| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626 | 
							- /*
 
-  * Copyright 2016-2025 The OpenSSL Project Authors. All Rights Reserved.
 
-  *
 
-  * Licensed under the Apache License 2.0 (the "License").  You may not use
 
-  * this file except in compliance with the License.  You can obtain a copy
 
-  * in the file LICENSE in the source distribution or at
 
-  * https://www.openssl.org/source/license.html
 
-  */
 
- #if defined(_WIN32)
 
- # include <windows.h>
 
- # if defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x600
 
- #  define USE_RWLOCK
 
- # endif
 
- #endif
 
- #include <assert.h>
 
- /*
 
-  * VC++ 2008 or earlier x86 compilers do not have an inline implementation
 
-  * of InterlockedOr64 for 32bit and will fail to run on Windows XP 32bit.
 
-  * https://docs.microsoft.com/en-us/cpp/intrinsics/interlockedor-intrinsic-functions#requirements
 
-  * To work around this problem, we implement a manual locking mechanism for
 
-  * only VC++ 2008 or earlier x86 compilers.
 
-  */
 
- #if (defined(_MSC_VER) && defined(_M_IX86) && _MSC_VER <= 1600)
 
- # define NO_INTERLOCKEDOR64
 
- #endif
 
- #include <openssl/crypto.h>
 
- #include <crypto/cryptlib.h>
 
- #include "internal/common.h"
 
- #include "internal/thread_arch.h"
 
- #include "internal/rcu.h"
 
- #include "rcu_internal.h"
 
- #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && defined(OPENSSL_SYS_WINDOWS)
 
- # ifdef USE_RWLOCK
 
- typedef struct {
 
-     SRWLOCK lock;
 
-     int exclusive;
 
- } CRYPTO_win_rwlock;
 
- # endif
 
- /*
 
-  * This defines a quescent point (qp)
 
-  * This is the barrier beyond which a writer
 
-  * must wait before freeing data that was
 
-  * atomically updated
 
-  */
 
- struct rcu_qp {
 
-     volatile LONG64 users;
 
- };
 
- struct thread_qp {
 
-     struct rcu_qp *qp;
 
-     unsigned int depth;
 
-     CRYPTO_RCU_LOCK *lock;
 
- };
 
- #define MAX_QPS 10
 
- /*
 
-  * This is the per thread tracking data
 
-  * that is assigned to each thread participating
 
-  * in an rcu qp
 
-  *
 
-  * qp points to the qp that it last acquired
 
-  *
 
-  */
 
- struct rcu_thr_data {
 
-     struct thread_qp thread_qps[MAX_QPS];
 
- };
 
- /*
 
-  * This is the internal version of a CRYPTO_RCU_LOCK
 
-  * it is cast from CRYPTO_RCU_LOCK
 
-  */
 
- struct rcu_lock_st {
 
-     struct rcu_cb_item *cb_items;
 
-     OSSL_LIB_CTX *ctx;
 
-     /* Array of quiescent points for synchronization */
 
-     struct rcu_qp *qp_group;
 
-     /* rcu generation counter for in-order retirement */
 
-     uint32_t id_ctr;
 
-     /* Number of elements in qp_group array */
 
-     uint32_t group_count;
 
-     uint32_t next_to_retire;
 
-     volatile long int reader_idx;
 
-     uint32_t current_alloc_idx;
 
-     uint32_t writers_alloced;
 
-     CRYPTO_MUTEX *write_lock;
 
-     CRYPTO_MUTEX *alloc_lock;
 
-     CRYPTO_CONDVAR *alloc_signal;
 
-     CRYPTO_MUTEX *prior_lock;
 
-     CRYPTO_CONDVAR *prior_signal;
 
- };
 
- static struct rcu_qp *allocate_new_qp_group(struct rcu_lock_st *lock,
 
-                                             uint32_t count)
 
- {
 
-     struct rcu_qp *new =
 
-         OPENSSL_zalloc(sizeof(*new) * count);
 
-     lock->group_count = count;
 
-     return new;
 
- }
 
- CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
 
- {
 
-     struct rcu_lock_st *new;
 
