sshsha.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765
  1. /*
  2. * SHA1 hash algorithm. Used in SSH-2 as a MAC, and the transform is
  3. * also used as a `stirring' function for the PuTTY random number
  4. * pool. Implemented directly from the specification by Simon
  5. * Tatham.
  6. */
  7. #include "ssh.h"
  8. #include <assert.h>
  9. /* ----------------------------------------------------------------------
  10. * Core SHA algorithm: processes 16-word blocks into a message digest.
  11. */
  12. #define rol(x,y) ( ((x) << (y)) | (((uint32)x) >> (32-y)) )
  13. static void sha1_sw(SHA_State * s, const unsigned char *q, int len);
  14. static void sha1_ni(SHA_State * s, const unsigned char *q, int len);
  15. static void SHA_Core_Init(uint32 h[5])
  16. {
  17. h[0] = 0x67452301;
  18. h[1] = 0xefcdab89;
  19. h[2] = 0x98badcfe;
  20. h[3] = 0x10325476;
  21. h[4] = 0xc3d2e1f0;
  22. }
  23. void SHATransform(word32 * digest, word32 * block)
  24. {
  25. word32 w[80];
  26. word32 a, b, c, d, e;
  27. int t;
  28. #ifdef RANDOM_DIAGNOSTICS
  29. {
  30. extern int random_diagnostics;
  31. if (random_diagnostics) {
  32. int i;
  33. printf("SHATransform:");
  34. for (i = 0; i < 5; i++)
  35. printf(" %08x", digest[i]);
  36. printf(" +");
  37. for (i = 0; i < 16; i++)
  38. printf(" %08x", block[i]);
  39. }
  40. }
  41. #endif
  42. for (t = 0; t < 16; t++)
  43. w[t] = block[t];
  44. for (t = 16; t < 80; t++) {
  45. word32 tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
  46. w[t] = rol(tmp, 1);
  47. }
  48. a = digest[0];
  49. b = digest[1];
  50. c = digest[2];
  51. d = digest[3];
  52. e = digest[4];
  53. for (t = 0; t < 20; t++) {
  54. word32 tmp =
  55. rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999;
  56. e = d;
  57. d = c;
  58. c = rol(b, 30);
  59. b = a;
  60. a = tmp;
  61. }
  62. for (t = 20; t < 40; t++) {
  63. word32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1;
  64. e = d;
  65. d = c;
  66. c = rol(b, 30);
  67. b = a;
  68. a = tmp;
  69. }
  70. for (t = 40; t < 60; t++) {
  71. word32 tmp = rol(a,
  72. 5) + ((b & c) | (b & d) | (c & d)) + e + w[t] +
  73. 0x8f1bbcdc;
  74. e = d;
  75. d = c;
  76. c = rol(b, 30);
  77. b = a;
  78. a = tmp;
  79. }
  80. for (t = 60; t < 80; t++) {
  81. word32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6;
  82. e = d;
  83. d = c;
  84. c = rol(b, 30);
  85. b = a;
  86. a = tmp;
  87. }
  88. digest[0] += a;
  89. digest[1] += b;
  90. digest[2] += c;
  91. digest[3] += d;
  92. digest[4] += e;
  93. #ifdef RANDOM_DIAGNOSTICS
  94. {
  95. extern int random_diagnostics;
  96. if (random_diagnostics) {
  97. int i;
  98. printf(" =");
  99. for (i = 0; i < 5; i++)
  100. printf(" %08x", digest[i]);
  101. printf("\n");
  102. }
  103. }
  104. #endif
  105. }
  106. /* ----------------------------------------------------------------------
  107. * Outer SHA algorithm: take an arbitrary length byte string,
  108. * convert it into 16-word blocks with the prescribed padding at
  109. * the end, and pass those blocks to the core SHA algorithm.
  110. */
  111. static void SHA_BinarySink_write(BinarySink *bs, const void *p, size_t len);
  112. void SHA_Init(SHA_State * s)
  113. {
  114. SHA_Core_Init(s->h);
  115. s->blkused = 0;
  116. s->lenhi = s->lenlo = 0;
  117. if (supports_sha_ni())
  118. s->sha1 = &sha1_ni;
  119. else
  120. s->sha1 = &sha1_sw;
  121. BinarySink_INIT(s, SHA_BinarySink_write);
  122. }
  123. static void SHA_BinarySink_write(BinarySink *bs, const void *p, size_t len)
  124. {
  125. struct SHA_State *s = BinarySink_DOWNCAST(bs, struct SHA_State);
  126. const unsigned char *q = (const unsigned char *) p;
  127. uint32 lenw = len;
  128. assert(lenw == len);
  129. /*
  130. * Update the length field.
