mpint.c 93 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833
  1. #include <assert.h>
  2. #include <limits.h>
  3. #include <stdio.h>
  4. #include "defs.h"
  5. #include "misc.h"
  6. #include "puttymem.h"
  7. #include "mpint.h"
  8. #include "mpint_i.h"
  9. #pragma warn -ngu // WINSCP
  10. #define SIZE_T_BITS (CHAR_BIT * sizeof(size_t))
  11. /*
  12. * Inline helpers to take min and max of size_t values, used
  13. * throughout this code.
  14. */
  15. static inline size_t size_t_min(size_t a, size_t b)
  16. {
  17. return a < b ? a : b;
  18. }
  19. static inline size_t size_t_max(size_t a, size_t b)
  20. {
  21. return a > b ? a : b;
  22. }
  23. /*
  24. * Helper to fetch a word of data from x with array overflow checking.
  25. * If x is too short to have that word, 0 is returned.
  26. */
  27. static inline BignumInt mp_word(mp_int *x, size_t i)
  28. {
  29. return i < x->nw ? x->w[i] : 0;
  30. }
  31. /*
  32. * Shift an ordinary C integer by BIGNUM_INT_BITS, in a way that
  33. * avoids writing a shift operator whose RHS is greater or equal to
  34. * the size of the type, because that's undefined behaviour in C.
  35. *
  36. * In fact we must avoid even writing it in a definitely-untaken
  37. * branch of an if, because compilers will sometimes warn about
  38. * that. So you can't just write 'shift too big ? 0 : n >> shift',
  39. * because even if 'shift too big' is a constant-expression
  40. * evaluating to false, you can still get complaints about the
  41. * else clause of the ?:.
  42. *
  43. * So we have to re-check _inside_ that clause, so that the shift
  44. * count is reset to something nonsensical but safe in the case
  45. * where the clause wasn't going to be taken anyway.
  46. */
  47. static uintmax_t shift_right_by_one_word(uintmax_t n)
  48. {
  49. bool shift_too_big = BIGNUM_INT_BYTES >= sizeof(n);
  50. return shift_too_big ? 0 :
  51. n >> (shift_too_big ? 0 : BIGNUM_INT_BITS);
  52. }
  53. static uintmax_t shift_left_by_one_word(uintmax_t n)
  54. {
  55. bool shift_too_big = BIGNUM_INT_BYTES >= sizeof(n);
  56. return shift_too_big ? 0 :
  57. n << (shift_too_big ? 0 : BIGNUM_INT_BITS);
  58. }
  59. mp_int *mp_make_sized(size_t nw)
  60. {
  61. mp_int *x = snew_plus(mp_int, nw * sizeof(BignumInt));
  62. assert(nw); /* we outlaw the zero-word mp_int */
  63. x->nw = nw;
  64. x->w = snew_plus_get_aux(x);
  65. mp_clear(x);
  66. return x;
  67. }
  68. mp_int *mp_new(size_t maxbits)
  69. {
  70. size_t words = (maxbits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  71. return mp_make_sized(words);
  72. }
  73. mp_int *mp_from_integer(uintmax_t n)
  74. {
  75. mp_int *x = mp_make_sized(
  76. (sizeof(n) + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES);
  77. size_t i; // WINSCP
  78. for (i = 0; i < x->nw; i++)
  79. x->w[i] = n >> (i * BIGNUM_INT_BITS);
  80. return x;
  81. }
  82. size_t mp_max_bytes(mp_int *x)
  83. {
  84. return x->nw * BIGNUM_INT_BYTES;
  85. }
  86. size_t mp_max_bits(mp_int *x)
  87. {
  88. return x->nw * BIGNUM_INT_BITS;
  89. }
  90. void mp_free(mp_int *x)
  91. {
  92. mp_clear(x);
  93. smemclr(x, sizeof(*x));
  94. sfree(x);
  95. }
  96. void mp_dump(FILE *fp, const char *prefix, mp_int *x, const char *suffix)
  97. {
  98. size_t i; // WINSCP
  99. fprintf(fp, "%s0x", prefix);
  100. for (i = mp_max_bytes(x); i-- > 0 ;)
  101. fprintf(fp, "%02X", mp_get_byte(x, i));
  102. fputs(suffix, fp);
  103. }
  104. void mp_copy_into(mp_int *dest, mp_int *src)
  105. {
  106. size_t copy_nw = size_t_min(dest->nw, src->nw);
  107. memmove(dest->w, src->w, copy_nw * sizeof(BignumInt));
  108. smemclr(dest->w + copy_nw, (dest->nw - copy_nw) * sizeof(BignumInt));
  109. }
  110. void mp_copy_integer_into(mp_int *r, uintmax_t n)
  111. {
  112. size_t i; // WINSCP
  113. for (i = 0; i < r->nw; i++) {
  114. r->w[i] = n;
  115. n = shift_right_by_one_word(n);
  116. }
  117. }
  118. /*
  119. * Conditional selection is done by negating 'which', to give a mask
  120. * word which is all 1s if which==1 and all 0s if which==0. Then you
  121. * can select between two inputs a,b without data-dependent control
  122. * flow by XORing them to get their difference; ANDing with the mask
  123. * word to replace that difference with 0 if which==0; and XORing that
  124. * into a, which will either turn it into b or leave it alone.