-     /*
 
-      * We need a minimum of 2 qps
 
-      */
 
-     if (num_writers < 2)
 
-         num_writers = 2;
 
-     ctx = ossl_lib_ctx_get_concrete(ctx);
 
-     if (ctx == NULL)
 
-         return 0;
 
-     new = OPENSSL_zalloc(sizeof(*new));
 
-     if (new == NULL)
 
-         return NULL;
 
-     new->ctx = ctx;
 
-     new->write_lock = ossl_crypto_mutex_new();
 
-     new->alloc_signal = ossl_crypto_condvar_new();
 
-     new->prior_signal = ossl_crypto_condvar_new();
 
-     new->alloc_lock = ossl_crypto_mutex_new();
 
-     new->prior_lock = ossl_crypto_mutex_new();
 
-     new->qp_group = allocate_new_qp_group(new, num_writers);
 
-     if (new->qp_group == NULL
 
-         || new->alloc_signal == NULL
 
-         || new->prior_signal == NULL
 
-         || new->write_lock == NULL
 
-         || new->alloc_lock == NULL
 
-         || new->prior_lock == NULL) {
 
-         OPENSSL_free(new->qp_group);
 
-         ossl_crypto_condvar_free(&new->alloc_signal);
 
-         ossl_crypto_condvar_free(&new->prior_signal);
 
-         ossl_crypto_mutex_free(&new->alloc_lock);
 
-         ossl_crypto_mutex_free(&new->prior_lock);
 
-         ossl_crypto_mutex_free(&new->write_lock);
 
-         OPENSSL_free(new);
 
-         new = NULL;
 
-     }
 
-     return new;
 
- }
 
- void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
 
- {
 
-     OPENSSL_free(lock->qp_group);
 
-     ossl_crypto_condvar_free(&lock->alloc_signal);
 
-     ossl_crypto_condvar_free(&lock->prior_signal);
 
-     ossl_crypto_mutex_free(&lock->alloc_lock);
 
-     ossl_crypto_mutex_free(&lock->prior_lock);
 
-     ossl_crypto_mutex_free(&lock->write_lock);
 
-     OPENSSL_free(lock);
 
- }
 
- static ossl_inline struct rcu_qp *get_hold_current_qp(CRYPTO_RCU_LOCK *lock)
 
- {
 
-     uint32_t qp_idx;
 
-     /* get the current qp index */
 
-     for (;;) {
 
-         qp_idx = InterlockedOr(&lock->reader_idx, 0);
 
-         InterlockedAdd64(&lock->qp_group[qp_idx].users, (LONG64)1);
 
-         if (qp_idx == InterlockedOr(&lock->reader_idx, 0))
 
-             break;
 
-         InterlockedAdd64(&lock->qp_group[qp_idx].users, (LONG64)-1);
 
-     }
 
-     return &lock->qp_group[qp_idx];
 
- }
 
- static void ossl_rcu_free_local_data(void *arg)
 
- {
 
-     OSSL_LIB_CTX *ctx = arg;
 
-     CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx);
 
-     struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
 
-     OPENSSL_free(data);
 
-     CRYPTO_THREAD_set_local(lkey, NULL);
 
- }
 
- void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
 
- {
 
-     struct rcu_thr_data *data;
 
-     int i;
 
-     int available_qp = -1;
 
-     CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
 
-     /*
 
-      * we're going to access current_qp here so ask the
 
-      * processor to fetch it
 
-      */
 
-     data = CRYPTO_THREAD_get_local(lkey);
 
-     if (data == NULL) {
 
-         data = OPENSSL_zalloc(sizeof(*data));
 
-         OPENSSL_assert(data != NULL);
 
-         CRYPTO_THREAD_set_local(lkey, data);
 
-         ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
 
-     }
 
-     for (i = 0; i < MAX_QPS; i++) {
 
-         if (data->thread_qps[i].qp == NULL && available_qp == -1)
 
-             available_qp = i;
 
-         /* If we have a hold on this lock already, we're good */
 
-         if (data->thread_qps[i].lock == lock)
 
-             return;
 