  131. */
  132. s->lenlo += lenw;
  133. s->lenhi += (s->lenlo < lenw);
  134. (*(s->sha1))(s, q, len);
  135. }
  136. static void sha1_sw(SHA_State * s, const unsigned char *q, int len)
  137. {
  138. uint32 wordblock[16];
  139. int i;
  140. if (s->blkused && s->blkused + len < 64) {
  141. /*
  142. * Trivial case: just add to the block.
  143. */
  144. memcpy(s->block + s->blkused, q, len);
  145. s->blkused += len;
  146. } else {
  147. /*
  148. * We must complete and process at least one block.
  149. */
  150. while (s->blkused + len >= 64) {
  151. memcpy(s->block + s->blkused, q, 64 - s->blkused);
  152. q += 64 - s->blkused;
  153. len -= 64 - s->blkused;
  154. /* Now process the block. Gather bytes big-endian into words */
  155. for (i = 0; i < 16; i++) {
  156. wordblock[i] =
  157. (((uint32) s->block[i * 4 + 0]) << 24) |
  158. (((uint32) s->block[i * 4 + 1]) << 16) |
  159. (((uint32) s->block[i * 4 + 2]) << 8) |
  160. (((uint32) s->block[i * 4 + 3]) << 0);
  161. }
  162. SHATransform(s->h, wordblock);
  163. s->blkused = 0;
  164. }
  165. #ifdef MPEXT
  166. if (len > 0)
  167. #endif
  168. memcpy(s->block, q, len);
  169. s->blkused = len;
  170. }
  171. }
  172. void SHA_Final(SHA_State * s, unsigned char *output)
  173. {
  174. int i;
  175. int pad;
  176. unsigned char c[64];
  177. uint32 lenhi, lenlo;
  178. if (s->blkused >= 56)
  179. pad = 56 + 64 - s->blkused;
  180. else
  181. pad = 56 - s->blkused;
  182. lenhi = (s->lenhi << 3) | (s->lenlo >> (32 - 3));
  183. lenlo = (s->lenlo << 3);
  184. memset(c, 0, pad);
  185. c[0] = 0x80;
  186. put_data(s, &c, pad);
  187. put_uint32(s, lenhi);
  188. put_uint32(s, lenlo);
  189. for (i = 0; i < 5; i++) {
  190. output[i * 4] = (s->h[i] >> 24) & 0xFF;
  191. output[i * 4 + 1] = (s->h[i] >> 16) & 0xFF;
  192. output[i * 4 + 2] = (s->h[i] >> 8) & 0xFF;
  193. output[i * 4 + 3] = (s->h[i]) & 0xFF;
  194. }
  195. }
  196. void SHA_Simple(const void *p, int len, unsigned char *output)
  197. {
  198. SHA_State s;
  199. SHA_Init(&s);
  200. put_data(&s, p, len);
  201. SHA_Final(&s, output);
  202. smemclr(&s, sizeof(s));
  203. }
  204. /*
  205. * Thin abstraction for things where hashes are pluggable.
  206. */
  207. static void *sha1_init(void)
  208. {
  209. SHA_State *s;
  210. s = snew(SHA_State);
  211. SHA_Init(s);
  212. return s;
  213. }
  214. static void *sha1_copy(const void *vold)
  215. {
  216. const SHA_State *old = (const SHA_State *)vold;
  217. SHA_State *s;
  218. s = snew(SHA_State);
  219. *s = *old;
  220. BinarySink_COPIED(s);
  221. return s;
  222. }
  223. static void sha1_free(void *handle)
  224. {
  225. SHA_State *s = handle;
  226. smemclr(s, sizeof(*s));
  227. sfree(s);
  228. }
  229. static BinarySink *sha1_sink(void *handle)
  230. {
  231. SHA_State *s = handle;
  232. return BinarySink_UPCAST(s);
  233. }
  234. static void sha1_final(void *handle, unsigned char *output)
  235. {
  236. SHA_State *s = handle;
  237. SHA_Final(s, output);
  238. sha1_free(s);
  239. }
  240. const struct ssh_hash ssh_sha1 = {
  241. sha1_init, sha1_copy, sha1_sink, sha1_final, sha1_free, 20, "SHA-1"
  242. };
  243. /* ----------------------------------------------------------------------
  244. * The above is the SHA-1 algorithm itself. Now we implement the
  245. * HMAC wrapper on it.
