sshsh512.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474
  1. /*
  2. * SHA-512 algorithm as described at
  3. *
  4. * http://csrc.nist.gov/cryptval/shs.html
  5. *
  6. * Modifications made for SHA-384 also
  7. */
  8. #include "ssh.h"
  9. #define BLKSIZE 128
  10. /*
  11. * Arithmetic implementations. Note that AND, XOR and NOT can
  12. * overlap destination with one source, but the others can't.
  13. */
  14. #define add(r,x,y) ( r.lo = y.lo + x.lo, \
  15. r.hi = y.hi + x.hi + ((uint32)r.lo < (uint32)y.lo) )
  16. #define rorB(r,x,y) ( r.lo = ((uint32)x.hi >> ((y)-32)) | ((uint32)x.lo << (64-(y))), \
  17. r.hi = ((uint32)x.lo >> ((y)-32)) | ((uint32)x.hi << (64-(y))) )
  18. #define rorL(r,x,y) ( r.lo = ((uint32)x.lo >> (y)) | ((uint32)x.hi << (32-(y))), \
  19. r.hi = ((uint32)x.hi >> (y)) | ((uint32)x.lo << (32-(y))) )
  20. #define shrB(r,x,y) ( r.lo = (uint32)x.hi >> ((y)-32), r.hi = 0 )
  21. #define shrL(r,x,y) ( r.lo = ((uint32)x.lo >> (y)) | ((uint32)x.hi << (32-(y))), \
  22. r.hi = (uint32)x.hi >> (y) )
  23. #define and(r,x,y) ( r.lo = x.lo & y.lo, r.hi = x.hi & y.hi )
  24. #define xor(r,x,y) ( r.lo = x.lo ^ y.lo, r.hi = x.hi ^ y.hi )
  25. #define not(r,x) ( r.lo = ~x.lo, r.hi = ~x.hi )
  26. #define INIT(h,l) { h, l }
  27. #define BUILD(r,h,l) ( r.hi = h, r.lo = l )
  28. #define EXTRACT(h,l,r) ( h = r.hi, l = r.lo )
  29. /* ----------------------------------------------------------------------
  30. * Core SHA512 algorithm: processes 16-doubleword blocks into a
  31. * message digest.
  32. */
  33. #define Ch(r,t,x,y,z) ( not(t,x), and(r,t,z), and(t,x,y), xor(r,r,t) )
  34. #define Maj(r,t,x,y,z) ( and(r,x,y), and(t,x,z), xor(r,r,t), \
  35. and(t,y,z), xor(r,r,t) )
  36. #define bigsigma0(r,t,x) ( rorL(r,x,28), rorB(t,x,34), xor(r,r,t), \
  37. rorB(t,x,39), xor(r,r,t) )
  38. #define bigsigma1(r,t,x) ( rorL(r,x,14), rorL(t,x,18), xor(r,r,t), \
  39. rorB(t,x,41), xor(r,r,t) )
  40. #define smallsigma0(r,t,x) ( rorL(r,x,1), rorL(t,x,8), xor(r,r,t), \
  41. shrL(t,x,7), xor(r,r,t) )
  42. #define smallsigma1(r,t,x) ( rorL(r,x,19), rorB(t,x,61), xor(r,r,t), \
  43. shrL(t,x,6), xor(r,r,t) )
  44. static void SHA512_Core_Init(SHA512_State *s) {
  45. static const uint64 iv[] = {
  46. INIT(0x6a09e667, 0xf3bcc908),
  47. INIT(0xbb67ae85, 0x84caa73b),
  48. INIT(0x3c6ef372, 0xfe94f82b),
  49. INIT(0xa54ff53a, 0x5f1d36f1),
  50. INIT(0x510e527f, 0xade682d1),
  51. INIT(0x9b05688c, 0x2b3e6c1f),
  52. INIT(0x1f83d9ab, 0xfb41bd6b),
  53. INIT(0x5be0cd19, 0x137e2179),