-     }
 
-     /*
 
-      * if we get here, then we don't have a hold on this lock yet
 
-      */
 
-     assert(available_qp != -1);
 
-     data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
 
-     data->thread_qps[available_qp].depth = 1;
 
-     data->thread_qps[available_qp].lock = lock;
 
- }
 
- void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
 
- {
 
-     ossl_crypto_mutex_lock(lock->write_lock);
 
- }
 
- void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
 
- {
 
-     ossl_crypto_mutex_unlock(lock->write_lock);
 
- }
 
- void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
 
- {
 
-     CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
 
-     struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
 
-     int i;
 
-     LONG64 ret;
 
-     assert(data != NULL);
 
-     for (i = 0; i < MAX_QPS; i++) {
 
-         if (data->thread_qps[i].lock == lock) {
 
-             data->thread_qps[i].depth--;
 
-             if (data->thread_qps[i].depth == 0) {
 
-                 ret = InterlockedAdd64(&data->thread_qps[i].qp->users, (LONG64)-1);
 
-                 OPENSSL_assert(ret >= 0);
 
-                 data->thread_qps[i].qp = NULL;
 
-                 data->thread_qps[i].lock = NULL;
 
-             }
 
-             return;
 
-         }
 
-     }
 
- }
 
- static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock, uint32_t *curr_id)
 
- {
 
-     uint32_t current_idx;
 
-     uint32_t tmp;
 
-     ossl_crypto_mutex_lock(lock->alloc_lock);
 
-     /*
 
-      * we need at least one qp to be available with one
 
-      * left over, so that readers can start working on
 
-      * one that isn't yet being waited on
 
-      */
 
-     while (lock->group_count - lock->writers_alloced < 2)
 
-         ossl_crypto_condvar_wait(lock->alloc_signal, lock->alloc_lock);
 
-     current_idx = lock->current_alloc_idx;
 
-     /* Allocate the qp */
 
-     lock->writers_alloced++;
 
-     /* increment the allocation index */
 
-     lock->current_alloc_idx =
 
-         (lock->current_alloc_idx + 1) % lock->group_count;
 
-     /* get and insert a new id */
 
-     *curr_id = lock->id_ctr;
 
-     lock->id_ctr++;
 
-     /* update the reader index to be the prior qp */
 
-     tmp = lock->current_alloc_idx;
 
-     InterlockedExchange(&lock->reader_idx, tmp);
 
-     /* wake up any waiters */
 
-     ossl_crypto_condvar_broadcast(lock->alloc_signal);
 
-     ossl_crypto_mutex_unlock(lock->alloc_lock);
 
-     return &lock->qp_group[current_idx];
 
- }
 
- static void retire_qp(CRYPTO_RCU_LOCK *lock,
 
-                       struct rcu_qp *qp)
 
- {
 
-     ossl_crypto_mutex_lock(lock->alloc_lock);
 
-     lock->writers_alloced--;
 
-     ossl_crypto_condvar_broadcast(lock->alloc_signal);
 
-     ossl_crypto_mutex_unlock(lock->alloc_lock);
 
- }
 
- void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
 
- {
 
-     struct rcu_qp *qp;
 
-     uint64_t count;
 
-     uint32_t curr_id;
 
-     struct rcu_cb_item *cb_items, *tmpcb;
 
-     /* before we do anything else, lets grab the cb list */
 
-     ossl_crypto_mutex_lock(lock->write_lock);
 
-     cb_items = lock->cb_items;
 
-     lock->cb_items = NULL;
 
-     ossl_crypto_mutex_unlock(lock->write_lock);
 
-     qp = update_qp(lock, &curr_id);
 
-     /* retire in order */
 
-     ossl_crypto_mutex_lock(lock->prior_lock);
 
-     while (lock->next_to_retire != curr_id)
 
-         ossl_crypto_condvar_wait(lock->prior_signal, lock->prior_lock);
 
-     /* wait for the reader count to reach zero */
 
-     do {
 
-         count = InterlockedOr64(&qp->users, 0);
 
-     } while (count != (uint64_t)0);
 
-     lock->next_to_retire++;
 
