| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081 | /* * RSA implementation for PuTTY. */#include <stdio.h>#include <stdlib.h>#include <string.h>#include <assert.h>#include "ssh.h"#include "misc.h"int makekey(const unsigned char *data, int len, struct RSAKey *result,	    const unsigned char **keystr, int order){    const unsigned char *p = data;    int i, n;    if (len < 4)	return -1;    if (result) {	result->bits = 0;	for (i = 0; i < 4; i++)	    result->bits = (result->bits << 8) + *p++;    } else	p += 4;    len -= 4;    /*     * order=0 means exponent then modulus (the keys sent by the     * server). order=1 means modulus then exponent (the keys     * stored in a keyfile).     */    if (order == 0) {	n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);	if (n < 0) return -1;	p += n;	len -= n;    }    n = ssh1_read_bignum(p, len, result ? &result->modulus : NULL);    if (n < 0 || (result && bignum_bitcount(result->modulus) == 0)) return -1;    if (result)	result->bytes = n - 2;    if (keystr)	*keystr = p + 2;    p += n;    len -= n;    if (order == 1) {	n = ssh1_read_bignum(p, len, result ? &result->exponent : NULL);	if (n < 0) return -1;	p += n;	len -= n;    }    return p - data;}int makeprivate(const unsigned char *data, int len, struct RSAKey *result){    return ssh1_read_bignum(data, len, &result->private_exponent);}int rsaencrypt(unsigned char *data, int length, struct RSAKey *key){    Bignum b1, b2;    int i;    unsigned char *p;    if (key->bytes < length + 4)	return 0;		       /* RSA key too short! */    memmove(data + key->bytes - length, data, length);    data[0] = 0;    data[1] = 2;    for (i = 2; i < key->bytes - length - 1; i++) {	do {	    data[i] = random_byte();	} while (data[i] == 0);    }    data[key->bytes - length - 1] = 0;    b1 = bignum_from_bytes(data, key->bytes);    b2 = modpow(b1, key->exponent, key->modulus);    p = data;    for (i = key->bytes; i--;) {	*p++ = bignum_byte(b2, i);    }    freebn(b1);    freebn(b2);    return 1;}static void sha512_mpint(SHA512_State * s, Bignum b){    unsigned char lenbuf[4];    int len;    len = (bignum_bitcount(b) + 8) / 8;    PUT_32BIT(lenbuf, len);    SHA512_Bytes(s, lenbuf, 4);    while (len-- > 0) {	lenbuf[0] = bignum_byte(b, len);	SHA512_Bytes(s, lenbuf, 1);    }    smemclr(lenbuf, sizeof(lenbuf));}/* * Compute (base ^ exp) % mod, provided mod == p * q, with p,q * distinct primes, and iqmp is the multiplicative inverse of q mod p. * Uses Chinese Remainder Theorem to speed computation up over the * obvious implementation of a single big modpow. */Bignum crt_modpow(Bignum base, Bignum exp, Bignum mod,                  Bignum p, Bignum q, Bignum iqmp){    Bignum pm1, qm1, pexp, qexp, presult, qresult, diff, multiplier, ret0, ret;    /*     * Reduce the exponent mod phi(p) and phi(q), to save time when     * exponentiating mod p and mod q respectively. Of course, since p     * and q are prime, phi(p) == p-1 and similarly for q.     */    pm1 = copybn(p);    decbn(pm1);    qm1 = copybn(q);    decbn(qm1);    pexp = bigmod(exp, pm1);    qexp = bigmod(exp, qm1);    /*     * Do the two modpows.     */    presult = modpow(base, pexp, p);    qresult = modpow(base, qexp, q);    /*     * Recombine the results. We want a value which is congruent to     * qresult mod q, and to presult mod p.     *     * We know that iqmp * q is congruent to 1 * mod p (by definition     * of iqmp) and to 0 mod q (obviously). So we start with qresult     * (which is congruent to qresult mod both primes), and add on     * (presult-qresult) * (iqmp * q) which adjusts it to be congruent     * to presult mod p without affecting its value mod q.     */    if (bignum_cmp(presult, qresult) < 0) {        /*         * Can't subtract presult from qresult without first adding on         * p.         */        Bignum tmp = presult;        presult = bigadd(presult, p);        freebn(tmp);    }    diff = bigsub(presult, qresult);    multiplier = bigmul(iqmp, q);    ret0 = bigmuladd(multiplier, diff, qresult);    /*     * Finally, reduce the result mod n.     */    ret = bigmod(ret0, mod);    /*     * Free all the intermediate results before returning.     */    freebn(pm1);    freebn(qm1);    freebn(pexp);    freebn(qexp);    freebn(presult);    freebn(qresult);    freebn(diff);    freebn(multiplier);    freebn(ret0);    return ret;}/* * This function is a wrapper on modpow(). It has the same effect as * modpow(), but employs RSA blinding to protect against timing * attacks and also uses the Chinese Remainder Theorem (implemented * above, in crt_modpow()) to speed up the main operation. */static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key){    Bignum random, random_encrypted, random_inverse;    Bignum input_blinded, ret_blinded;    Bignum ret;    SHA512_State ss;    unsigned char digest512[64];    int digestused = lenof(digest512);    int hashseq = 0;    /*     * Start by inventing a random number chosen uniformly from the     * range 2..modulus-1. (We do this by preparing a random number     * of the right length and retrying if it's greater than the     * modulus, to prevent any potential Bleichenbacher-like     * attacks making use of the uneven distribution within the     * range that would arise from just reducing our number mod n.     * There are timing implications to the potential retries, of     * course, but all they tell you is the modulus, which you     * already knew.)     *      * To preserve determinism and avoid Pageant needing to share     * the random number pool, we actually generate this `random'     * number by hashing stuff with the private key.     */    while (1) {	int bits, byte, bitsleft, v;	random = copybn(key->modulus);	/*	 * Find the topmost set bit. (This function will return its	 * index plus one.) Then we'll set all bits from that one	 * downwards randomly.	 */	bits = bignum_bitcount(random);	byte = 0;	bitsleft = 0;	while (bits--) {	    if (bitsleft <= 0) {		bitsleft = 8;		/*		 * Conceptually the following few lines are equivalent to		 *    byte = random_byte();		 */		if (digestused >= lenof(digest512)) {		    unsigned char seqbuf[4];		    PUT_32BIT(seqbuf, hashseq);		    SHA512_Init(&ss);		    SHA512_Bytes(&ss, "RSA deterministic blinding", 26);		    SHA512_Bytes(&ss, seqbuf, sizeof(seqbuf));		    sha512_mpint(&ss, key->private_exponent);		    SHA512_Final(&ss, digest512);		    hashseq++;		    /*		     * Now hash that digest plus the signature		     * input.		     */		    SHA512_Init(&ss);		    SHA512_Bytes(&ss, digest512, sizeof(digest512));		    sha512_mpint(&ss, input);		    SHA512_Final(&ss, digest512);		    digestused = 0;		}		byte = digest512[digestused++];	    }	    v = byte & 1;	    byte >>= 1;	    bitsleft--;	    bignum_set_bit(random, bits, v);	}        bn_restore_invariant(random);	/*	 * Now check that this number is strictly greater than	 * zero, and strictly less than modulus.	 */	if (bignum_cmp(random, Zero) <= 0 ||	    bignum_cmp(random, key->modulus) >= 0) {	    freebn(random);	    continue;	}        /*         * Also, make sure it has an inverse mod modulus.         */        random_inverse = modinv(random, key->modulus);        if (!random_inverse) {	    freebn(random);	    continue;        }        break;    }    /*     * RSA blinding relies on the fact that (xy)^d mod n is equal     * to (x^d mod n) * (y^d mod n) mod n. We invent a random pair     * y and y^d; then we multiply x by y, raise to the power d mod     * n as usual, and divide by y^d to recover x^d. Thus an     * attacker can't correlate the timing of the modpow with the     * input, because they don't know anything about the number     * that was input to the actual modpow.     *      * The clever bit is that we don't have to do a huge modpow to     * get y and y^d; we will use the number we just invented as     * _y^d_, and use the _public_ exponent to compute (y^d)^e = y     * from it, which is much faster to do.     */    random_encrypted = crt_modpow(random, key->exponent,                                  key->modulus, key->p, key->q, key->iqmp);    input_blinded = modmul(input, random_encrypted, key->modulus);    ret_blinded = crt_modpow(input_blinded, key->private_exponent,                             key->modulus, key->p, key->q, key->iqmp);    ret = modmul(ret_blinded, random_inverse, key->modulus);    freebn(ret_blinded);    freebn(input_blinded);    freebn(random_inverse);    freebn(random_encrypted);    freebn(random);    return ret;}Bignum rsadecrypt(Bignum input, struct RSAKey *key){    return rsa_privkey_op(input, key);}int rsastr_len(struct RSAKey *key){    Bignum md, ex;    int mdlen, exlen;    md = key->modulus;    ex = key->exponent;    mdlen = (bignum_bitcount(md) + 15) / 16;    exlen = (bignum_bitcount(ex) + 15) / 16;    return 4 * (mdlen + exlen) + 20;}void rsastr_fmt(char *str, struct RSAKey *key){    Bignum md, ex;    int len = 0, i, nibbles;    static const char hex[] = "0123456789abcdef";    md = key->modulus;    ex = key->exponent;    len += sprintf(str + len, "0x");    nibbles = (3 + bignum_bitcount(ex)) / 4;    if (nibbles < 1)	nibbles = 1;    for (i = nibbles; i--;)	str[len++] = hex[(bignum_byte(ex, i / 2) >> (4 * (i % 2))) & 0xF];    len += sprintf(str + len, ",0x");    nibbles = (3 + bignum_bitcount(md)) / 4;    if (nibbles < 1)	nibbles = 1;    for (i = nibbles; i--;)	str[len++] = hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF];    str[len] = '\0';}/* * Generate a fingerprint string for the key. Compatible with the * OpenSSH fingerprint code. */void rsa_fingerprint(char *str, int len, struct RSAKey *key){    struct MD5Context md5c;    unsigned char digest[16];    char buffer[16 * 3 + 40];    int numlen, slen, i;    MD5Init(&md5c);    numlen = ssh1_bignum_length(key->modulus) - 2;    for (i = numlen; i--;) {	unsigned char c = bignum_byte(key->modulus, i);	MD5Update(&md5c, &c, 1);    }    numlen = ssh1_bignum_length(key->exponent) - 2;    for (i = numlen; i--;) {	unsigned char c = bignum_byte(key->exponent, i);	MD5Update(&md5c, &c, 1);    }    MD5Final(digest, &md5c);    sprintf(buffer, "%d ", bignum_bitcount(key->modulus));    for (i = 0; i < 16; i++)	sprintf(buffer + strlen(buffer), "%s%02x", i ? ":" : "",		digest[i]);    strncpy(str, buffer, len);    