  54. };
  55. int i;
  56. for (i = 0; i < 8; i++)
  57. s->h[i] = iv[i];
  58. }
  59. static void SHA384_Core_Init(SHA512_State *s) {
  60. static const uint64 iv[] = {
  61. INIT(0xcbbb9d5d, 0xc1059ed8),
  62. INIT(0x629a292a, 0x367cd507),
  63. INIT(0x9159015a, 0x3070dd17),
  64. INIT(0x152fecd8, 0xf70e5939),
  65. INIT(0x67332667, 0xffc00b31),
  66. INIT(0x8eb44a87, 0x68581511),
  67. INIT(0xdb0c2e0d, 0x64f98fa7),
  68. INIT(0x47b5481d, 0xbefa4fa4),
  69. };
  70. int i;
  71. for (i = 0; i < 8; i++)
  72. s->h[i] = iv[i];
  73. }
  74. static void SHA512_Block(SHA512_State *s, uint64 *block) {
  75. uint64 w[80];
  76. uint64 a,b,c,d,e,f,g,h;
  77. static const uint64 k[] = {
  78. INIT(0x428a2f98, 0xd728ae22), INIT(0x71374491, 0x23ef65cd),
  79. INIT(0xb5c0fbcf, 0xec4d3b2f), INIT(0xe9b5dba5, 0x8189dbbc),
  80. INIT(0x3956c25b, 0xf348b538), INIT(0x59f111f1, 0xb605d019),
  81. INIT(0x923f82a4, 0xaf194f9b), INIT(0xab1c5ed5, 0xda6d8118),
  82. INIT(0xd807aa98, 0xa3030242), INIT(0x12835b01, 0x45706fbe),
  83. INIT(0x243185be, 0x4ee4b28c), INIT(0x550c7dc3, 0xd5ffb4e2),
  84. INIT(0x72be5d74, 0xf27b896f), INIT(0x80deb1fe, 0x3b1696b1),
  85. INIT(0x9bdc06a7, 0x25c71235), INIT(0xc19bf174, 0xcf692694),
  86. INIT(0xe49b69c1, 0x9ef14ad2), INIT(0xefbe4786, 0x384f25e3),
  87. INIT(0x0fc19dc6, 0x8b8cd5b5), INIT(0x240ca1cc, 0x77ac9c65),
  88. INIT(0x2de92c6f, 0x592b0275), INIT(0x4a7484aa, 0x6ea6e483),
  89. INIT(0x5cb0a9dc, 0xbd41fbd4), INIT(0x76f988da, 0x831153b5),
  90. INIT(0x983e5152, 0xee66dfab), INIT(0xa831c66d, 0x2db43210),
  91. INIT(0xb00327c8, 0x98fb213f), INIT(0xbf597fc7, 0xbeef0ee4),
  92. INIT(0xc6e00bf3, 0x3da88fc2), INIT(0xd5a79147, 0x930aa725),
  93. INIT(0x06ca6351, 0xe003826f), INIT(0x14292967, 0x0a0e6e70),
  94. INIT(0x27b70a85, 0x46d22ffc), INIT(0x2e1b2138, 0x5c26c926),
  95. INIT(0x4d2c6dfc, 0x5ac42aed), INIT(0x53380d13, 0x9d95b3df),
  96. INIT(0x650a7354, 0x8baf63de), INIT(0x766a0abb, 0x3c77b2a8),
  97. INIT(0x81c2c92e, 0x47edaee6), INIT(0x92722c85, 0x1482353b),
  98. INIT(0xa2bfe8a1, 0x4cf10364), INIT(0xa81a664b, 0xbc423001),
  99. INIT(0xc24b8b70, 0xd0f89791), INIT(0xc76c51a3, 0x0654be30),
  100. INIT(0xd192e819, 0xd6ef5218), INIT(0xd6990624, 0x5565a910),
  101. INIT(0xf40e3585, 0x5771202a), INIT(0x106aa070, 0x32bbd1b8),
  102. INIT(0x19a4c116, 0xb8d2d0c8), INIT(0x1e376c08, 0x5141ab53),
  103. INIT(0x2748774c, 0xdf8eeb99), INIT(0x34b0bcb5, 0xe19b48a8),
  104. INIT(0x391c0cb3, 0xc5c95a63), INIT(0x4ed8aa4a, 0xe3418acb),
  105. INIT(0x5b9cca4f, 0x7763e373), INIT(0x682e6ff3, 0xd6b2b8a3),