-     ossl_crypto_condvar_broadcast(lock->prior_signal);
 
-     ossl_crypto_mutex_unlock(lock->prior_lock);
 
-     retire_qp(lock, qp);
 
-     /* handle any callbacks that we have */
 
-     while (cb_items != NULL) {
 
-         tmpcb = cb_items;
 
-         cb_items = cb_items->next;
 
-         tmpcb->fn(tmpcb->data);
 
-         OPENSSL_free(tmpcb);
 
-     }
 
-     /* and we're done */
 
-     return;
 
- }
 
- /*
 
-  * Note, must be called under the protection of ossl_rcu_write_lock
 
-  */
 
- int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
 
- {
 
-     struct rcu_cb_item *new;
 
-     new = OPENSSL_zalloc(sizeof(struct rcu_cb_item));
 
-     if (new == NULL)
 
-         return 0;
 
-     new->data = data;
 
-     new->fn = cb;
 
-     new->next = lock->cb_items;
 
-     lock->cb_items = new;
 
-     return 1;
 
- }
 
- void *ossl_rcu_uptr_deref(void **p)
 
- {
 
-     return (void *)*p;
 
- }
 
- void ossl_rcu_assign_uptr(void **p, void **v)
 
- {
 
-     InterlockedExchangePointer((void * volatile *)p, (void *)*v);
 
- }
 
- CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
 
- {
 
-     CRYPTO_RWLOCK *lock;
 
- # ifdef USE_RWLOCK
 
-     CRYPTO_win_rwlock *rwlock;
 
-     if ((lock = OPENSSL_zalloc(sizeof(CRYPTO_win_rwlock))) == NULL)
 
-         /* Don't set error, to avoid recursion blowup. */
 
-         return NULL;
 
-     rwlock = lock;
 
-     InitializeSRWLock(&rwlock->lock);
 
- # else
 
-     if ((lock = OPENSSL_zalloc(sizeof(CRITICAL_SECTION))) == NULL)
 
-         /* Don't set error, to avoid recursion blowup. */
 
-         return NULL;
 
- #  if !defined(_WIN32_WCE)
 
-     /* 0x400 is the spin count value suggested in the documentation */
 
-     if (!InitializeCriticalSectionAndSpinCount(lock, 0x400)) {
 
-         OPENSSL_free(lock);
 
-         return NULL;
 
-     }
 
- #  else
 
-     InitializeCriticalSection(lock);
 
- #  endif
 
- # endif
 
-     return lock;
 
- }
 
- __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
 
- {
 
- # ifdef USE_RWLOCK
 
-     CRYPTO_win_rwlock *rwlock = lock;
 
-     AcquireSRWLockShared(&rwlock->lock);
 
- # else
 
-     EnterCriticalSection(lock);
 
- # endif
 
-     return 1;
 
- }
 
- __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
 
- {
 
- # ifdef USE_RWLOCK
 
-     CRYPTO_win_rwlock *rwlock = lock;
 
-     AcquireSRWLockExclusive(&rwlock->lock);
 
-     rwlock->exclusive = 1;
 
- # else
 
-     EnterCriticalSection(lock);
 
- # endif
 
-     return 1;
 
- }
 
- int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
 
- {
 
- # ifdef USE_RWLOCK
 
-     CRYPTO_win_rwlock *rwlock = lock;
 
-     if (rwlock->exclusive) {
 
-         rwlock->exclusive = 0;
 
-         ReleaseSRWLockExclusive(&rwlock->lock);
 
-     } else {
 
-         ReleaseSRWLockShared(&rwlock->lock);
 
-     }
 
- # else
 
-     LeaveCriticalSection(lock);
 
- # endif
 
-     return 1;
 
- }
 
- void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
 
- {
 
-     if (lock == NULL)
 
-         return;
 
- # ifndef USE_RWLOCK
 
-     DeleteCriticalSection(lock);
 
- # endif
 
-     OPENSSL_free(lock);
 
-     return;
 
- }
 
- # define ONCE_UNINITED     0
 
- # define ONCE_ININIT       1
 
- # define ONCE_DONE         2
 
- /*
 
-  * We don't use InitOnceExecuteOnce because that isn't available in WinXP which
 
-  * we still have to support.
 