  246. */
  247. static void *sha1_make_context(void *cipher_ctx)
  248. {
  249. return snewn(3, SHA_State);
  250. }
  251. static void sha1_free_context(void *handle)
  252. {
  253. smemclr(handle, 3 * sizeof(SHA_State));
  254. sfree(handle);
  255. }
  256. static void sha1_key_internal(void *handle, const unsigned char *key, int len)
  257. {
  258. SHA_State *keys = (SHA_State *)handle;
  259. unsigned char foo[64];
  260. int i;
  261. memset(foo, 0x36, 64);
  262. for (i = 0; i < len && i < 64; i++)
  263. foo[i] ^= key[i];
  264. SHA_Init(&keys[0]);
  265. put_data(&keys[0], foo, 64);
  266. memset(foo, 0x5C, 64);
  267. for (i = 0; i < len && i < 64; i++)
  268. foo[i] ^= key[i];
  269. SHA_Init(&keys[1]);
  270. put_data(&keys[1], foo, 64);
  271. smemclr(foo, 64); /* burn the evidence */
  272. }
  273. static void sha1_key(void *handle, const void *key)
  274. {
  275. sha1_key_internal(handle, key, 20);
  276. }
  277. static void sha1_key_buggy(void *handle, const void *key)
  278. {
  279. sha1_key_internal(handle, key, 16);
  280. }
  281. static void hmacsha1_start(void *handle)
  282. {
  283. SHA_State *keys = (SHA_State *)handle;
  284. keys[2] = keys[0]; /* structure copy */
  285. BinarySink_COPIED(&keys[2]);
  286. }
  287. static BinarySink *hmacsha1_sink(void *handle)
  288. {
  289. SHA_State *keys = (SHA_State *)handle;
  290. return BinarySink_UPCAST(&keys[2]);
  291. }
  292. static void hmacsha1_genresult(void *handle, unsigned char *hmac)
  293. {
  294. SHA_State *keys = (SHA_State *)handle;
  295. SHA_State s;
  296. unsigned char intermediate[20];
  297. s = keys[2]; /* structure copy */
  298. BinarySink_COPIED(&s);
  299. SHA_Final(&s, intermediate);
  300. s = keys[1]; /* structure copy */
  301. BinarySink_COPIED(&s);
  302. put_data(&s, intermediate, 20);
  303. SHA_Final(&s, hmac);
  304. }
  305. static void sha1_do_hmac(void *handle, const unsigned char *blk, int len,
  306. unsigned long seq, unsigned char *hmac)
  307. {
  308. BinarySink *bs = hmacsha1_sink(handle);
  309. hmacsha1_start(handle);
  310. put_uint32(bs, seq);
  311. put_data(bs, blk, len);
  312. hmacsha1_genresult(handle, hmac);
  313. }
  314. static void sha1_generate(void *handle, void *vblk, int len,
  315. unsigned long seq)
  316. {
  317. unsigned char *blk = (unsigned char *)vblk;
  318. sha1_do_hmac(handle, blk, len, seq, blk + len);
  319. }
  320. static int hmacsha1_verresult(void *handle, unsigned char const *hmac)
  321. {
  322. unsigned char correct[20];
  323. hmacsha1_genresult(handle, correct);
  324. return smemeq(correct, hmac, 20);
  325. }
  326. static int sha1_verify(void *handle, const void *vblk, int len,
  327. unsigned long seq)
  328. {
  329. const unsigned char *blk = (const unsigned char *)vblk;
  330. unsigned char correct[20];
  331. sha1_do_hmac(handle, blk, len, seq, correct);
  332. return smemeq(correct, blk + len, 20);
  333. }
  334. static void hmacsha1_96_genresult(void *handle, unsigned char *hmac)
  335. {
  336. unsigned char full[20];
  337. hmacsha1_genresult(handle, full);
  338. memcpy(hmac, full, 12);
  339. }
  340. static void sha1_96_generate(void *handle, void *vblk, int len,
  341. unsigned long seq)
  342. {
  343. unsigned char *blk = (unsigned char *)vblk;
  344. unsigned char full[20];
  345. sha1_do_hmac(handle, blk, len, seq, full);
  346. memcpy(blk + len, full, 12);
  347. }
  348. static int hmacsha1_96_verresult(void *handle, unsigned char const *hmac)
  349. {
  350. unsigned char correct[20];
  351. hmacsha1_genresult(handle, correct);
  352. return smemeq(correct, hmac, 12);
  353. }
  354. static int sha1_96_verify(void *handle, const void *vblk, int len,
  355. unsigned long seq)
  356. {