  106. INIT(0x748f82ee, 0x5defb2fc), INIT(0x78a5636f, 0x43172f60),
  107. INIT(0x84c87814, 0xa1f0ab72), INIT(0x8cc70208, 0x1a6439ec),
  108. INIT(0x90befffa, 0x23631e28), INIT(0xa4506ceb, 0xde82bde9),
  109. INIT(0xbef9a3f7, 0xb2c67915), INIT(0xc67178f2, 0xe372532b),
  110. INIT(0xca273ece, 0xea26619c), INIT(0xd186b8c7, 0x21c0c207),
  111. INIT(0xeada7dd6, 0xcde0eb1e), INIT(0xf57d4f7f, 0xee6ed178),
  112. INIT(0x06f067aa, 0x72176fba), INIT(0x0a637dc5, 0xa2c898a6),
  113. INIT(0x113f9804, 0xbef90dae), INIT(0x1b710b35, 0x131c471b),
  114. INIT(0x28db77f5, 0x23047d84), INIT(0x32caab7b, 0x40c72493),
  115. INIT(0x3c9ebe0a, 0x15c9bebc), INIT(0x431d67c4, 0x9c100d4c),
  116. INIT(0x4cc5d4be, 0xcb3e42b6), INIT(0x597f299c, 0xfc657e2a),
  117. INIT(0x5fcb6fab, 0x3ad6faec), INIT(0x6c44198c, 0x4a475817),
  118. };
  119. int t;
  120. for (t = 0; t < 16; t++)
  121. w[t] = block[t];
  122. for (t = 16; t < 80; t++) {
  123. uint64 p, q, r, tmp;
  124. smallsigma1(p, tmp, w[t-2]);
  125. smallsigma0(q, tmp, w[t-15]);
  126. add(r, p, q);
  127. add(p, r, w[t-7]);
  128. add(w[t], p, w[t-16]);
  129. }
  130. a = s->h[0]; b = s->h[1]; c = s->h[2]; d = s->h[3];
  131. e = s->h[4]; f = s->h[5]; g = s->h[6]; h = s->h[7];
  132. for (t = 0; t < 80; t+=8) {
  133. uint64 tmp, p, q, r;
  134. #define ROUND(j,a,b,c,d,e,f,g,h) \
  135. bigsigma1(p, tmp, e); \
  136. Ch(q, tmp, e, f, g); \
  137. add(r, p, q); \
  138. add(p, r, k[j]) ; \
  139. add(q, p, w[j]); \
  140. add(r, q, h); \
  141. bigsigma0(p, tmp, a); \
  142. Maj(tmp, q, a, b, c); \
  143. add(q, tmp, p); \
  144. add(p, r, d); \
  145. d = p; \
  146. add(h, q, r);
  147. ROUND(t+0, a,b,c,d,e,f,g,h);
  148. ROUND(t+1, h,a,b,c,d,e,f,g);
  149. ROUND(t+2, g,h,a,b,c,d,e,f);
  150. ROUND(t+3, f,g,h,a,b,c,d,e);
  151. ROUND(t+4, e,f,g,h,a,b,c,d);
  152. ROUND(t+5, d,e,f,g,h,a,b,c);
  153. ROUND(t+6, c,d,e,f,g,h,a,b);
  154. ROUND(t+7, b,c,d,e,f,g,h,a);
  155. }
  156. {
  157. uint64 tmp;
  158. #define UPDATE(state, local) ( tmp = state, add(state, tmp, local) )
  159. UPDATE(s->h[0], a); UPDATE(s->h[1], b);
  160. UPDATE(s->h[2], c); UPDATE(s->h[3], d);
  161. UPDATE(s->h[4], e); UPDATE(s->h[5], f);
  162. UPDATE(s->h[6], g); UPDATE(s->h[7], h);
  163. }
  164. }
  165. /* ----------------------------------------------------------------------
  166. * Outer SHA512 algorithm: take an arbitrary length byte string,
  167. * convert it into 16-doubleword blocks with the prescribed padding
  168. * at the end, and pass those blocks to the core SHA512 algorithm.
