pem_lib.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860
  1. /* crypto/pem/pem_lib.c */
  2. /* Copyright (C) 1995-1998 Eric Young ([email protected])
  3. * All rights reserved.
  4. *
  5. * This package is an SSL implementation written
  6. * by Eric Young ([email protected]).
  7. * The implementation was written so as to conform with Netscapes SSL.
  8. *
  9. * This library is free for commercial and non-commercial use as long as
  10. * the following conditions are aheared to. The following conditions
  11. * apply to all code found in this distribution, be it the RC4, RSA,
  12. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  13. * included with this distribution is covered by the same copyright terms
  14. * except that the holder is Tim Hudson ([email protected]).
  15. *
  16. * Copyright remains Eric Young's, and as such any Copyright notices in
  17. * the code are not to be removed.
  18. * If this package is used in a product, Eric Young should be given attribution
  19. * as the author of the parts of the library used.
  20. * This can be in the form of a textual message at program startup or
  21. * in documentation (online or textual) provided with the package.
  22. *
  23. * Redistribution and use in source and binary forms, with or without
  24. * modification, are permitted provided that the following conditions
  25. * are met:
  26. * 1. Redistributions of source code must retain the copyright
  27. * notice, this list of conditions and the following disclaimer.
  28. * 2. Redistributions in binary form must reproduce the above copyright
  29. * notice, this list of conditions and the following disclaimer in the
  30. * documentation and/or other materials provided with the distribution.
  31. * 3. All advertising materials mentioning features or use of this software
  32. * must display the following acknowledgement:
  33. * "This product includes cryptographic software written by
  34. * Eric Young ([email protected])"
  35. * The word 'cryptographic' can be left out if the rouines from the library
  36. * being used are not cryptographic related :-).
  37. * 4. If you include any Windows specific code (or a derivative thereof) from
  38. * the apps directory (application code) you must include an acknowledgement:
  39. * "This product includes software written by Tim Hudson ([email protected])"
  40. *
  41. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  42. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  43. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  44. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  45. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  46. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  47. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  48. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  49. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  50. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  51. * SUCH DAMAGE.
  52. *
  53. * The licence and distribution terms for any publically available version or
  54. * derivative of this code cannot be changed. i.e. this code cannot simply be
  55. * copied and put under another distribution licence
  56. * [including the GNU Public Licence.]
  57. */
  58. #include <stdio.h>
  59. #include <ctype.h>
  60. #include "cryptlib.h"
  61. #include <openssl/buffer.h>
  62. #include <openssl/objects.h>
  63. #include <openssl/evp.h>
  64. #include <openssl/rand.h>
  65. #include <openssl/x509.h>
  66. #include <openssl/pem.h>
  67. #include <openssl/pkcs12.h>
  68. #include "asn1_locl.h"
  69. #ifndef OPENSSL_NO_DES
  70. # include <openssl/des.h>
  71. #endif
  72. #ifndef OPENSSL_NO_ENGINE
  73. # include <openssl/engine.h>
  74. #endif
  75. const char PEM_version[] = "PEM" OPENSSL_VERSION_PTEXT;
  76. #define MIN_LENGTH 4
  77. static int load_iv(char **fromp, unsigned char *to, int num);
  78. static int check_pem(const char *nm, const char *name);
  79. int pem_check_suffix(const char *pem_str, const char *suffix);
  80. int PEM_def_callback(char *buf, int num, int w, void *key)
  81. {
  82. #ifdef OPENSSL_NO_FP_API
  83. /*
  84. * We should not ever call the default callback routine from windows.