  125. *
  126. * This trick will be used throughout this code and taken as read the
  127. * rest of the time (or else I'd be here all week typing comments),
  128. * but I felt I ought to explain it in words _once_.
  129. */
  130. void mp_select_into(mp_int *dest, mp_int *src0, mp_int *src1,
  131. unsigned which)
  132. {
  133. BignumInt mask = -(BignumInt)(1 & which);
  134. size_t i; // WINSCP
  135. for (i = 0; i < dest->nw; i++) {
  136. BignumInt srcword0 = mp_word(src0, i), srcword1 = mp_word(src1, i);
  137. dest->w[i] = srcword0 ^ ((srcword1 ^ srcword0) & mask);
  138. }
  139. }
  140. void mp_cond_swap(mp_int *x0, mp_int *x1, unsigned swap)
  141. {
  142. pinitassert(x0->nw == x1->nw);
  143. volatile BignumInt mask = -(BignumInt)(1 & swap);
  144. size_t i; // WINSCP
  145. for (i = 0; i < x0->nw; i++) {
  146. BignumInt diff = (x0->w[i] ^ x1->w[i]) & mask;
  147. x0->w[i] ^= diff;
  148. x1->w[i] ^= diff;
  149. }
  150. }
  151. void mp_clear(mp_int *x)
  152. {
  153. smemclr(x->w, x->nw * sizeof(BignumInt));
  154. }
  155. void mp_cond_clear(mp_int *x, unsigned clear)
  156. {
  157. BignumInt mask = ~-(BignumInt)(1 & clear);
  158. size_t i; // WINSCP
  159. for (i = 0; i < x->nw; i++)
  160. x->w[i] &= mask;
  161. }
  162. /*
  163. * Common code between mp_from_bytes_{le,be} which reads bytes in an
  164. * arbitrary arithmetic progression.
  165. */
  166. static mp_int *mp_from_bytes_int(ptrlen bytes, size_t m, size_t c)
  167. {
  168. size_t nw = (bytes.len + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES;
  169. nw = size_t_max(nw, 1);
  170. { // WINSCP
  171. mp_int *n = mp_make_sized(nw);
  172. size_t i; // WINSCP
  173. for (i = 0; i < bytes.len; i++)
  174. n->w[i / BIGNUM_INT_BYTES] |=
  175. (BignumInt)(((const unsigned char *)bytes.ptr)[m*i+c]) <<
  176. (8 * (i % BIGNUM_INT_BYTES));
  177. return n;
  178. } // WINSCP
  179. }
  180. mp_int *mp_from_bytes_le(ptrlen bytes)
  181. {
  182. return mp_from_bytes_int(bytes, 1, 0);
  183. }
  184. mp_int *mp_from_bytes_be(ptrlen bytes)
  185. {
  186. return mp_from_bytes_int(bytes, -1, bytes.len - 1);
  187. }
  188. static mp_int *mp_from_words(size_t nw, const BignumInt *w)
  189. {
  190. mp_int *x = mp_make_sized(nw);
  191. memcpy(x->w, w, x->nw * sizeof(BignumInt));
  192. return x;
  193. }
  194. /*
  195. * Decimal-to-binary conversion: just go through the input string
  196. * adding on the decimal value of each digit, and then multiplying the
  197. * number so far by 10.