  357. const unsigned char *blk = (const unsigned char *)vblk;
  358. unsigned char correct[20];
  359. sha1_do_hmac(handle, blk, len, seq, correct);
  360. return smemeq(correct, blk + len, 12);
  361. }
  362. void hmac_sha1_simple(void *key, int keylen, void *data, int datalen,
  363. unsigned char *output) {
  364. SHA_State states[2];
  365. unsigned char intermediate[20];
  366. sha1_key_internal(states, key, keylen);
  367. put_data(&states[0], data, datalen);
  368. SHA_Final(&states[0], intermediate);
  369. put_data(&states[1], intermediate, 20);
  370. SHA_Final(&states[1], output);
  371. }
  372. const struct ssh_mac ssh_hmac_sha1 = {
  373. sha1_make_context, sha1_free_context, sha1_key,
  374. sha1_generate, sha1_verify,
  375. hmacsha1_start, hmacsha1_sink, hmacsha1_genresult, hmacsha1_verresult,
  376. "hmac-sha1", "[email protected]",
  377. 20, 20,
  378. "HMAC-SHA1"
  379. };
  380. const struct ssh_mac ssh_hmac_sha1_96 = {
  381. sha1_make_context, sha1_free_context, sha1_key,
  382. sha1_96_generate, sha1_96_verify,
  383. hmacsha1_start, hmacsha1_sink,
  384. hmacsha1_96_genresult, hmacsha1_96_verresult,
  385. "hmac-sha1-96", "[email protected]",
  386. 12, 20,
  387. "HMAC-SHA1-96"
  388. };
  389. const struct ssh_mac ssh_hmac_sha1_buggy = {
  390. sha1_make_context, sha1_free_context, sha1_key_buggy,
  391. sha1_generate, sha1_verify,
  392. hmacsha1_start, hmacsha1_sink, hmacsha1_genresult, hmacsha1_verresult,
  393. "hmac-sha1", NULL,
  394. 20, 16,
  395. "bug-compatible HMAC-SHA1"
  396. };
  397. const struct ssh_mac ssh_hmac_sha1_96_buggy = {
  398. sha1_make_context, sha1_free_context, sha1_key_buggy,
  399. sha1_96_generate, sha1_96_verify,
  400. hmacsha1_start, hmacsha1_sink,
  401. hmacsha1_96_genresult, hmacsha1_96_verresult,
  402. "hmac-sha1-96", NULL,
  403. 12, 16,
  404. "bug-compatible HMAC-SHA1-96"
  405. };
  406. #ifdef COMPILER_SUPPORTS_SHA_NI
  407. #if defined _MSC_VER && defined _M_AMD64
  408. # include <intrin.h>
  409. #endif
  410. /*
  411. * Set target architecture for Clang and GCC
  412. */
  413. #if !defined(__clang__) && defined(__GNUC__)
  414. # pragma GCC target("sha")
  415. # pragma GCC target("sse4.1")
  416. #endif
  417. #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5))
  418. # define FUNC_ISA __attribute__ ((target("sse4.1,sha")))
  419. #else
  420. # define FUNC_ISA
  421. #endif
  422. #include <wmmintrin.h>
  423. #include <smmintrin.h>
  424. #include <immintrin.h>
  425. #if defined(__clang__) || defined(__GNUC__)
  426. #include <shaintrin.h>
  427. #endif
  428. /*
  429. * Determinators of CPU type
  430. */
  431. #if defined(__clang__) || defined(__GNUC__)
  432. #include <cpuid.h>
  433. int supports_sha_ni(void)
  434. {
  435. unsigned int CPUInfo[4];
  436. __cpuid(0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
  437. if (CPUInfo[0] < 7)
  438. return 0;
  439. __cpuid_count(7, 0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
  440. return CPUInfo[1] & (1 << 29); /* SHA */
  441. }
  442. #else /* defined(__clang__) || defined(__GNUC__) */
  443. int supports_sha_ni(void)
  444. {
  445. unsigned int CPUInfo[4];
  446. __cpuid(CPUInfo, 0);
  447. if (CPUInfo[0] < 7)
  448. return 0;
  449. __cpuidex(CPUInfo, 7, 0);
  450. return CPUInfo[1] & (1 << 29); /* Check SHA */
  451. }
  452. #endif /* defined(__clang__) || defined(__GNUC__) */
  453. /* SHA1 implementation using new instructions
  454. The code is based on Jeffrey Walton's SHA1 implementation:
  455. https://github.com/noloader/SHA-Intrinsics
  456. */
  457. FUNC_ISA
  458. static void sha1_ni_(SHA_State * s, const unsigned char *q, int len)
  459. {
  460. if (s->blkused && s->blkused + len < 64) {
  461. /*
  462. * Trivial case: just add to the block.
