| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 | 
							- =pod
 
- =head1 NAME
 
- RSA_generate_key_ex, RSA_generate_key,
 
- RSA_generate_multi_prime_key - generate RSA key pair
 
- =head1 SYNOPSIS
 
-  #include <openssl/rsa.h>
 
-  int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e, BN_GENCB *cb);
 
-  int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes, BIGNUM *e, BN_GENCB *cb);
 
- Deprecated:
 
-  #if OPENSSL_API_COMPAT < 0x00908000L
 
-  RSA *RSA_generate_key(int bits, unsigned long e,
 
-                        void (*callback)(int, int, void *), void *cb_arg);
 
-  #endif
 
- =head1 DESCRIPTION
 
- RSA_generate_key_ex() generates a 2-prime RSA key pair and stores it in the
 
- B<RSA> structure provided in B<rsa>. The pseudo-random number generator must
 
- be seeded prior to calling RSA_generate_key_ex().
 
- RSA_generate_multi_prime_key() generates a multi-prime RSA key pair and stores
 
- it in the B<RSA> structure provided in B<rsa>. The number of primes is given by
 
- the B<primes> parameter. The random number generator must be seeded when
 
- calling RSA_generate_multi_prime_key().
 
- If the automatic seeding or reseeding of the OpenSSL CSPRNG fails due to
 
- external circumstances (see L<RAND(7)>), the operation will fail.
 
- The modulus size will be of length B<bits>, the number of primes to form the
 
- modulus will be B<primes>, and the public exponent will be B<e>. Key sizes
 
- with B<num> E<lt> 1024 should be considered insecure. The exponent is an odd
 
- number, typically 3, 17 or 65537.
 
- In order to maintain adequate security level, the maximum number of permitted
 
- B<primes> depends on modulus bit length:
 
-    <1024 | >=1024 | >=4096 | >=8192
 
-    ------+--------+--------+-------
 
-      2   |   3    |   4    |   5
 
- A callback function may be used to provide feedback about the
 
- progress of the key generation. If B<cb> is not B<NULL>, it
 
- will be called as follows using the BN_GENCB_call() function
 
- described on the L<BN_generate_prime(3)> page.
 
- RSA_generate_key() is similar to RSA_generate_key_ex() but
 
- expects an old-style callback function; see
 
- L<BN_generate_prime(3)> for information on the old-style callback.
 
- =over 2
 
- =item *
 
- While a random prime number is generated, it is called as
 
- described in L<BN_generate_prime(3)>.
 
- =item *
 
- When the n-th randomly generated prime is rejected as not
 
- suitable for the key, B<BN_GENCB_call(cb, 2, n)> is called.
 
- =item *
 
- When a random p has been found with p-1 relatively prime to B<e>,
 
- it is called as B<BN_GENCB_call(cb, 3, 0)>.
 
- =back
 
- The process is then repeated for prime q and other primes (if any)
 
- with B<BN_GENCB_call(cb, 3, i)> where B<i> indicates the i-th prime.
 
- =head1 RETURN VALUES
 
- RSA_generate_multi_prime_key() returns 1 on success or 0 on error.
 
- RSA_generate_key_ex() returns 1 on success or 0 on error.
 
- The error codes can be obtained by L<ERR_get_error(3)>.
 
- RSA_generate_key() returns a pointer to the RSA structure or
 
- B<NULL> if the key generation fails.
 
- =head1 BUGS
 
- B<BN_GENCB_call(cb, 2, x)> is used with two different meanings.
 
- =head1 SEE ALSO
 
- L<ERR_get_error(3)>, L<RAND_bytes(3)>, L<BN_generate_prime(3)>,
 
- L<RAND(7)>
 
- =head1 HISTORY
 
- RSA_generate_key() was deprecated in OpenSSL 0.9.8; use
 
- RSA_generate_key_ex() instead.
 
- =head1 COPYRIGHT
 
- Copyright 2000-2019 The OpenSSL Project Authors. All Rights Reserved.
 
- Licensed under the OpenSSL license (the "License").  You may not use
 
- this file except in compliance with the License.  You can obtain a copy
 
- in the file LICENSE in the source distribution or at
 
- L<https://www.openssl.org/source/license.html>.
 
- =cut
 
 
  |