  198. */
  199. mp_int *mp_from_decimal_pl(ptrlen decimal)
  200. {
  201. /* 196/59 is an upper bound (and also a continued-fraction
  202. * convergent) for log2(10), so this conservatively estimates the
  203. * number of bits that will be needed to store any number that can
  204. * be written in this many decimal digits. */
  205. pinitassert(decimal.len < (~(size_t)0) / 196);
  206. size_t bits = 196 * decimal.len / 59;
  207. /* Now round that up to words. */
  208. size_t words = bits / BIGNUM_INT_BITS + 1;
  209. mp_int *x = mp_make_sized(words);
  210. size_t i; // WINSCP
  211. for (i = 0; i < decimal.len; i++) {
  212. mp_add_integer_into(x, x, ((const char *)decimal.ptr)[i] - '0');
  213. if (i+1 == decimal.len)
  214. break;
  215. mp_mul_integer_into(x, x, 10);
  216. }
  217. return x;
  218. }
  219. mp_int *mp_from_decimal(const char *decimal)
  220. {
  221. return mp_from_decimal_pl(ptrlen_from_asciz(decimal));
  222. }
  223. /*
  224. * Hex-to-binary conversion: _algorithmically_ simpler than decimal
  225. * (none of those multiplications by 10), but there's some fiddly
  226. * bit-twiddling needed to process each hex digit without diverging
  227. * control flow depending on whether it's a letter or a number.
  228. */
  229. mp_int *mp_from_hex_pl(ptrlen hex)
  230. {
  231. pinitassert(hex.len <= (~(size_t)0) / 4);
  232. size_t bits = hex.len * 4;
  233. size_t words = (bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  234. words = size_t_max(words, 1);
  235. { // WINSCP
  236. mp_int *x = mp_make_sized(words);
  237. size_t nibble; // WINSCP
  238. for (nibble = 0; nibble < hex.len; nibble++) {
  239. BignumInt digit = ((const char *)hex.ptr)[hex.len-1 - nibble];
  240. BignumInt lmask = ~-((BignumInt)((digit-'a')|('f'-digit))
  241. >> (BIGNUM_INT_BITS-1));
  242. BignumInt umask = ~-((BignumInt)((digit-'A')|('F'-digit))
  243. >> (BIGNUM_INT_BITS-1));
  244. BignumInt digitval = digit - '0';
  245. digitval ^= (digitval ^ (digit - 'a' + 10)) & lmask;
  246. digitval ^= (digitval ^ (digit - 'A' + 10)) & umask;
  247. digitval &= 0xF; /* at least be _slightly_ nice about weird input */
  248. { // WINSCP
  249. size_t word_idx = nibble / (BIGNUM_INT_BYTES*2);
  250. size_t nibble_within_word = nibble % (BIGNUM_INT_BYTES*2);
  251. x->w[word_idx] |= digitval << (nibble_within_word * 4);
  252. } // WINSCP
  253. }
  254. return x;
  255. } // WINSCP
  256. }
  257. mp_int *mp_from_hex(const char *hex)
  258. {
  259. return mp_from_hex_pl(ptrlen_from_asciz(hex));
  260. }
  261. mp_int *mp_copy(mp_int *x)
  262. {
  263. return mp_from_words(x->nw, x->w);
  264. }
  265. uint8_t mp_get_byte(mp_int *x, size_t byte)
  266. {
  267. return 0xFF & (mp_word(x, byte / BIGNUM_INT_BYTES) >>
  268. (8 * (byte % BIGNUM_INT_BYTES)));
  269. }
  270. unsigned mp_get_bit(mp_int *x, size_t bit)
  271. {
  272. return 1 & (mp_word(x, bit / BIGNUM_INT_BITS) >>
  273. (bit % BIGNUM_INT_BITS));
  274. }
  275. uintmax_t mp_get_integer(mp_int *x)
  276. {
  277. uintmax_t toret = 0;
  278. size_t i; // WINSCP
  279. for (i = x->nw; i-- > 0 ;)
  280. toret = shift_left_by_one_word(toret) | x->w[i];
  281. return toret;
  282. }
  283. void mp_set_bit(mp_int *x, size_t bit, unsigned val)
  284. {
  285. size_t word = bit / BIGNUM_INT_BITS;
  286. pinitassert(word < x->nw);
  287. unsigned shift = (bit % BIGNUM_INT_BITS);
  288. x->w[word] &= ~((BignumInt)1 << shift);
  289. x->w[word] |= (BignumInt)(val & 1) << shift;
  290. }
  291. /*
  292. * Helper function used here and there to normalise any nonzero input
  293. * value to 1.