  85. */
  86. PEMerr(PEM_F_PEM_DEF_CALLBACK, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
  87. return (-1);
  88. #else
  89. int i, j;
  90. const char *prompt;
  91. if (key) {
  92. i = strlen(key);
  93. i = (i > num) ? num : i;
  94. memcpy(buf, key, i);
  95. return (i);
  96. }
  97. prompt = EVP_get_pw_prompt();
  98. if (prompt == NULL)
  99. prompt = "Enter PEM pass phrase:";
  100. for (;;) {
  101. i = EVP_read_pw_string_min(buf, MIN_LENGTH, num, prompt, w);
  102. if (i != 0) {
  103. PEMerr(PEM_F_PEM_DEF_CALLBACK, PEM_R_PROBLEMS_GETTING_PASSWORD);
  104. memset(buf, 0, (unsigned int)num);
  105. return (-1);
  106. }
  107. j = strlen(buf);
  108. if (j < MIN_LENGTH) {
  109. fprintf(stderr,
  110. "phrase is too short, needs to be at least %d chars\n",
  111. MIN_LENGTH);
  112. } else
  113. break;
  114. }
  115. return (j);
  116. #endif
  117. }
  118. void PEM_proc_type(char *buf, int type)
  119. {
  120. const char *str;
  121. if (type == PEM_TYPE_ENCRYPTED)
  122. str = "ENCRYPTED";
  123. else if (type == PEM_TYPE_MIC_CLEAR)
  124. str = "MIC-CLEAR";
  125. else if (type == PEM_TYPE_MIC_ONLY)
  126. str = "MIC-ONLY";
  127. else
  128. str = "BAD-TYPE";
  129. BUF_strlcat(buf, "Proc-Type: 4,", PEM_BUFSIZE);
  130. BUF_strlcat(buf, str, PEM_BUFSIZE);
  131. BUF_strlcat(buf, "\n", PEM_BUFSIZE);
  132. }
  133. void PEM_dek_info(char *buf, const char *type, int len, char *str)
  134. {
  135. static const unsigned char map[17] = "0123456789ABCDEF";
  136. long i;
  137. int j;
  138. BUF_strlcat(buf, "DEK-Info: ", PEM_BUFSIZE);
  139. BUF_strlcat(buf, type, PEM_BUFSIZE);
  140. BUF_strlcat(buf, ",", PEM_BUFSIZE);
  141. j = strlen(buf);
  142. if (j + (len * 2) + 1 > PEM_BUFSIZE)
  143. return;
  144. for (i = 0; i < len; i++) {
  145. buf[j + i * 2] = map[(str[i] >> 4) & 0x0f];
  146. buf[j + i * 2 + 1] = map[(str[i]) & 0x0f];
  147. }
  148. buf[j + i * 2] = '\n';
  149. buf[j + i * 2 + 1] = '\0';
  150. }
  151. #ifndef OPENSSL_NO_FP_API
  152. void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x,
  153. pem_password_cb *cb, void *u)
  154. {
  155. BIO *b;
  156. void *ret;
  157. if ((b = BIO_new(BIO_s_file())) == NULL) {
  158. PEMerr(PEM_F_PEM_ASN1_READ, ERR_R_BUF_LIB);
  159. return (0);
  160. }
  161. BIO_set_fp(b, fp, BIO_NOCLOSE);
  162. ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u);
  163. BIO_free(b);
  164. return (ret);
  165. }
  166. #endif
  167. static int check_pem(const char *nm, const char *name)
  168. {
  169. /* Normal matching nm and name */
  170. if (!strcmp(nm, name))
  171. return 1;
  172. /* Make PEM_STRING_EVP_PKEY match any private key */
  173. if (!strcmp(name, PEM_STRING_EVP_PKEY)) {
  174. int slen;
  175. const EVP_PKEY_ASN1_METHOD *ameth;
  176. if (!strcmp(nm, PEM_STRING_PKCS8))
  177. return 1;
  178. if (!strcmp(nm, PEM_STRING_PKCS8INF))
  179. return 1;
  180. slen = pem_check_suffix(nm, "PRIVATE KEY");
  181. if (slen > 0) {
  182. /*
  183. * NB: ENGINE implementations wont contain a deprecated old
  184. * private key decode function so don't look for them.
