| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469 | /* * SHA1 hash algorithm. Used in SSH-2 as a MAC, and the transform is * also used as a `stirring' function for the PuTTY random number * pool. Implemented directly from the specification by Simon * Tatham. */#include "ssh.h"/* ---------------------------------------------------------------------- * Core SHA algorithm: processes 16-word blocks into a message digest. */#define rol(x,y) ( ((x) << (y)) | (((uint32)x) >> (32-y)) )static void SHA_Core_Init(uint32 h[5]){    h[0] = 0x67452301;    h[1] = 0xefcdab89;    h[2] = 0x98badcfe;    h[3] = 0x10325476;    h[4] = 0xc3d2e1f0;}void SHATransform(word32 * digest, word32 * block){    word32 w[80];    word32 a, b, c, d, e;    int t;#ifdef RANDOM_DIAGNOSTICS    {        extern int random_diagnostics;        if (random_diagnostics) {            int i;            printf("SHATransform:");            for (i = 0; i < 5; i++)                printf(" %08x", digest[i]);            printf(" +");            for (i = 0; i < 16; i++)                printf(" %08x", block[i]);        }    }#endif    for (t = 0; t < 16; t++)	w[t] = block[t];    for (t = 16; t < 80; t++) {	word32 tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];	w[t] = rol(tmp, 1);    }    a = digest[0];    b = digest[1];    c = digest[2];    d = digest[3];    e = digest[4];    for (t = 0; t < 20; t++) {	word32 tmp =	    rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999;	e = d;	d = c;	c = rol(b, 30);	b = a;	a = tmp;    }    for (t = 20; t < 40; t++) {	word32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1;	e = d;	d = c;	c = rol(b, 30);	b = a;	a = tmp;    }    for (t = 40; t < 60; t++) {	word32 tmp = rol(a,			 5) + ((b & c) | (b & d) | (c & d)) + e + w[t] +	    0x8f1bbcdc;	e = d;	d = c;	c = rol(b, 30);	b = a;	a = tmp;    }    for (t = 60; t < 80; t++) {	word32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6;	e = d;	d = c;	c = rol(b, 30);	b = a;	a = tmp;    }    digest[0] += a;    digest[1] += b;    digest[2] += c;    digest[3] += d;    digest[4] += e;#ifdef RANDOM_DIAGNOSTICS    {        extern int random_diagnostics;        if (random_diagnostics) {            int i;            printf(" =");            for (i = 0; i < 5; i++)                printf(" %08x", digest[i]);            printf("\n");        }    }#endif}/* ---------------------------------------------------------------------- * Outer SHA algorithm: take an arbitrary length byte string, * convert it into 16-word blocks with the prescribed padding at * the end, and pass those blocks to the core SHA algorithm. */void SHA_Init(SHA_State * s){    SHA_Core_Init(s->h);    s->blkused = 0;    s->lenhi = s->lenlo = 0;}void SHA_Bytes(SHA_State * s, const void *p, int len){    const unsigned char *q = (const unsigned char *) p;    uint32 wordblock[16];    uint32 lenw = len;    int i;    /*     * Update the length field.     */    s->lenlo += lenw;    s->lenhi += (s->lenlo < lenw);    if (s->blkused && s->blkused + len < 64) {	/*	 * Trivial case: just add to the block.	 */	memcpy(s->block + s->blkused, q, len);	s->blkused += len;    } else {	/*	 * We must complete and process at least one block.	 */	while (s->blkused + len >= 64) {	    memcpy(s->block + s->blkused, q, 64 - s->blkused);	    q += 64 - s->blkused;	    len -= 64 - s->blkused;	    /* Now process the block. Gather bytes big-endian into words */	    for (i = 0; i < 16; i++) {		wordblock[i] =		    (((uint32) s->block[i * 4 + 0]) << 24) |		    (((uint32) s->block[i * 4 + 1]) << 16) |		    (((uint32) s->block[i * 4 + 2]) << 8) |		    (((uint32) s->block[i * 4 + 3]) << 0);	    }	    SHATransform(s->h, wordblock);	    s->blkused = 0;	}#ifdef MPEXT	if (len > 0)#endif	memcpy(s->block, q, len);	s->blkused = len;    }}void SHA_Final(SHA_State * s, unsigned char *output){    int i;    int pad;    unsigned char c[64];    uint32 lenhi, lenlo;    if (s->blkused >= 56)	pad = 56 + 64 - s->blkused;    else	pad = 56 - s->blkused;    lenhi = (s->lenhi << 3) | (s->lenlo >> (32 - 3));    lenlo = (s->lenlo << 3);    memset(c, 0, pad);    c[0] = 0x80;    SHA_Bytes(s, &c, pad);    c[0] = (lenhi >> 24) & 0xFF;    c[1] = (lenhi >> 16) & 0xFF;    c[2] = (lenhi >> 8) & 0xFF;    c[3] = (lenhi >> 0) & 0xFF;    c[4] = (lenlo >> 24) & 0xFF;    c[5] = (lenlo >> 16) & 0xFF;    c[6] = (lenlo >> 8) & 0xFF;    c[7] = (lenlo >> 0) & 0xFF;    SHA_Bytes(s, &c, 8);    for (i = 0; i < 5; i++) {	output[i * 4] = (s->h[i] >> 24) & 0xFF;	output[i * 4 + 1] = (s->h[i] >> 16) & 0xFF;	output[i * 4 + 2] = (s->h[i] >> 8) & 0xFF;	output[i * 4 + 3] = (s->h[i]) & 0xFF;    }}void SHA_Simple(const void *p, int len, unsigned char *output){    SHA_State s;    SHA_Init(&s);    SHA_Bytes(&s, p, len);    SHA_Final(&s, output);    smemclr(&s, sizeof(s));}/* * Thin abstraction for things where hashes are pluggable. */static void *sha1_init(void){    SHA_State *s;    s = snew(SHA_State);    SHA_Init(s);    return s;}static void *sha1_copy(const void *vold){    const SHA_State *old = (const SHA_State *)vold;    SHA_State *s;    s = snew(SHA_State);    *s = *old;    return s;}static void sha1_free(void *handle){    SHA_State *s = handle;    smemclr(s, sizeof(*s));    sfree(s);}static void sha1_bytes(void *handle, const void *p, int len){    SHA_State *s = handle;    SHA_Bytes(s, p, len);}static void sha1_final(void *handle, unsigned char *output){    SHA_State *s = handle;    SHA_Final(s, output);    sha1_free(s);}const struct ssh_hash ssh_sha1 = {    sha1_init, sha1_copy, sha1_bytes, sha1_final, sha1_free, 20, "SHA-1"};/* ---------------------------------------------------------------------- * The above is the SHA-1 algorithm itself. Now we implement the * HMAC wrapper on it. */static void *sha1_make_context(void *cipher_ctx){    return snewn(3, SHA_State);}static void sha1_free_context(void *handle){    smemclr(handle, 3 * sizeof(SHA_State));    sfree(handle);}static void sha1_key_internal(void *handle, unsigned char *key, int len){    SHA_State *keys = (SHA_State *)handle;    unsigned char foo[64];    int i;    memset(foo, 0x36, 64);    for (i = 0; i < len && i < 64; i++)	foo[i] ^= key[i];    SHA_Init(&keys[0]);    SHA_Bytes(&keys[0], foo, 64);    memset(foo, 0x5C, 64);    for (i = 0; i < len && i < 64; i++)	foo[i] ^= key[i];    SHA_Init(&keys[1]);    SHA_Bytes(&keys[1], foo, 64);    smemclr(foo, 64);		       /* burn the evidence */}static void sha1_key(void *handle, unsigned char *key){    sha1_key_internal(handle, key, 20);}static void sha1_key_buggy(void *handle, unsigned char *key){    sha1_key_internal(handle, key, 16);}static void hmacsha1_start(void *handle){    SHA_State *keys = (SHA_State *)handle;    keys[2] = keys[0];		      /* structure copy */}static void hmacsha1_bytes(void *handle, unsigned char const *blk, int len){    SHA_State *keys = (SHA_State *)handle;    SHA_Bytes(&keys[2], (void *)blk, len);}static void hmacsha1_genresult(void *handle, unsigned char *hmac){    SHA_State *keys = (SHA_State *)handle;    SHA_State s;    unsigned char intermediate[20];    s = keys[2];		       /* structure copy */    SHA_Final(&s, intermediate);    s = keys[1];		       /* structure copy */    SHA_Bytes(&s, intermediate, 20);    SHA_Final(&s, hmac);}static void sha1_do_hmac(void *handle, unsigned char *blk, int len,			 unsigned long seq, unsigned char *hmac){    unsigned char seqbuf[4];    PUT_32BIT_MSB_FIRST(seqbuf, seq);    hmacsha1_start(handle);    hmacsha1_bytes(handle, seqbuf, 4);    hmacsha1_bytes(handle, blk, len);    hmacsha1_genresult(handle, hmac);}static void sha1_generate(void *handle, unsigned char *blk, int len,			  unsigned long seq){    sha1_do_hmac(handle, blk, len, seq, blk + len);}static int hmacsha1_verresult(void *handle, unsigned char const *hmac){    unsigned char correct[20];    hmacsha1_genresult(handle, correct);    return smemeq(correct, hmac, 20);}static int sha1_verify(void *handle, unsigned char *blk, int len,		       unsigned long seq){    unsigned char correct[20];    sha1_do_hmac(handle, blk, len, seq, correct);    return smemeq(correct, blk + len, 20);}static void hmacsha1_96_genresult(void *handle, unsigned char *hmac){    unsigned char full[20];    hmacsha1_genresult(handle, full);    memcpy(hmac, full, 12);}static void sha1_96_generate(void *handle, unsigned char *blk, int len,			     unsigned long seq){    unsigned char full[20];    sha1_do_hmac(handle, blk, len, seq, full);    memcpy(blk + len, full, 12);}static int hmacsha1_96_verresult(void *handle, unsigned char const *hmac){    unsigned char correct[20];    hmacsha1_genresult(handle, correct);    return smemeq(correct, hmac, 12);}static int sha1_96_verify(void *handle, unsigned char *blk, int len,		       unsigned long seq){    unsigned char correct[20];    sha1_do_hmac(handle, blk, len, seq, correct);    return smemeq(correct, blk + len, 12);}void hmac_sha1_simple(void *key, int keylen, void *data, int datalen,		      unsigned char *output) {    SHA_State states[2];    unsigned char intermediate[20];    sha1_key_internal(states, key, keylen);    SHA_Bytes(&states[0], data, datalen);    SHA_Final(&states[0], intermediate);    SHA_Bytes(&states[1], intermediate, 20);    SHA_Final(&states[1], output);}const struct ssh_mac ssh_hmac_sha1 = {    sha1_make_context, sha1_free_context, sha1_key,    sha1_generate, sha1_verify,    hmacsha1_start, hmacsha1_bytes, hmacsha1_genresult, hmacsha1_verresult,    "hmac-sha1", "[email protected]",    20, 20,    "HMAC-SHA1"};const struct ssh_mac ssh_hmac_sha1_96 = {    sha1_make_context, sha1_free_context, sha1_key,    sha1_96_generate, sha1_96_verify,    hmacsha1_start, hmacsha1_bytes,    hmacsha1_96_genresult, hmacsha1_96_verresult,    "hmac-sha1-96", "[email protected]",    12, 20,    "HMAC-SHA1-96"};const struct ssh_mac ssh_hmac_sha1_buggy = {    sha1_make_context, sha1_free_context, sha1_key_buggy,    sha1_generate, sha1_verify,    hmacsha1_start, hmacsha1_bytes, hmacsha1_genresult, hmacsha1_verresult,    "hmac-sha1", NULL,    20, 16,    "bug-compatible HMAC-SHA1"};const struct ssh_mac ssh_hmac_sha1_96_buggy = {    sha1_make_context, sha1_free_context, sha1_key_buggy,    sha1_96_generate, sha1_96_verify,    hmacsha1_start, hmacsha1_bytes,    hmacsha1_96_genresult, hmacsha1_96_verresult,    "hmac-sha1-96", NULL,    12, 16,    "bug-compatible HMAC-SHA1-96"};#ifdef MPEXT#include "puttyexp.h"void call_sha1_key_internal(void * handle, unsigned char * key, int len){  sha1_key_internal(handle, key, len);}#endif
 |