  294. */
  295. static inline unsigned normalise_to_1(BignumInt n)
  296. {
  297. n = (n >> 1) | (n & 1); /* ensure top bit is clear */
  298. n = (BignumInt)(-n) >> (BIGNUM_INT_BITS - 1); /* normalise to 0 or 1 */
  299. return n;
  300. }
  301. static inline unsigned normalise_to_1_u64(uint64_t n)
  302. {
  303. n = (n >> 1) | (n & 1); /* ensure top bit is clear */
  304. n = (-n) >> 63; /* normalise to 0 or 1 */
  305. return n;
  306. }
  307. /*
  308. * Find the highest nonzero word in a number. Returns the index of the
  309. * word in x->w, and also a pair of output uint64_t in which that word
  310. * appears in the high one shifted left by 'shift_wanted' bits, the
  311. * words immediately below it occupy the space to the right, and the
  312. * words below _that_ fill up the low one.
  313. *
  314. * If there is no nonzero word at all, the passed-by-reference output
  315. * variables retain their original values.
  316. */
  317. static inline void mp_find_highest_nonzero_word_pair(
  318. mp_int *x, size_t shift_wanted, size_t *index,
  319. uint64_t *hi, uint64_t *lo)
  320. {
  321. uint64_t curr_hi = 0, curr_lo = 0;
  322. size_t curr_index; // WINSCP
  323. for (curr_index = 0; curr_index < x->nw; curr_index++) {
  324. BignumInt curr_word = x->w[curr_index];
  325. unsigned indicator = normalise_to_1(curr_word);
  326. curr_lo = (BIGNUM_INT_BITS < 64 ? (curr_lo >> BIGNUM_INT_BITS) : 0) |
  327. (curr_hi << (64 - BIGNUM_INT_BITS));
  328. curr_hi = (BIGNUM_INT_BITS < 64 ? (curr_hi >> BIGNUM_INT_BITS) : 0) |
  329. ((uint64_t)curr_word << shift_wanted);
  330. if (hi) *hi ^= (curr_hi ^ *hi ) & -(uint64_t)indicator;
  331. if (lo) *lo ^= (curr_lo ^ *lo ) & -(uint64_t)indicator;
  332. if (index) *index ^= (curr_index ^ *index) & -(size_t) indicator;
  333. }
  334. }
  335. size_t mp_get_nbits(mp_int *x)
  336. {
  337. /* Sentinel values in case there are no bits set at all: we
  338. * imagine that there's a word at position -1 (i.e. the topmost
  339. * fraction word) which is all 1s, because that way, we handle a
  340. * zero input by considering its highest set bit to be the top one
  341. * of that word, i.e. just below the units digit, i.e. at bit
  342. * index -1, i.e. so we'll return 0 on output. */
  343. size_t hiword_index = -(size_t)1;
  344. uint64_t hiword64 = ~(BignumInt)0;
  345. /*
  346. * Find the highest nonzero word and its index.
  347. */
  348. mp_find_highest_nonzero_word_pair(x, 0, &hiword_index, &hiword64, NULL);
  349. { // WINSCP
  350. BignumInt hiword = hiword64; /* in case BignumInt is a narrower type */
  351. /*
  352. * Find the index of the highest set bit within hiword.
  353. */
  354. BignumInt hibit_index = 0;
  355. size_t i; // WINSCP
  356. for (i = (1 << (BIGNUM_INT_BITS_BITS-1)); i != 0; i >>= 1) {
  357. BignumInt shifted_word = hiword >> i;
  358. BignumInt indicator =
  359. (BignumInt)(-shifted_word) >> (BIGNUM_INT_BITS-1);
  360. hiword ^= (shifted_word ^ hiword ) & -indicator;
  361. hibit_index += i & -(size_t)indicator;
  362. }
  363. /*
  364. * Put together the result.