  169. */
  170. void SHA512_Init(SHA512_State *s) {
  171. int i;
  172. SHA512_Core_Init(s);
  173. s->blkused = 0;
  174. for (i = 0; i < 4; i++)
  175. s->len[i] = 0;
  176. }
  177. void SHA384_Init(SHA512_State *s) {
  178. int i;
  179. SHA384_Core_Init(s);
  180. s->blkused = 0;
  181. for (i = 0; i < 4; i++)
  182. s->len[i] = 0;
  183. }
  184. void SHA512_Bytes(SHA512_State *s, const void *p, int len) {
  185. unsigned char *q = (unsigned char *)p;
  186. uint64 wordblock[16];
  187. uint32 lenw = len;
  188. int i;
  189. /*
  190. * Update the length field.
  191. */
  192. for (i = 0; i < 4; i++) {
  193. s->len[i] += lenw;
  194. lenw = (s->len[i] < lenw);
  195. }
  196. if (s->blkused && s->blkused+len < BLKSIZE) {
  197. /*
  198. * Trivial case: just add to the block.
  199. */
  200. memcpy(s->block + s->blkused, q, len);
  201. s->blkused += len;
  202. } else {
  203. /*
  204. * We must complete and process at least one block.
  205. */
  206. while (s->blkused + len >= BLKSIZE) {
  207. memcpy(s->block + s->blkused, q, BLKSIZE - s->blkused);
  208. q += BLKSIZE - s->blkused;
  209. len -= BLKSIZE - s->blkused;
  210. /* Now process the block. Gather bytes big-endian into words */
  211. for (i = 0; i < 16; i++) {
  212. uint32 h, l;
  213. h = ( ((uint32)s->block[i*8+0]) << 24 ) |
  214. ( ((uint32)s->block[i*8+1]) << 16 ) |
  215. ( ((uint32)s->block[i*8+2]) << 8 ) |
  216. ( ((uint32)s->block[i*8+3]) << 0 );
  217. l = ( ((uint32)s->block[i*8+4]) << 24 ) |
  218. ( ((uint32)s->block[i*8+5]) << 16 ) |
  219. ( ((uint32)s->block[i*8+6]) << 8 ) |
  220. ( ((uint32)s->block[i*8+7]) << 0 );
  221. BUILD(wordblock[i], h, l);
  222. }
  223. SHA512_Block(s, wordblock);
  224. s->blkused = 0;
  225. }
  226. memcpy(s->block, q, len);
  227. s->blkused = len;
  228. }
  229. }
  230. void SHA512_Final(SHA512_State *s, unsigned char *digest) {
  231. int i;
  232. int pad;
  233. unsigned char c[BLKSIZE];
  234. uint32 len[4];
  235. if (s->blkused >= BLKSIZE-16)
  236. pad = (BLKSIZE-16) + BLKSIZE - s->blkused;
  237. else
  238. pad = (BLKSIZE-16) - s->blkused;
  239. for (i = 4; i-- ;) {
  240. uint32 lenhi = s->len[i];
  241. uint32 lenlo = i > 0 ? s->len[i-1] : 0;
  242. len[i] = (lenhi << 3) | (lenlo >> (32-3));
  243. }
  244. memset(c, 0, pad);
  245. c[0] = 0x80;
  246. SHA512_Bytes(s, &c, pad);
  247. for (i = 0; i < 4; i++) {
  248. c[i*4+0] = (len[3-i] >> 24) & 0xFF;
  249. c[i*4+1] = (len[3-i] >> 16) & 0xFF;
  250. c[i*4+2] = (len[3-i] >> 8) & 0xFF;
  251. c[i*4+3] = (len[3-i] >> 0) & 0xFF;
  252. }
  253. SHA512_Bytes(s, &c, 16);
  254. for (i = 0; i < 8; i++) {
