x to be modulus - x */	Bignum newx = newbn(modulus[0]);	BignumInt carry = 0;	int maxspot = 1;	int i;	for (i = 1; i <= (int)newx[0]; i++) {	    BignumInt aword = (i <= (int)modulus[0] ? modulus[i] : 0);	    BignumInt bword = (i <= (int)x[0] ? x[i] : 0);	    newx[i] = aword - bword - carry;	    bword = ~bword;	    carry = carry ? (newx[i] >= bword) : (newx[i] > bword);	    if (newx[i] != 0)		maxspot = i;	}	newx[0] = maxspot;	freebn(x);	x = newx;    }    /* and return. */    return x;}/* * Render a bignum into decimal. Return a malloced string holding * the decimal representation. */char *bignum_decimal(Bignum x){    int ndigits, ndigit;    int i, iszero;    BignumInt carry;    char *ret;    BignumInt *workspace;    /*     * First, estimate the number of digits. Since log(10)/log(2)     * is just greater than 93/28 (the joys of continued fraction     * approximations...) we know that for every 93 bits, we need     * at most 28 digits. This will tell us how much to malloc.     *     * Formally: if x has i bits, that means x is strictly less     * than 2^i. Since 2 is less than 10^(28/93), this is less than     * 10^(28i/93). We need an integer power of ten, so we must     * round up (rounding down might make it less than x again).     * Therefore if we multiply the bit count by 28/93, rounding     * up, we will have enough digits.     *     * i=0 (i.e., x=0) is an irritating special case.     */    i = bignum_bitcount(x);    if (!i)	ndigits = 1;		       /* x = 0 */    else	ndigits = (28 * i + 92) / 93;  /* multiply by 28/93 and round up */    ndigits++;			       /* allow for trailing \0 */    ret = snewn(ndigits, char);    /*     * Now allocate some workspace to hold the binary form as we     * repeatedly divide it by ten. Initialise this to the     * big-endian form of the number.     */    workspace = snewn(x[0], BignumInt);    for (i = 0; i < (int)x[0]; i++)	workspace[i] = x[x[0] - i];    /*     * Next, write the decimal number starting with the last digit.     * We use ordinary short division, dividing 10 into the     * workspace.     */    ndigit = ndigits - 1;    ret[ndigit] = '\0';    do {	iszero = 1;	carry = 0;	for (i = 0; i < (int)x[0]; i++) {            /*             * Conceptually, we want to compute             *             *   (carry << BIGNUM_INT_BITS) + workspace[i]             *   -----------------------------------------             *                      10             *             * but we don't have an integer type longer than BignumInt             * to work with. So we have to do it in pieces.             */            BignumInt q, r;            q = workspace[i] / 10;            r = workspace[i] % 10;            /* I want (BIGNUM_INT_MASK+1)/10 but can't say so directly! */            q += carry * ((BIGNUM_INT_MASK-9) / 10 + 1);            r += carry * ((BIGNUM_INT_MASK-9) % 10);            q += r / 10;            r %= 10;	    workspace[i] = q;	    carry = r;	    if (workspace[i])		iszero = 0;	}	ret[--ndigit] = (char) (carry + '0');    } while (!iszero);    /*     * There's a chance we've fallen short of the start of the     * string. Correct if so.     */    if (ndigit > 0)	memmove(ret, ret + ndigit, ndigits - ndigit);    /*     * Done.     */    smemclr(workspace, x[0] * sizeof(*workspace));    sfree(workspace);    return ret;}
 |