  365. */
  366. return (hiword_index << BIGNUM_INT_BITS_BITS) + hibit_index + 1;
  367. } // WINSCP
  368. }
  369. /*
  370. * Shared code between the hex and decimal output functions to get rid
  371. * of leading zeroes on the output string. The idea is that we wrote
  372. * out a fixed number of digits and a trailing \0 byte into 'buf', and
  373. * now we want to shift it all left so that the first nonzero digit
  374. * moves to buf[0] (or, if there are no nonzero digits at all, we move
  375. * up by 'maxtrim', so that we return 0 as "0" instead of "").
  376. */
  377. static void trim_leading_zeroes(char *buf, size_t bufsize, size_t maxtrim)
  378. {
  379. size_t trim = maxtrim;
  380. /*
  381. * Look for the first character not equal to '0', to find the
  382. * shift count.
  383. */
  384. if (trim > 0) {
  385. size_t pos; // WINSCP
  386. for (pos = trim; pos-- > 0 ;) {
  387. uint8_t diff = buf[pos] ^ '0';
  388. size_t mask = -((((size_t)diff) - 1) >> (SIZE_T_BITS - 1));
  389. trim ^= (trim ^ pos) & ~mask;
  390. }
  391. }
  392. /*
  393. * Now do the shift, in log n passes each of which does a
  394. * conditional shift by 2^i bytes if bit i is set in the shift
  395. * count.
  396. */
  397. { // WINSCP
  398. uint8_t *ubuf = (uint8_t *)buf;
  399. size_t logd; // WINSCP
  400. for (logd = 0; bufsize >> logd; logd++) {
  401. uint8_t mask = -(uint8_t)((trim >> logd) & 1);
  402. size_t d = (size_t)1 << logd;
  403. size_t i; // WINSCP
  404. for (i = 0; i+d < bufsize; i++) {
  405. uint8_t diff = mask & (ubuf[i] ^ ubuf[i+d]);
  406. ubuf[i] ^= diff;
  407. ubuf[i+d] ^= diff;
  408. }
  409. }
  410. } // WINSCP
  411. }
  412. /*
  413. * Binary to decimal conversion. Our strategy here is to extract each
  414. * decimal digit by finding the input number's residue mod 10, then
  415. * subtract that off to give an exact multiple of 10, which then means
  416. * you can safely divide by 10 by means of shifting right one bit and
  417. * then multiplying by the inverse of 5 mod 2^n.
  418. */
  419. char *mp_get_decimal(mp_int *x_orig)
  420. {
  421. mp_int *x = mp_copy(x_orig), *y = mp_make_sized(x->nw);
  422. /*
  423. * The inverse of 5 mod 2^lots is 0xccccccccccccccccccccd, for an
  424. * appropriate number of 'c's. Manually construct an integer the
  425. * right size.
  426. */
  427. mp_int *inv5 = mp_make_sized(x->nw);
  428. pinitassert(BIGNUM_INT_BITS % 8 == 0);
  429. size_t i; // WINSCP
  430. for (i = 0; i < inv5->nw; i++)
  431. inv5->w[i] = BIGNUM_INT_MASK / 5 * 4;
  432. inv5->w[0]++;
  433. /*
  434. * 146/485 is an upper bound (and also a continued-fraction
  435. * convergent) of log10(2), so this is a conservative estimate of
  436. * the number of decimal digits needed to store a value that fits
  437. * in this many binary bits.
  438. */
  439. assert(x->nw < (~(size_t)1) / (146 * BIGNUM_INT_BITS));
  440. { // WINSCP
  441. size_t bufsize = size_t_max(x->nw * (146 * BIGNUM_INT_BITS) / 485, 1) + 2;
  442. char *outbuf = snewn(bufsize, char);
  443. outbuf[bufsize - 1] = '\0';
  444. /*
  445. * Loop over the number generating digits from the least
  446. * significant upwards, so that we write to outbuf in reverse
  447. * order.