str[len - 1] = '\0';    slen = strlen(str);    if (key->comment && slen < len - 1) {	str[slen] = ' ';	strncpy(str + slen + 1, key->comment, len - slen - 1);	str[len - 1] = '\0';    }}/* * Verify that the public data in an RSA key matches the private * data. We also check the private data itself: we ensure that p > * q and that iqmp really is the inverse of q mod p. */int rsa_verify(struct RSAKey *key){    Bignum n, ed, pm1, qm1;    int cmp;    /* n must equal pq. */    n = bigmul(key->p, key->q);    cmp = bignum_cmp(n, key->modulus);    freebn(n);    if (cmp != 0)	return 0;    /* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */    pm1 = copybn(key->p);    decbn(pm1);    ed = modmul(key->exponent, key->private_exponent, pm1);    freebn(pm1);    cmp = bignum_cmp(ed, One);    freebn(ed);    if (cmp != 0)	return 0;    qm1 = copybn(key->q);    decbn(qm1);    ed = modmul(key->exponent, key->private_exponent, qm1);    freebn(qm1);    cmp = bignum_cmp(ed, One);    freebn(ed);    if (cmp != 0)	return 0;    /*     * Ensure p > q.     *     * I have seen key blobs in the wild which were generated with     * p < q, so instead of rejecting the key in this case we     * should instead flip them round into the canonical order of     * p > q. This also involves regenerating iqmp.     */    if (bignum_cmp(key->p, key->q) <= 0) {	Bignum tmp = key->p;	key->p = key->q;	key->q = tmp;	freebn(key->iqmp);	key->iqmp = modinv(key->q, key->p);        if (!key->iqmp)            return 0;    }    /*     * Ensure iqmp * q is congruent to 1, modulo p.     */    n = modmul(key->iqmp, key->q, key->p);    cmp = bignum_cmp(n, One);    freebn(n);    if (cmp != 0)	return 0;    return 1;}/* Public key blob as used by Pageant: exponent before modulus. */unsigned char *rsa_public_blob(struct RSAKey *key, int *len){    int length, pos;    unsigned char *ret;    length = (ssh1_bignum_length(key->modulus) +	      ssh1_bignum_length(key->exponent) + 4);    ret = snewn(length, unsigned char);    PUT_32BIT(ret, bignum_bitcount(key->modulus));    pos = 4;    pos += ssh1_write_bignum(ret + pos, key->exponent);    pos += ssh1_write_bignum(ret + pos, key->modulus);    *len = length;    return ret;}/* Given a public blob, determine its length. */int rsa_public_blob_len(void *data, int maxlen){    unsigned char *p = (unsigned char *)data;    int n;    if (maxlen < 4)	return -1;    p += 4;			       /* length word */    maxlen -= 4;    n = ssh1_read_bignum(p, maxlen, NULL);    /* exponent */    if (n < 0)	return -1;    p += n;    n = ssh1_read_bignum(p, maxlen, NULL);    /* modulus */    if (n < 0)	return -1;    p += n;    return p - (unsigned char *)data;}void freersakey(struct RSAKey *key){    if (key->modulus)	freebn(key->modulus);    if (key->exponent)	freebn(key->exponent);    if (key->private_exponent)	freebn(key->private_exponent);    if (key->p)	freebn(key->p);    if (key->q)	freebn(key->q);    if (key->iqmp)	freebn(key->iqmp);    if (key->comment)	sfree(key->comment);}/* ---------------------------------------------------------------------- * Implementation of the ssh-rsa signing key type.  */static void getstring(const char **data, int *datalen,                      const char **p, int *length){    *p = NULL;    if (*datalen < 4)	return;    *length = toint(GET_32BIT(*data));    if (*length < 0)        return;    *datalen -= 4;    *data += 4;    if (*datalen < *length)	return;    *p = *data;    *data += *length;    *datalen -= *length;}static Bignum getmp(const char **data, int *datalen){    const char *p;    int length;    Bignum b;    getstring(data, datalen, &p, &length);    if (!p)	return NULL;    b = bignum_from_bytes((unsigned char *)p, length);    return b;}static void rsa2_freekey(void *key);   /* forward reference */static void *rsa2_newkey(const struct ssh_signkey *self,                         const char *data, int len){    const char *p;    int slen;    struct RSAKey *rsa;    rsa = snew(struct RSAKey);    getstring(&data, &len, &p, &slen);    if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {	sfree(rsa);	return NULL;    }    rsa->exponent = getmp(&data, &len);    rsa->modulus = getmp(&data, &len);    rsa->private_exponent = NULL;    rsa->p = rsa->q = rsa->iqmp = NULL;    rsa->comment = NULL;    if (!rsa->exponent || !rsa->modulus) {        rsa2_freekey(rsa);        return NULL;    }    return rsa;}static void rsa2_freekey(void *key){    struct RSAKey *rsa = (struct RSAKey *) key;    freersakey(rsa);    sfree(rsa);}static char *rsa2_fmtkey(void *key){    struct RSAKey *rsa = (struct RSAKey *) key;    char *p;    int len;    len = rsastr_len(rsa);    p = snewn(len, char);    rsastr_fmt(p, rsa);    return p;}static unsigned char *rsa2_public_blob(void *key, int *len){    struct RSAKey *rsa = (struct RSAKey *) key;    int elen, mlen, bloblen;    int i;    unsigned char *blob, *p;    elen = (bignum_bitcount(rsa->exponent) + 8) / 8;    mlen = (bignum_bitcount(rsa->modulus) + 8) / 8;    /*     * string "ssh-rsa", mpint exp, mpint mod. Total 19+elen+mlen.     * (three length fields, 12+7=19).     */    bloblen = 19 + elen + mlen;    blob = snewn(bloblen, unsigned char);    p = blob;    PUT_32BIT(p, 7);    p += 4;    memcpy(p, "ssh-rsa", 7);    p += 7;    PUT_32BIT(p, elen);    p += 4;    for (i = elen; i--;)	*p++ = bignum_byte(rsa->exponent, i);    PUT_32BIT(p, mlen);    p += 4;    for (i = mlen; i--;)	*p++ = bignum_byte(rsa->modulus, i);    assert(p == blob + bloblen);    *len = bloblen;    return blob;}static unsigned char *rsa2_private_blob(void *key, int *len){    struct RSAKey *rsa = (struct RSAKey *) key;    int dlen, plen, qlen, ulen, bloblen;    int i;    unsigned char *blob, *p;    dlen = (bignum_bitcount(rsa->private_exponent) + 8) / 8;    plen = (bignum_bitcount(rsa->p) + 8) / 8;    qlen = (bignum_bitcount(rsa->q) + 8) / 8;    ulen = (bignum_bitcount(rsa->iqmp) + 8) / 8;    /*     * mpint private_exp, mpint p, mpint q, mpint iqmp. Total 16 +     * sum of lengths.     */    bloblen = 16 + dlen + plen + qlen + ulen;    blob = snewn(bloblen, unsigned char);    p = blob;    PUT_32BIT(p, dlen);    p += 4;    for (i = dlen; i--;)	*p++ = bignum_byte(rsa->private_exponent, i);    PUT_32BIT(p, plen);    p += 4;    for (i = plen; i--;)	*p++ = bignum_byte(rsa->p, i);    PUT_32BIT(p, qlen);    p += 4;    for (i = qlen; i--;)	*p++ = bignum_byte(rsa->q, i);    PUT_32BIT(p, ulen);    p += 4;    for (i = ulen; i--;)	*p++ = bignum_byte(rsa->iqmp, i);    assert(p == blob + bloblen);    *len = bloblen;    return blob;}static void *rsa2_createkey(const struct ssh_signkey *self,                            const unsigned char *pub_blob, int pub_len,			    const unsigned char *priv_blob, int priv_len){    struct RSAKey *rsa;    const char *pb = (const char *) priv_blob;    rsa = rsa2_newkey(self, (char *) pub_blob, pub_len);    