  185. */
  186. ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen);
  187. if (ameth && ameth->old_priv_decode)
  188. return 1;
  189. }
  190. return 0;
  191. }
  192. if (!strcmp(name, PEM_STRING_PARAMETERS)) {
  193. int slen;
  194. const EVP_PKEY_ASN1_METHOD *ameth;
  195. slen = pem_check_suffix(nm, "PARAMETERS");
  196. if (slen > 0) {
  197. ENGINE *e;
  198. ameth = EVP_PKEY_asn1_find_str(&e, nm, slen);
  199. if (ameth) {
  200. int r;
  201. if (ameth->param_decode)
  202. r = 1;
  203. else
  204. r = 0;
  205. #ifndef OPENSSL_NO_ENGINE
  206. if (e)
  207. ENGINE_finish(e);
  208. #endif
  209. return r;
  210. }
  211. }
  212. return 0;
  213. }
  214. /* Permit older strings */
  215. if (!strcmp(nm, PEM_STRING_X509_OLD) && !strcmp(name, PEM_STRING_X509))
  216. return 1;
  217. if (!strcmp(nm, PEM_STRING_X509_REQ_OLD) &&
  218. !strcmp(name, PEM_STRING_X509_REQ))
  219. return 1;
  220. /* Allow normal certs to be read as trusted certs */
  221. if (!strcmp(nm, PEM_STRING_X509) &&
  222. !strcmp(name, PEM_STRING_X509_TRUSTED))
  223. return 1;
  224. if (!strcmp(nm, PEM_STRING_X509_OLD) &&
  225. !strcmp(name, PEM_STRING_X509_TRUSTED))
  226. return 1;
  227. /* Some CAs use PKCS#7 with CERTIFICATE headers */
  228. if (!strcmp(nm, PEM_STRING_X509) && !strcmp(name, PEM_STRING_PKCS7))
  229. return 1;
  230. if (!strcmp(nm, PEM_STRING_PKCS7_SIGNED) &&
  231. !strcmp(name, PEM_STRING_PKCS7))
  232. return 1;
  233. #ifndef OPENSSL_NO_CMS
  234. if (!strcmp(nm, PEM_STRING_X509) && !strcmp(name, PEM_STRING_CMS))
  235. return 1;
  236. /* Allow CMS to be read from PKCS#7 headers */
  237. if (!strcmp(nm, PEM_STRING_PKCS7) && !strcmp(name, PEM_STRING_CMS))
  238. return 1;
  239. #endif
  240. return 0;
  241. }
  242. int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm,
  243. const char *name, BIO *bp, pem_password_cb *cb,
  244. void *u)
  245. {
  246. EVP_CIPHER_INFO cipher;
  247. char *nm = NULL, *header = NULL;
  248. unsigned char *data = NULL;
  249. long len;
  250. int ret = 0;
  251. for (;;) {
  252. if (!PEM_read_bio(bp, &nm, &header, &data, &len)) {
  253. if (ERR_GET_REASON(ERR_peek_error()) == PEM_R_NO_START_LINE)
  254. ERR_add_error_data(2, "Expecting: ", name);
  255. return 0;
  256. }
  257. if (check_pem(nm, name))
  258. break;
  259. OPENSSL_free(nm);
  260. OPENSSL_free(header);
  261. OPENSSL_free(data);
  262. }
  263. if (!PEM_get_EVP_CIPHER_INFO(header, &cipher))
  264. goto err;
  265. if (!PEM_do_header(&cipher, data, &len, cb, u))
  266. goto err;
  267. *pdata = data;
  268. *plen = len;
  269. if (pnm)
  270. *pnm = nm;
  271. ret = 1;
  272. err:
  273. if (!ret || !pnm)
  274. OPENSSL_free(nm);
  275. OPENSSL_free(header);
  276. if (!ret)
  277. OPENSSL_free(data);
  278. return ret;
  279. }
  280. #ifndef OPENSSL_NO_FP_API
  281. int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp,
  282. void *x, const EVP_CIPHER *enc, unsigned char *kstr,
  283. int klen, pem_password_cb *callback, void *u)