  448. */
  449. { // WINSCP
  450. size_t pos; // WINSCP
  451. for (pos = bufsize - 1; pos-- > 0 ;) {
  452. /*
  453. * Find the current residue mod 10. We do this by first
  454. * summing the bytes of the number, with all but the lowest
  455. * one multiplied by 6 (because 256^i == 6 mod 10 for all
  456. * i>0). That gives us a single word congruent mod 10 to the
  457. * input number, and then we reduce it further by manual
  458. * multiplication and shifting, just in case the compiler
  459. * target implements the C division operator in a way that has
  460. * input-dependent timing.
  461. */
  462. uint32_t low_digit = 0, maxval = 0, mult = 1;
  463. size_t i; // WINSCP
  464. for (i = 0; i < x->nw; i++) {
  465. unsigned j; // WINSCP
  466. for (j = 0; j < BIGNUM_INT_BYTES; j++) {
  467. low_digit += mult * (0xFF & (x->w[i] >> (8*j)));
  468. maxval += mult * 0xFF;
  469. mult = 6;
  470. }
  471. /*
  472. * For _really_ big numbers, prevent overflow of t by
  473. * periodically folding the top half of the accumulator
  474. * into the bottom half, using the same rule 'multiply by
  475. * 6 when shifting down by one or more whole bytes'.
  476. */
  477. if (maxval > UINT32_MAX - (6 * 0xFF * BIGNUM_INT_BYTES)) {
  478. low_digit = (low_digit & 0xFFFF) + 6 * (low_digit >> 16);
  479. maxval = (maxval & 0xFFFF) + 6 * (maxval >> 16);
  480. }
  481. }
  482. /*
  483. * Final reduction of low_digit. We multiply by 2^32 / 10
  484. * (that's the constant 0x19999999) to get a 64-bit value
  485. * whose top 32 bits are the approximate quotient
  486. * low_digit/10; then we subtract off 10 times that; and
  487. * finally we do one last trial subtraction of 10 by adding 6
  488. * (which sets bit 4 if the number was just over 10) and then
  489. * testing bit 4.
  490. */
  491. low_digit -= 10 * ((0x19999999ULL * low_digit) >> 32);
  492. low_digit -= 10 * ((low_digit + 6) >> 4);
  493. assert(low_digit < 10); /* make sure we did reduce fully */
  494. outbuf[pos] = '0' + low_digit;
  495. /*
  496. * Now subtract off that digit, divide by 2 (using a right
  497. * shift) and by 5 (using the modular inverse), to get the
  498. * next output digit into the units position.
  499. */
  500. mp_sub_integer_into(x, x, low_digit);
  501. mp_rshift_fixed_into(y, x, 1);
  502. mp_mul_into(x, y, inv5);
  503. }
  504. mp_free(x);
  505. mp_free(y);
  506. mp_free(inv5);
  507. trim_leading_zeroes(outbuf, bufsize, bufsize - 2);
  508. return outbuf;
  509. } // WINSCP
  510. } // WINSCP
  511. }
  512. /*
  513. * Binary to hex conversion. Reasonably simple (only a spot of bit
  514. * twiddling to choose whether to output a digit or a letter for each
  515. * nibble).
  516. */
  517. static char *mp_get_hex_internal(mp_int *x, uint8_t letter_offset)
  518. {
  519. size_t nibbles = x->nw * BIGNUM_INT_BYTES * 2;
  520. size_t bufsize = nibbles + 1;
  521. char *outbuf = snewn(bufsize, char);
  522. size_t nibble; // WINSCP
  523. outbuf[nibbles] = '\0';
  524. for (nibble = 0; nibble < nibbles; nibble++) {
  525. size_t word_idx = nibble / (BIGNUM_INT_BYTES*2);
  526. size_t nibble_within_word = nibble % (BIGNUM_INT_BYTES*2);
  527. uint8_t digitval = 0xF & (x->w[word_idx] >> (nibble_within_word * 4));
  528. uint8_t mask = -((digitval + 6) >> 4);
  529. char digit = digitval + '0' + (letter_offset & mask);
  530. outbuf[nibbles-1 - nibble] = digit;
  531. }
  532. trim_leading_zeroes(outbuf, bufsize, nibbles - 1);
  533. return outbuf;
  534. }
  535. char *mp_get_hex(mp_int *x)
  536. {
  537. return mp_get_hex_internal(x, 'a' - ('0'+10));
  538. }
  539. char *mp_get_hex_uppercase(mp_int *x)
  540. {
  541. return mp_get_hex_internal(x, 'A' - ('0'+10));
  542. }
  543. /*
  544. * Routines for reading and writing the SSH-1 and SSH-2 wire formats
  545. * for multiprecision integers, declared in marshal.h.