  255. uint32 h, l;
  256. EXTRACT(h, l, s->h[i]);
  257. digest[i*8+0] = (h >> 24) & 0xFF;
  258. digest[i*8+1] = (h >> 16) & 0xFF;
  259. digest[i*8+2] = (h >> 8) & 0xFF;
  260. digest[i*8+3] = (h >> 0) & 0xFF;
  261. digest[i*8+4] = (l >> 24) & 0xFF;
  262. digest[i*8+5] = (l >> 16) & 0xFF;
  263. digest[i*8+6] = (l >> 8) & 0xFF;
  264. digest[i*8+7] = (l >> 0) & 0xFF;
  265. }
  266. }
  267. void SHA384_Final(SHA512_State *s, unsigned char *digest) {
  268. unsigned char biggerDigest[512 / 8];
  269. SHA512_Final(s, biggerDigest);
  270. memcpy(digest, biggerDigest, 384 / 8);
  271. }
  272. void SHA512_Simple(const void *p, int len, unsigned char *output) {
  273. SHA512_State s;
  274. SHA512_Init(&s);
  275. SHA512_Bytes(&s, p, len);
  276. SHA512_Final(&s, output);
  277. smemclr(&s, sizeof(s));
  278. }
  279. void SHA384_Simple(const void *p, int len, unsigned char *output) {
  280. SHA512_State s;
  281. SHA384_Init(&s);
  282. SHA512_Bytes(&s, p, len);
  283. SHA384_Final(&s, output);
  284. smemclr(&s, sizeof(s));
  285. }
  286. /*
  287. * Thin abstraction for things where hashes are pluggable.
  288. */
  289. static void *sha512_init(void)
  290. {
  291. SHA512_State *s;
  292. s = snew(SHA512_State);
  293. SHA512_Init(s);
  294. return s;
  295. }
  296. static void *sha512_copy(const void *vold)
  297. {
  298. const SHA512_State *old = (const SHA512_State *)vold;
  299. SHA512_State *s;
  300. s = snew(SHA512_State);
  301. *s = *old;
  302. return s;
  303. }
  304. static void sha512_free(void *handle)
  305. {
  306. SHA512_State *s = handle;
  307. smemclr(s, sizeof(*s));
  308. sfree(s);
  309. }
  310. static void sha512_bytes(void *handle, const void *p, int len)
  311. {
  312. SHA512_State *s = handle;
  313. SHA512_Bytes(s, p, len);
  314. }
  315. static void sha512_final(void *handle, unsigned char *output)
  316. {
  317. SHA512_State *s = handle;
  318. SHA512_Final(s, output);
  319. sha512_free(s);
  320. }
  321. const struct ssh_hash ssh_sha512 = {
  322. sha512_init, sha512_copy, sha512_bytes, sha512_final, sha512_free,
  323. 64, "SHA-512"
  324. };
  325. static void *sha384_init(void)
  326. {
  327. SHA512_State *s;
  328. s = snew(SHA512_State);
  329. SHA384_Init(s);
  330. return s;
  331. }
  332. static void sha384_final(void *handle, unsigned char *output)
  333. {
  334. SHA512_State *s = handle;
  335. SHA384_Final(s, output);
  336. smemclr(s, sizeof(*s));
  337. sfree(s);
  338. }
  339. const struct ssh_hash ssh_sha384 = {
  340. sha384_init, sha512_copy, sha512_bytes, sha384_final, sha512_free,
  341. 48, "SHA-384"
  342. };