  284. {
  285. BIO *b;
  286. int ret;
  287. if ((b = BIO_new(BIO_s_file())) == NULL) {
  288. PEMerr(PEM_F_PEM_ASN1_WRITE, ERR_R_BUF_LIB);
  289. return (0);
  290. }
  291. BIO_set_fp(b, fp, BIO_NOCLOSE);
  292. ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u);
  293. BIO_free(b);
  294. return (ret);
  295. }
  296. #endif
  297. int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp,
  298. void *x, const EVP_CIPHER *enc, unsigned char *kstr,
  299. int klen, pem_password_cb *callback, void *u)
  300. {
  301. EVP_CIPHER_CTX ctx;
  302. int dsize = 0, i, j, ret = 0;
  303. unsigned char *p, *data = NULL;
  304. const char *objstr = NULL;
  305. char buf[PEM_BUFSIZE];
  306. unsigned char key[EVP_MAX_KEY_LENGTH];
  307. unsigned char iv[EVP_MAX_IV_LENGTH];
  308. if (enc != NULL) {
  309. objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc));
  310. if (objstr == NULL || EVP_CIPHER_iv_length(enc) == 0) {
  311. PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, PEM_R_UNSUPPORTED_CIPHER);
  312. goto err;
  313. }
  314. }
  315. if ((dsize = i2d(x, NULL)) < 0) {
  316. PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_ASN1_LIB);
  317. dsize = 0;
  318. goto err;
  319. }
  320. /* dzise + 8 bytes are needed */
  321. /* actually it needs the cipher block size extra... */
  322. data = (unsigned char *)OPENSSL_malloc((unsigned int)dsize + 20);
  323. if (data == NULL) {
  324. PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_MALLOC_FAILURE);
  325. goto err;
  326. }
  327. p = data;
  328. i = i2d(x, &p);
  329. if (enc != NULL) {
  330. if (kstr == NULL) {
  331. if (callback == NULL)
  332. klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u);
  333. else
  334. klen = (*callback) (buf, PEM_BUFSIZE, 1, u);
  335. if (klen <= 0) {
  336. PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, PEM_R_READ_KEY);
  337. goto err;
  338. }
  339. #ifdef CHARSET_EBCDIC
  340. /* Convert the pass phrase from EBCDIC */
  341. ebcdic2ascii(buf, buf, klen);
  342. #endif
  343. kstr = (unsigned char *)buf;
  344. }
  345. RAND_add(data, i, 0); /* put in the RSA key. */
  346. OPENSSL_assert(enc->iv_len <= (int)sizeof(iv));
  347. if (RAND_pseudo_bytes(iv, enc->iv_len) < 0) /* Generate a salt */
  348. goto err;
  349. /*
  350. * The 'iv' is used as the iv and as a salt. It is NOT taken from
  351. * the BytesToKey function
  352. */
  353. if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, key, NULL))
  354. goto err;
  355. if (kstr == (unsigned char *)buf)
  356. OPENSSL_cleanse(buf, PEM_BUFSIZE);
  357. OPENSSL_assert(strlen(objstr) + 23 + 2 * enc->iv_len + 13 <=
  358. sizeof buf);
  359. buf[0] = '\0';
  360. PEM_proc_type(buf, PEM_TYPE_ENCRYPTED);
  361. PEM_dek_info(buf, objstr, enc->iv_len, (char *)iv);
  362. /* k=strlen(buf); */
  363. EVP_CIPHER_CTX_init(&ctx);
  364. ret = 1;
  365. if (!EVP_EncryptInit_ex(&ctx, enc, NULL, key, iv)
  366. || !EVP_EncryptUpdate(&ctx, data, &j, data, i)