-  */
 
- int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
 
- {
 
-     LONG volatile *lock = (LONG *)once;
 
-     LONG result;
 
-     if (*lock == ONCE_DONE)
 
-         return 1;
 
-     do {
 
-         result = InterlockedCompareExchange(lock, ONCE_ININIT, ONCE_UNINITED);
 
-         if (result == ONCE_UNINITED) {
 
-             init();
 
-             *lock = ONCE_DONE;
 
-             return 1;
 
-         }
 
-     } while (result == ONCE_ININIT);
 
-     return (*lock == ONCE_DONE);
 
- }
 
- int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
 
- {
 
-     *key = TlsAlloc();
 
-     if (*key == TLS_OUT_OF_INDEXES)
 
-         return 0;
 
-     return 1;
 
- }
 
- void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
 
- {
 
-     DWORD last_error;
 
-     void *ret;
 
-     /*
 
-      * TlsGetValue clears the last error even on success, so that callers may
 
-      * distinguish it successfully returning NULL or failing. It is documented
 
-      * to never fail if the argument is a valid index from TlsAlloc, so we do
 
-      * not need to handle this.
 
-      *
 
-      * However, this error-mangling behavior interferes with the caller's use of
 
-      * GetLastError. In particular SSL_get_error queries the error queue to
 
-      * determine whether the caller should look at the OS's errors. To avoid
 
-      * destroying state, save and restore the Windows error.
 
-      *
 
-      * https://msdn.microsoft.com/en-us/library/windows/desktop/ms686812(v=vs.85).aspx
 
-      */
 
-     last_error = GetLastError();
 
-     ret = TlsGetValue(*key);
 
-     SetLastError(last_error);
 
-     return ret;
 
- }
 
- int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
 
- {
 
-     if (TlsSetValue(*key, val) == 0)
 
-         return 0;
 
-     return 1;
 
- }
 
- int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
 
- {
 
-     if (TlsFree(*key) == 0)
 
-         return 0;
 
-     return 1;
 
- }
 
- CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
 
- {
 
-     return GetCurrentThreadId();
 
- }
 
- int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
 
- {
 
-     return (a == b);
 
- }
 
- int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
 
- {
 
-     *ret = (int)InterlockedExchangeAdd((LONG volatile *)val, (LONG)amount)
 
-         + amount;
 
-     return 1;
 
- }
 
- int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
 
-                      CRYPTO_RWLOCK *lock)
 
- {
 
- #if (defined(NO_INTERLOCKEDOR64))
 
-     if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
 
-         return 0;
 
-     *val |= op;
 
-     *ret = *val;
 
-     if (!CRYPTO_THREAD_unlock(lock))
 
-         return 0;
 
-     return 1;
 
- #else
 
-     *ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, (LONG64)op) | op;
 
-     return 1;
 
- #endif
 
- }
 
- int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
 
- {
 
- #if (defined(NO_INTERLOCKEDOR64))
 
-     if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
 
-         return 0;
 
-     *ret = *val;
 
-     if (!CRYPTO_THREAD_unlock(lock))
 
-         return 0;
 
-     return 1;
 
- #else
 
-     *ret = (uint64_t)InterlockedOr64((LONG64 volatile *)val, 0);
 
-     return 1;
 
- #endif
 
- }
 
- int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
 
- {
 
- #if (defined(NO_INTERLOCKEDOR64))
 
-     if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
 
-         return 0;
 
-     *ret = *val;
 
-     if (!CRYPTO_THREAD_unlock(lock))
 
-         return 0;
 
-     return 1;
 
- #else
 
-     /* On Windows, LONG is always the same size as int. */
 
-     *ret = (int)InterlockedOr((LONG volatile *)val, 0);
 
-     return 1;
 
- #endif
 
- }
 
- int openssl_init_fork_handlers(void)
 
- {
 
-     return 0;
 
- }
 
- int openssl_get_fork_id(void)
 
- {
 
-     return 0;
 
- }
 
- #endif
 
 
  |