  463. */
  464. memcpy(s->block + s->blkused, q, len);
  465. s->blkused += len;
  466. } else {
  467. __m128i ABCD, ABCD_SAVE, E0, E0_SAVE, E1;
  468. const __m128i MASK = _mm_set_epi64x(0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL);
  469. ABCD = _mm_loadu_si128((const __m128i*) s->h);
  470. E0 = _mm_set_epi32(s->h[4], 0, 0, 0);
  471. ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
  472. /*
  473. * We must complete and process at least one block.
  474. */
  475. while (s->blkused + len >= 64)
  476. {
  477. __m128i MSG0, MSG1, MSG2, MSG3;
  478. memcpy(s->block + s->blkused, q, 64 - s->blkused);
  479. q += 64 - s->blkused;
  480. len -= 64 - s->blkused;
  481. /* Save current state */
  482. ABCD_SAVE = ABCD;
  483. E0_SAVE = E0;
  484. /* Rounds 0-3 */
  485. MSG0 = _mm_loadu_si128((const __m128i*)(s->block + 0));
  486. MSG0 = _mm_shuffle_epi8(MSG0, MASK);
  487. E0 = _mm_add_epi32(E0, MSG0);
  488. E1 = ABCD;
  489. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
  490. /* Rounds 4-7 */
  491. MSG1 = _mm_loadu_si128((const __m128i*)(s->block + 16));
  492. MSG1 = _mm_shuffle_epi8(MSG1, MASK);
  493. E1 = _mm_sha1nexte_epu32(E1, MSG1);
  494. E0 = ABCD;
  495. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
  496. MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
  497. /* Rounds 8-11 */
  498. MSG2 = _mm_loadu_si128((const __m128i*)(s->block + 32));
  499. MSG2 = _mm_shuffle_epi8(MSG2, MASK);
  500. E0 = _mm_sha1nexte_epu32(E0, MSG2);
  501. E1 = ABCD;
  502. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
  503. MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
  504. MSG0 = _mm_xor_si128(MSG0, MSG2);
  505. /* Rounds 12-15 */
  506. MSG3 = _mm_loadu_si128((const __m128i*)(s->block + 48));
  507. MSG3 = _mm_shuffle_epi8(MSG3, MASK);
  508. E1 = _mm_sha1nexte_epu32(E1, MSG3);
  509. E0 = ABCD;
  510. MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
  511. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
  512. MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
  513. MSG1 = _mm_xor_si128(MSG1, MSG3);
  514. /* Rounds 16-19 */
  515. E0 = _mm_sha1nexte_epu32(E0, MSG0);
  516. E1 = ABCD;
  517. MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
  518. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
  519. MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
  520. MSG2 = _mm_xor_si128(MSG2, MSG0);
  521. /* Rounds 20-23 */
  522. E1 = _mm_sha1nexte_epu32(E1, MSG1);
  523. E0 = ABCD;
  524. MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
  525. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
  526. MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
  527. MSG3 = _mm_xor_si128(MSG3, MSG1);
  528. /* Rounds 24-27 */
  529. E0 = _mm_sha1nexte_epu32(E0, MSG2);
  530. E1 = ABCD;
  531. MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
  532. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
  533. MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
  534. MSG0 = _mm_xor_si128(MSG0, MSG2);
  535. /* Rounds 28-31 */
  536. E1 = _mm_sha1nexte_epu32(E1, MSG3);
  537. E0 = ABCD;
  538. MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
  539. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
  540. MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
  541. MSG1 = _mm_xor_si128(MSG1, MSG3);
  542. /* Rounds 32-35 */
  543. E0 = _mm_sha1nexte_epu32(E0, MSG0);
  544. E1 = ABCD;
  545. MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
  546. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
  547. MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
  548. MSG2 = _mm_xor_si128(MSG2, MSG0);
  549. /* Rounds 36-39 */
  550. E1 = _mm_sha1nexte_epu32(E1, MSG1);
  551. E0 = ABCD;
  552. MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