  367. || !EVP_EncryptFinal_ex(&ctx, &(data[j]), &i))
  368. ret = 0;
  369. EVP_CIPHER_CTX_cleanup(&ctx);
  370. if (ret == 0)
  371. goto err;
  372. i += j;
  373. } else {
  374. ret = 1;
  375. buf[0] = '\0';
  376. }
  377. i = PEM_write_bio(bp, name, buf, data, i);
  378. if (i <= 0)
  379. ret = 0;
  380. err:
  381. OPENSSL_cleanse(key, sizeof(key));
  382. OPENSSL_cleanse(iv, sizeof(iv));
  383. OPENSSL_cleanse((char *)&ctx, sizeof(ctx));
  384. OPENSSL_cleanse(buf, PEM_BUFSIZE);
  385. if (data != NULL) {
  386. OPENSSL_cleanse(data, (unsigned int)dsize);
  387. OPENSSL_free(data);
  388. }
  389. return (ret);
  390. }
  391. int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen,
  392. pem_password_cb *callback, void *u)
  393. {
  394. int i = 0, j, o, klen;
  395. long len;
  396. EVP_CIPHER_CTX ctx;
  397. unsigned char key[EVP_MAX_KEY_LENGTH];
  398. char buf[PEM_BUFSIZE];
  399. len = *plen;
  400. if (cipher->cipher == NULL)
  401. return (1);
  402. if (callback == NULL)
  403. klen = PEM_def_callback(buf, PEM_BUFSIZE, 0, u);
  404. else
  405. klen = callback(buf, PEM_BUFSIZE, 0, u);
  406. if (klen <= 0) {
  407. PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_PASSWORD_READ);
  408. return (0);
  409. }
  410. #ifdef CHARSET_EBCDIC
  411. /* Convert the pass phrase from EBCDIC */
  412. ebcdic2ascii(buf, buf, klen);
  413. #endif
  414. if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]),
  415. (unsigned char *)buf, klen, 1, key, NULL))
  416. return 0;
  417. j = (int)len;
  418. EVP_CIPHER_CTX_init(&ctx);
  419. o = EVP_DecryptInit_ex(&ctx, cipher->cipher, NULL, key, &(cipher->iv[0]));
  420. if (o)
  421. o = EVP_DecryptUpdate(&ctx, data, &i, data, j);
  422. if (o)
  423. o = EVP_DecryptFinal_ex(&ctx, &(data[i]), &j);
  424. EVP_CIPHER_CTX_cleanup(&ctx);
  425. OPENSSL_cleanse((char *)buf, sizeof(buf));
  426. OPENSSL_cleanse((char *)key, sizeof(key));
  427. j += i;
  428. if (!o) {
  429. PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_DECRYPT);
  430. return (0);
  431. }
  432. *plen = j;
  433. return (1);
  434. }
  435. int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher)
  436. {
  437. const EVP_CIPHER *enc = NULL;
  438. char *p, c;
  439. char **header_pp = &header;
  440. cipher->cipher = NULL;
  441. if ((header == NULL) || (*header == '\0') || (*header == '\n'))
  442. return (1);
  443. if (strncmp(header, "Proc-Type: ", 11) != 0) {
  444. PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_PROC_TYPE);
  445. return (0);
  446. }
  447. header += 11;
  448. if (*header != '4')
  449. return (0);
  450. header++;
  451. if (*header != ',')
  452. return (0);
  453. header++;
  454. if (strncmp(header, "ENCRYPTED", 9) != 0) {
  455. PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_ENCRYPTED);
  456. return (0);
  457. }
  458. for (; (*header != '\n') && (*header != '\0'); header++) ;
  459. if (*header == '\0') {
  460. PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_SHORT_HEADER);
  461. return (0);