rsa->private_exponent = getmp(&pb, &priv_len);    rsa->p = getmp(&pb, &priv_len);    rsa->q = getmp(&pb, &priv_len);    rsa->iqmp = getmp(&pb, &priv_len);    if (!rsa_verify(rsa)) {	rsa2_freekey(rsa);	return NULL;    }    return rsa;}static void *rsa2_openssh_createkey(const struct ssh_signkey *self,                                    const unsigned char **blob, int *len){    const char **b = (const char **) blob;    struct RSAKey *rsa;    rsa = snew(struct RSAKey);    rsa->comment = NULL;    rsa->modulus = getmp(b, len);    rsa->exponent = getmp(b, len);    rsa->private_exponent = getmp(b, len);    rsa->iqmp = getmp(b, len);    rsa->p = getmp(b, len);    rsa->q = getmp(b, len);    if (!rsa->modulus || !rsa->exponent || !rsa->private_exponent ||	!rsa->iqmp || !rsa->p || !rsa->q) {        rsa2_freekey(rsa);	return NULL;    }    if (!rsa_verify(rsa)) {	rsa2_freekey(rsa);	return NULL;    }    return rsa;}static int rsa2_openssh_fmtkey(void *key, unsigned char *blob, int len){    struct RSAKey *rsa = (struct RSAKey *) key;    int bloblen, i;    bloblen =	ssh2_bignum_length(rsa->modulus) +	ssh2_bignum_length(rsa->exponent) +	ssh2_bignum_length(rsa->private_exponent) +	ssh2_bignum_length(rsa->iqmp) +	ssh2_bignum_length(rsa->p) + ssh2_bignum_length(rsa->q);    if (bloblen > len)	return bloblen;    bloblen = 0;#define ENC(x) \    PUT_32BIT(blob+bloblen, ssh2_bignum_length((x))-4); bloblen += 4; \    for (i = ssh2_bignum_length((x))-4; i-- ;) blob[bloblen++]=bignum_byte((x),i);    ENC(rsa->modulus);    ENC(rsa->exponent);    ENC(rsa->private_exponent);    ENC(rsa->iqmp);    ENC(rsa->p);    ENC(rsa->q);    return bloblen;}static int rsa2_pubkey_bits(const struct ssh_signkey *self,                            const void *blob, int len){    struct RSAKey *rsa;    int ret;    rsa = rsa2_newkey(self, (const char *) blob, len);    if (!rsa)	return -1;    ret = bignum_bitcount(rsa->modulus);    rsa2_freekey(rsa);    return ret;}/* * This is the magic ASN.1/DER prefix that goes in the decoded * signature, between the string of FFs and the actual SHA hash * value. The meaning of it is: *  * 00 -- this marks the end of the FFs; not part of the ASN.1 bit itself *  * 30 21 -- a constructed SEQUENCE of length 0x21 *    30 09 -- a constructed sub-SEQUENCE of length 9 *       06 05 -- an object identifier, length 5 *          2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 } *                            (the 1,3 comes from 0x2B = 43 = 40*1+3) *       05 00 -- NULL *    04 14 -- a primitive OCTET STRING of length 0x14 *       [0x14 bytes of hash data follows] *  * The object id in the middle there is listed as `id-sha1' in * ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn (the * ASN module for PKCS #1) and its expanded form is as follows: *  * id-sha1                OBJECT IDENTIFIER ::= { *    iso(1) identified-organization(3) oiw(14) secsig(3) *    algorithms(2) 26 } */static const unsigned char asn1_weird_stuff[] = {    0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,    0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,};#define ASN1_LEN ( (int) sizeof(asn1_weird_stuff) )static int rsa2_verifysig(void *key, const char *sig, int siglen,			  const char *data, int datalen){    struct RSAKey *rsa = (struct RSAKey *) key;    Bignum in, out;    const char *p;    int slen;    int bytes, i, j, ret;    unsigned char hash[20];    getstring(&sig, &siglen, &p, &slen);    