  343. #ifdef TEST
  344. #include <stdio.h>
  345. #include <stdlib.h>
  346. #include <assert.h>
  347. int main(void) {
  348. unsigned char digest[64];
  349. int i, j, errors;
  350. struct {
  351. const char *teststring;
  352. unsigned char digest512[64];
  353. } tests[] = {
  354. { "abc", {
  355. 0xdd, 0xaf, 0x35, 0xa1, 0x93, 0x61, 0x7a, 0xba,
  356. 0xcc, 0x41, 0x73, 0x49, 0xae, 0x20, 0x41, 0x31,
  357. 0x12, 0xe6, 0xfa, 0x4e, 0x89, 0xa9, 0x7e, 0xa2,
  358. 0x0a, 0x9e, 0xee, 0xe6, 0x4b, 0x55, 0xd3, 0x9a,
  359. 0x21, 0x92, 0x99, 0x2a, 0x27, 0x4f, 0xc1, 0xa8,
  360. 0x36, 0xba, 0x3c, 0x23, 0xa3, 0xfe, 0xeb, 0xbd,
  361. 0x45, 0x4d, 0x44, 0x23, 0x64, 0x3c, 0xe8, 0x0e,
  362. 0x2a, 0x9a, 0xc9, 0x4f, 0xa5, 0x4c, 0xa4, 0x9f,
  363. } },
  364. { "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
  365. "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu", {
  366. 0x8e, 0x95, 0x9b, 0x75, 0xda, 0xe3, 0x13, 0xda,
  367. 0x8c, 0xf4, 0xf7, 0x28, 0x14, 0xfc, 0x14, 0x3f,
  368. 0x8f, 0x77, 0x79, 0xc6, 0xeb, 0x9f, 0x7f, 0xa1,
  369. 0x72, 0x99, 0xae, 0xad, 0xb6, 0x88, 0x90, 0x18,
  370. 0x50, 0x1d, 0x28, 0x9e, 0x49, 0x00, 0xf7, 0xe4,
  371. 0x33, 0x1b, 0x99, 0xde, 0xc4, 0xb5, 0x43, 0x3a,
  372. 0xc7, 0xd3, 0x29, 0xee, 0xb6, 0xdd, 0x26, 0x54,
  373. 0x5e, 0x96, 0xe5, 0x5b, 0x87, 0x4b, 0xe9, 0x09,
  374. } },
  375. { NULL, {
  376. 0xe7, 0x18, 0x48, 0x3d, 0x0c, 0xe7, 0x69, 0x64,
  377. 0x4e, 0x2e, 0x42, 0xc7, 0xbc, 0x15, 0xb4, 0x63,
  378. 0x8e, 0x1f, 0x98, 0xb1, 0x3b, 0x20, 0x44, 0x28,
  379. 0x56, 0x32, 0xa8, 0x03, 0xaf, 0xa9, 0x73, 0xeb,
  380. 0xde, 0x0f, 0xf2, 0x44, 0x87, 0x7e, 0xa6, 0x0a,
  381. 0x4c, 0xb0, 0x43, 0x2c, 0xe5, 0x77, 0xc3, 0x1b,
  382. 0xeb, 0x00, 0x9c, 0x5c, 0x2c, 0x49, 0xaa, 0x2e,
  383. 0x4e, 0xad, 0xb2, 0x17, 0xad, 0x8c, 0xc0, 0x9b,
  384. } },
  385. };
  386. errors = 0;
  387. for (i = 0; i < sizeof(tests) / sizeof(*tests); i++) {
  388. if (tests[i].teststring) {
  389. SHA512_Simple(tests[i].teststring,
  390. strlen(tests[i].teststring), digest);
  391. } else {
  392. SHA512_State s;
  393. int n;
  394. SHA512_Init(&s);
  395. for (n = 0; n < 1000000 / 40; n++)
  396. SHA512_Bytes(&s, "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa",
  397. 40);
  398. SHA512_Final(&s, digest);
  399. }
  400. for (j = 0; j < 64; j++) {
  401. if (digest[j] != tests[i].digest512[j]) {
  402. fprintf(stderr,
  403. "\"%s\" digest512 byte %d should be 0x%02x, is 0x%02x\n",
  404. tests[i].teststring, j, tests[i].digest512[j],
  405. digest[j]);
  406. errors++;
  407. }
  408. }
  409. }
  410. printf("%d errors\n", errors);
  411. return 0;
  412. }
  413. #endif