  462. }
  463. header++;
  464. if (strncmp(header, "DEK-Info: ", 10) != 0) {
  465. PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_DEK_INFO);
  466. return (0);
  467. }
  468. header += 10;
  469. p = header;
  470. for (;;) {
  471. c = *header;
  472. #ifndef CHARSET_EBCDIC
  473. if (!(((c >= 'A') && (c <= 'Z')) || (c == '-') ||
  474. ((c >= '0') && (c <= '9'))))
  475. break;
  476. #else
  477. if (!(isupper(c) || (c == '-') || isdigit(c)))
  478. break;
  479. #endif
  480. header++;
  481. }
  482. *header = '\0';
  483. cipher->cipher = enc = EVP_get_cipherbyname(p);
  484. *header = c;
  485. header++;
  486. if (enc == NULL) {
  487. PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_UNSUPPORTED_ENCRYPTION);
  488. return (0);
  489. }
  490. if (!load_iv(header_pp, &(cipher->iv[0]), enc->iv_len))
  491. return (0);
  492. return (1);
  493. }
  494. static int load_iv(char **fromp, unsigned char *to, int num)
  495. {
  496. int v, i;
  497. char *from;
  498. from = *fromp;
  499. for (i = 0; i < num; i++)
  500. to[i] = 0;
  501. num *= 2;
  502. for (i = 0; i < num; i++) {
  503. if ((*from >= '0') && (*from <= '9'))
  504. v = *from - '0';
  505. else if ((*from >= 'A') && (*from <= 'F'))
  506. v = *from - 'A' + 10;
  507. else if ((*from >= 'a') && (*from <= 'f'))
  508. v = *from - 'a' + 10;
  509. else {
  510. PEMerr(PEM_F_LOAD_IV, PEM_R_BAD_IV_CHARS);
  511. return (0);
  512. }
  513. from++;
  514. to[i / 2] |= v << (long)((!(i & 1)) * 4);
  515. }
  516. *fromp = from;
  517. return (1);
  518. }
  519. #ifndef OPENSSL_NO_FP_API
  520. int PEM_write(FILE *fp, char *name, char *header, unsigned char *data,
  521. long len)
  522. {
  523. BIO *b;
  524. int ret;
  525. if ((b = BIO_new(BIO_s_file())) == NULL) {
  526. PEMerr(PEM_F_PEM_WRITE, ERR_R_BUF_LIB);
  527. return (0);
  528. }
  529. BIO_set_fp(b, fp, BIO_NOCLOSE);
  530. ret = PEM_write_bio(b, name, header, data, len);
  531. BIO_free(b);
  532. return (ret);
  533. }
  534. #endif
  535. int PEM_write_bio(BIO *bp, const char *name, char *header,
  536. unsigned char *data, long len)
  537. {
  538. int nlen, n, i, j, outl;
  539. unsigned char *buf = NULL;
  540. EVP_ENCODE_CTX ctx;
  541. int reason = ERR_R_BUF_LIB;
  542. EVP_EncodeInit(&ctx);
  543. nlen = strlen(name);
  544. if ((BIO_write(bp, "-----BEGIN ", 11) != 11) ||
  545. (BIO_write(bp, name, nlen) != nlen) ||
  546. (BIO_write(bp, "-----\n", 6) != 6))
  547. goto err;
  548. i = strlen(header);
  549. if (i > 0) {
  550. if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n", 1) != 1))
  551. goto err;
  552. }
  553. buf = OPENSSL_malloc(PEM_BUFSIZE * 8);
  554. if (buf == NULL) {
  555. reason = ERR_R_MALLOC_FAILURE;
  556. goto err;
  557. }
  558. i = j = 0;
  559. while (len > 0) {
  560. n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len);
  561. EVP_EncodeUpdate(&ctx, buf, &outl, &(data[j]), n);
  562. if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl))
  563. goto err;
  564. i += outl;