  553. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
  554. MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
  555. MSG3 = _mm_xor_si128(MSG3, MSG1);
  556. /* Rounds 40-43 */
  557. E0 = _mm_sha1nexte_epu32(E0, MSG2);
  558. E1 = ABCD;
  559. MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
  560. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
  561. MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
  562. MSG0 = _mm_xor_si128(MSG0, MSG2);
  563. /* Rounds 44-47 */
  564. E1 = _mm_sha1nexte_epu32(E1, MSG3);
  565. E0 = ABCD;
  566. MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
  567. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
  568. MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
  569. MSG1 = _mm_xor_si128(MSG1, MSG3);
  570. /* Rounds 48-51 */
  571. E0 = _mm_sha1nexte_epu32(E0, MSG0);
  572. E1 = ABCD;
  573. MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
  574. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
  575. MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
  576. MSG2 = _mm_xor_si128(MSG2, MSG0);
  577. /* Rounds 52-55 */
  578. E1 = _mm_sha1nexte_epu32(E1, MSG1);
  579. E0 = ABCD;
  580. MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
  581. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
  582. MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
  583. MSG3 = _mm_xor_si128(MSG3, MSG1);
  584. /* Rounds 56-59 */
  585. E0 = _mm_sha1nexte_epu32(E0, MSG2);
  586. E1 = ABCD;
  587. MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
  588. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
  589. MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
  590. MSG0 = _mm_xor_si128(MSG0, MSG2);
  591. /* Rounds 60-63 */
  592. E1 = _mm_sha1nexte_epu32(E1, MSG3);
  593. E0 = ABCD;
  594. MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
  595. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
  596. MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
  597. MSG1 = _mm_xor_si128(MSG1, MSG3);
  598. /* Rounds 64-67 */
  599. E0 = _mm_sha1nexte_epu32(E0, MSG0);
  600. E1 = ABCD;
  601. MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
  602. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
  603. MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
  604. MSG2 = _mm_xor_si128(MSG2, MSG0);
  605. /* Rounds 68-71 */
  606. E1 = _mm_sha1nexte_epu32(E1, MSG1);
  607. E0 = ABCD;
  608. MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
  609. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
  610. MSG3 = _mm_xor_si128(MSG3, MSG1);
  611. /* Rounds 72-75 */
  612. E0 = _mm_sha1nexte_epu32(E0, MSG2);
  613. E1 = ABCD;
  614. MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
  615. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
  616. /* Rounds 76-79 */
  617. E1 = _mm_sha1nexte_epu32(E1, MSG3);
  618. E0 = ABCD;
  619. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
  620. /* Combine state */
  621. E0 = _mm_sha1nexte_epu32(E0, E0_SAVE);
  622. ABCD = _mm_add_epi32(ABCD, ABCD_SAVE);
  623. s->blkused = 0;
  624. }
  625. ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
  626. /* Save state */
  627. _mm_storeu_si128((__m128i*) s->h, ABCD);
  628. s->h[4] = _mm_extract_epi32(E0, 3);
  629. memcpy(s->block, q, len);
  630. s->blkused = len;
  631. }
  632. }
  633. /*
  634. * Workaround LLVM bug https://bugs.llvm.org/show_bug.cgi?id=34980
  635. */
  636. static void sha1_ni(SHA_State * s, const unsigned char *q, int len)
  637. {
  638. sha1_ni_(s, q, len);
  639. }
  640. #else /* COMPILER_SUPPORTS_AES_NI */
  641. static void sha1_ni(SHA_State * s, const unsigned char *q, int len)
  642. {
  643. assert(0);
  644. }
  645. int supports_sha_ni(void)
  646. {
  647. return 0;
  648. }
  649. #endif /* COMPILER_SUPPORTS_AES_NI */