if (!p || slen != 7 || memcmp(p, "ssh-rsa", 7)) {	return 0;    }    in = getmp(&sig, &siglen);    if (!in)        return 0;    out = modpow(in, rsa->exponent, rsa->modulus);    freebn(in);    ret = 1;    bytes = (bignum_bitcount(rsa->modulus)+7) / 8;    /* Top (partial) byte should be zero. */    if (bignum_byte(out, bytes - 1) != 0)	ret = 0;    /* First whole byte should be 1. */    if (bignum_byte(out, bytes - 2) != 1)	ret = 0;    /* Most of the rest should be FF. */    for (i = bytes - 3; i >= 20 + ASN1_LEN; i--) {	if (bignum_byte(out, i) != 0xFF)	    ret = 0;    }    /* Then we expect to see the asn1_weird_stuff. */    for (i = 20 + ASN1_LEN - 1, j = 0; i >= 20; i--, j++) {	if (bignum_byte(out, i) != asn1_weird_stuff[j])	    ret = 0;    }    /* Finally, we expect to see the SHA-1 hash of the signed data. */    SHA_Simple(data, datalen, hash);    for (i = 19, j = 0; i >= 0; i--, j++) {	if (bignum_byte(out, i) != hash[j])	    ret = 0;    }    freebn(out);    return ret;}static unsigned char *rsa2_sign(void *key, const char *data, int datalen,				int *siglen){    struct RSAKey *rsa = (struct RSAKey *) key;    unsigned char *bytes;    int nbytes;    unsigned char hash[20];    Bignum in, out;    int i, j;    SHA_Simple(data, datalen, hash);    nbytes = (bignum_bitcount(rsa->modulus) - 1) / 8;    assert(1 <= nbytes - 20 - ASN1_LEN);    bytes = snewn(nbytes, unsigned char);    bytes[0] = 1;    for (i = 1; i < nbytes - 20 - ASN1_LEN; i++)	bytes[i] = 0xFF;    for (i = nbytes - 20 - ASN1_LEN, j = 0; i < nbytes - 20; i++, j++)	bytes[i] = asn1_weird_stuff[j];    for (i = nbytes - 20, j = 0; i < nbytes; i++, j++)	bytes[i] = hash[j];    in = bignum_from_bytes(bytes, nbytes);    sfree(bytes);    out = rsa_privkey_op(in, rsa);    freebn(in);    nbytes = (bignum_bitcount(out) + 7) / 8;    bytes = snewn(4 + 7 + 4 + nbytes, unsigned char);    PUT_32BIT(bytes, 7);    memcpy(bytes + 4, "ssh-rsa", 7);    PUT_32BIT(bytes + 4 + 7, nbytes);    for (i = 0; i < nbytes; i++)	bytes[4 + 7 + 4 + i] = bignum_byte(out, nbytes - 1 - i);    freebn(out);    *siglen = 4 + 7 + 4 + nbytes;    return bytes;}const struct ssh_signkey ssh_rsa = {    rsa2_newkey,    rsa2_freekey,    rsa2_fmtkey,    rsa2_public_blob,    rsa2_private_blob,    rsa2_createkey,    rsa2_openssh_createkey,    rsa2_openssh_fmtkey,    6 /* n,e,d,iqmp,q,p */,    rsa2_pubkey_bits,    rsa2_verifysig,    rsa2_sign,    "ssh-rsa",    "rsa2",    NULL,};void *ssh_rsakex_newkey(char *data, int len){    return rsa2_newkey(&ssh_rsa, data, len);}void ssh_rsakex_freekey(void *key){    rsa2_freekey(key);}int ssh_rsakex_klen(void *key){    struct RSAKey *rsa = (struct RSAKey *) key;    return bignum_bitcount(rsa->modulus);}static void oaep_mask(const struct ssh_hash *h, void *seed, int seedlen,		      void *vdata, int datalen){    unsigned char *data = (unsigned char *)vdata;    unsigned count = 0;    while (datalen > 0) {        int i, max = (datalen > h->hlen ? h->hlen : datalen);        void *s;        unsigned char counter[4], hash[SSH2_KEX_MAX_HASH_LEN];	assert(h->hlen <= SSH2_KEX_MAX_HASH_LEN);        PUT_32BIT(counter, count);        s = h->init();        h->bytes(s, seed, seedlen);        h->bytes(s, counter, 4);        h->final(s, hash);        count++;        for (i = 0; i < max; i++)            data[i] ^= hash[i];        data += max;        datalen -= max;    }}void ssh_rsakex_encrypt(const struct ssh_hash *h, unsigned char *in, int inlen,                        unsigned char *out, int outlen,                        void *key){    Bignum b1, b2;    struct RSAKey *rsa = (struct RSAKey *) key;    int k, i;    char *p;    const int HLEN = h->hlen;    /*     * Here we encrypt using RSAES-OAEP. Essentially this means:     *      *  - we have a SHA-based `mask generation function' which     *    creates a pseudo-random stream of mask data     *    deterministically from an input chunk of data.     *      *  - we have a random chunk of data called a seed.     *      *  - we use the seed to generate a mask which we XOR with our     *    plaintext.     *      *  - then we use _the masked plaintext_ to generate a mask     *    which we XOR with the seed.     *      *  - then we concatenate the masked seed and the masked     *    plaintext, and RSA-encrypt that lot.     *      * The result is that the data input to the encryption function     * is random-looking and (hopefully) contains no exploitable     * structure such as PKCS1-v1_5 does.     *      * For a precise specification, see RFC 3447, section 7.1.1.     * Some of the variable names below are derived from that, so     * it'd probably help to read it anyway.     */    /* k denotes the length in octets of the RSA modulus. */    k = (7 + bignum_bitcount(rsa->modulus)) / 8;    /* The length of the input data must be at most k - 2hLen - 2. */    assert(inlen > 0 && inlen <= k - 2*HLEN - 2);    /* The length of the output data wants to be precisely k. */    assert(outlen == k);    /*     * Now perform EME-OAEP encoding. First set up all the unmasked     * output data.     */    /* Leading byte zero. */    out[0] = 0;    /* At position 1, the seed: HLEN bytes of random data. */    for (i = 0; i < HLEN; i++)        out[i + 1] = random_byte();    /* At position 1+HLEN, the data block DB, consisting of: */    /* The hash of the label (we only support an empty label here) */    h->final(h->init(), out + HLEN + 1);    /* A bunch of zero octets */    memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1));    /* A single 1 octet, followed by the input message data. */    out[outlen - inlen - 1] = 1;    memcpy(out + outlen - inlen, in, inlen);    /*     * Now use the seed data to mask the block DB.     */    oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);    /*     * And now use the masked DB to mask the seed itself.     */    oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);    /*     * Now `out' contains precisely the data we want to     * RSA-encrypt.     */    b1 = bignum_from_bytes(out, outlen);    b2 = modpow(b1, rsa->exponent, rsa->modulus);    p = (char *)out;    for (i = outlen; i--;) {	*p++ = bignum_byte(b2, i);    }    freebn(b1);    freebn(b2);    /*     * And we're done.     */}static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha1 = { 1024 };static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha256 = { 2048 };static const struct ssh_kex ssh_rsa_kex_sha1 = {    "rsa1024-sha1", NULL, KEXTYPE_RSA, &ssh_sha1, &ssh_rsa_kex_extra_sha1,};static const struct ssh_kex ssh_rsa_kex_sha256 = {    "rsa2048-sha256", NULL, KEXTYPE_RSA, &ssh_sha256, &ssh_rsa_kex_extra_sha256,};static const struct ssh_kex *const rsa_kex_list[] = {    &ssh_rsa_kex_sha256,    &ssh_rsa_kex_sha1};const struct ssh_kexes ssh_rsa_kex = {    sizeof(rsa_kex_list) / sizeof(*rsa_kex_list),    rsa_kex_list};
 |