  565. len -= n;
  566. j += n;
  567. }
  568. EVP_EncodeFinal(&ctx, buf, &outl);
  569. if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl))
  570. goto err;
  571. OPENSSL_cleanse(buf, PEM_BUFSIZE * 8);
  572. OPENSSL_free(buf);
  573. buf = NULL;
  574. if ((BIO_write(bp, "-----END ", 9) != 9) ||
  575. (BIO_write(bp, name, nlen) != nlen) ||
  576. (BIO_write(bp, "-----\n", 6) != 6))
  577. goto err;
  578. return (i + outl);
  579. err:
  580. if (buf) {
  581. OPENSSL_cleanse(buf, PEM_BUFSIZE * 8);
  582. OPENSSL_free(buf);
  583. }
  584. PEMerr(PEM_F_PEM_WRITE_BIO, reason);
  585. return (0);
  586. }
  587. #ifndef OPENSSL_NO_FP_API
  588. int PEM_read(FILE *fp, char **name, char **header, unsigned char **data,
  589. long *len)
  590. {
  591. BIO *b;
  592. int ret;
  593. if ((b = BIO_new(BIO_s_file())) == NULL) {
  594. PEMerr(PEM_F_PEM_READ, ERR_R_BUF_LIB);
  595. return (0);
  596. }
  597. BIO_set_fp(b, fp, BIO_NOCLOSE);
  598. ret = PEM_read_bio(b, name, header, data, len);
  599. BIO_free(b);
  600. return (ret);
  601. }
  602. #endif
  603. int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data,
  604. long *len)
  605. {
  606. EVP_ENCODE_CTX ctx;
  607. int end = 0, i, k, bl = 0, hl = 0, nohead = 0;
  608. char buf[256];
  609. BUF_MEM *nameB;
  610. BUF_MEM *headerB;
  611. BUF_MEM *dataB, *tmpB;
  612. nameB = BUF_MEM_new();
  613. headerB = BUF_MEM_new();
  614. dataB = BUF_MEM_new();
  615. if ((nameB == NULL) || (headerB == NULL) || (dataB == NULL)) {
  616. BUF_MEM_free(nameB);
  617. BUF_MEM_free(headerB);
  618. BUF_MEM_free(dataB);
  619. PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE);
  620. return (0);
  621. }
  622. buf[254] = '\0';
  623. for (;;) {
  624. i = BIO_gets(bp, buf, 254);
  625. if (i <= 0) {
  626. PEMerr(PEM_F_PEM_READ_BIO, PEM_R_NO_START_LINE);
  627. goto err;
  628. }
  629. while ((i >= 0) && (buf[i] <= ' '))
  630. i--;
  631. buf[++i] = '\n';
  632. buf[++i] = '\0';
  633. if (strncmp(buf, "-----BEGIN ", 11) == 0) {
  634. i = strlen(&(buf[11]));
  635. if (strncmp(&(buf[11 + i - 6]), "-----\n", 6) != 0)
  636. continue;
  637. if (!BUF_MEM_grow(nameB, i + 9)) {
  638. PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE);
  639. goto err;
  640. }
  641. memcpy(nameB->data, &(buf[11]), i - 6);
  642. nameB->data[i - 6] = '\0';
  643. break;
  644. }
  645. }
  646. hl = 0;
  647. if (!BUF_MEM_grow(headerB, 256)) {
  648. PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE);
  649. goto err;
  650. }
  651. headerB->data[0] = '\0';
  652. for (;;) {
  653. i = BIO_gets(bp, buf, 254);
  654. if (i <= 0)
  655. break;
  656. while ((i >= 0) && (buf[i] <= ' '))
  657. i--;
  658. buf[++i] = '\n';
  659. buf[++i] = '\0';
  660. if (buf[0] == '\n')
  661. break;
  662. if (!BUF_MEM_grow(headerB, hl + i + 9)) {
  663. PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE);
  664. goto err;
  665. }
  666. if (strncmp(buf, "-----END ", 9) == 0) {
  667. nohead = 1;
  668. break;
  669. }
  670. memcpy(&(headerB->data[hl]), buf, i);
  671. headerB->data[hl + i] = '\0';
  672. hl += i;
  673. }
  674. bl = 0;
  675. if (!BUF_MEM_grow(dataB, 1024)) {
  676. PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE);
  677. goto err;
  678. }
  679. dataB->data[0] = '\0';
  680. if (!nohead) {
  681. for (;;) {
  682. i = BIO_gets(bp, buf, 254);
  683. if (i <= 0)
  684. break;
  685. while ((i >= 0) && (buf[i] <= ' '))
  686. i--;
  687. buf[++i] = '\n';
  688. buf[++i] = '\0';
  689. if (i != 65)
  690. end = 1;
  691. if (strncmp(buf, "-----END ", 9) == 0)
  692. break;
  693. if (i > 65)
  694. break;
  695. if (!BUF_MEM_grow_clean(dataB, i + bl + 9)) {
  696. PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE);
  697. goto err;
  698. }
  699. memcpy(&(dataB->data[bl]), buf, i);
  700. dataB->data[bl + i] = '\0';
  701. bl += i;
  702. if (end) {
  703. buf[0] = '\0';
  704. i = BIO_gets(bp, buf, 254);
  705. if (i <= 0)
  706. break;
  707. while ((i >= 0) && (buf[i] <= ' '))
  708. i--;
  709. buf[++i] = '\n';
  710. buf[++i] = '\0';
  711. break;
  712. }
  713. }
  714. } else {
  715. tmpB = headerB;
  716. headerB = dataB;
  717. dataB = tmpB;
  718. bl = hl;
  719. }
  720. i = strlen(nameB->data);
  721. if ((strncmp(buf, "-----END ", 9) != 0) ||
  722. (strncmp(nameB->data, &(buf[9]), i) != 0) ||
  723. (strncmp(&(buf[9 + i]), "-----\n", 6) != 0)) {
  724. PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_END_LINE);
  725. goto err;
  726. }
  727. EVP_DecodeInit(&ctx);
  728. i = EVP_DecodeUpdate(&ctx,
  729. (unsigned char *)dataB->data, &bl,
  730. (unsigned char *)dataB->data, bl);
  731. if (i < 0) {
  732. PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_BASE64_DECODE);
  733. goto err;
  734. }
  735. i = EVP_DecodeFinal(&ctx, (unsigned char *)&(dataB->data[bl]), &k);
  736. if (i < 0) {
  737. PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_BASE64_DECODE);
  738. goto err;
  739. }
  740. bl += k;
  741. if (bl == 0)
  742. goto err;
  743. *name = nameB->data;
  744. *header = headerB->data;
  745. *data = (unsigned char *)dataB->data;
  746. *len = bl;
  747. OPENSSL_free(nameB);
  748. OPENSSL_free(headerB);
  749. OPENSSL_free(dataB);
  750. return (1);
  751. err:
  752. BUF_MEM_free(nameB);
  753. BUF_MEM_free(headerB);
  754. BUF_MEM_free(dataB);
  755. return (0);
  756. }
  757. /*
  758. * Check pem string and return prefix length. If for example the pem_str ==
  759. * "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" the return value is 3 for the
  760. * string "RSA".
  761. */
  762. int pem_check_suffix(const char *pem_str, const char *suffix)
  763. {
  764. int pem_len = strlen(pem_str);
  765. int suffix_len = strlen(suffix);
  766. const char *p;
  767. if (suffix_len + 1 >= pem_len)
  768. return 0;
  769. p = pem_str + pem_len - suffix_len;
  770. if (strcmp(p, suffix))
  771. return 0;
  772. p--;
  773. if (*p != ' ')
  774. return 0;
  775. return p - pem_str;
  776. }