  546. *
  547. * These can't avoid having control flow dependent on the true bit
  548. * size of the number, because the wire format requires the number of
  549. * output bytes to depend on that.
  550. */
  551. void BinarySink_put_mp_ssh1(BinarySink *bs, mp_int *x)
  552. {
  553. size_t bits = mp_get_nbits(x);
  554. size_t bytes = (bits + 7) / 8;
  555. size_t i; // WINSCP
  556. assert(bits < 0x10000);
  557. put_uint16(bs, bits);
  558. for (i = bytes; i-- > 0 ;)
  559. put_byte(bs, mp_get_byte(x, i));
  560. }
  561. void BinarySink_put_mp_ssh2(BinarySink *bs, mp_int *x)
  562. {
  563. size_t bytes = (mp_get_nbits(x) + 8) / 8;
  564. size_t i; // WINSCP
  565. put_uint32(bs, bytes);
  566. for (i = bytes; i-- > 0 ;)
  567. put_byte(bs, mp_get_byte(x, i));
  568. }
  569. mp_int *BinarySource_get_mp_ssh1(BinarySource *src)
  570. {
  571. unsigned bitc = get_uint16(src);
  572. ptrlen bytes = get_data(src, (bitc + 7) / 8);
  573. if (get_err(src)) {
  574. return mp_from_integer(0);
  575. } else {
  576. mp_int *toret = mp_from_bytes_be(bytes);
  577. /* SSH-1.5 spec says that it's OK for the prefix uint16 to be
  578. * _greater_ than the actual number of bits */
  579. if (mp_get_nbits(toret) > bitc) {
  580. src->err = BSE_INVALID;
  581. mp_free(toret);
  582. toret = mp_from_integer(0);
  583. }
  584. return toret;
  585. }
  586. }
  587. mp_int *BinarySource_get_mp_ssh2(BinarySource *src)
  588. {
  589. ptrlen bytes = get_string(src);
  590. if (get_err(src)) {
  591. return mp_from_integer(0);
  592. } else {
  593. const unsigned char *p = bytes.ptr;
  594. if ((bytes.len > 0 &&
  595. ((p[0] & 0x80) ||
  596. (p[0] == 0 && (bytes.len <= 1 || !(p[1] & 0x80)))))) {
  597. src->err = BSE_INVALID;
  598. return mp_from_integer(0);
  599. }
  600. return mp_from_bytes_be(bytes);
  601. }
  602. }
  603. /*
  604. * Make an mp_int structure whose words array aliases a subinterval of
  605. * some other mp_int. This makes it easy to read or write just the low
  606. * or high words of a number, e.g. to add a number starting from a
  607. * high bit position, or to reduce mod 2^{n*BIGNUM_INT_BITS}.
  608. *
  609. * The convention throughout this code is that when we store an mp_int
  610. * directly by value, we always expect it to be an alias of some kind,
  611. * so its words array won't ever need freeing. Whereas an 'mp_int *'
  612. * has an owner, who knows whether it needs freeing or whether it was
  613. * created by address-taking an alias.
  614. */
  615. static mp_int mp_make_alias(mp_int *in, size_t offset, size_t len)
  616. {
  617. /*
  618. * Bounds-check the offset and length so that we always return
  619. * something valid, even if it's not necessarily the length the
  620. * caller asked for.
  621. */
  622. if (offset > in->nw)
  623. offset = in->nw;
  624. if (len > in->nw - offset)
  625. len = in->nw - offset;
  626. { // WINSCP
  627. mp_int toret;
  628. toret.nw = len;
  629. toret.w = in->w + offset;
  630. return toret;
  631. } // WINSCP
  632. }
  633. /*
  634. * A special case of mp_make_alias: in some cases we preallocate a
  635. * large mp_int to use as scratch space (to avoid pointless
  636. * malloc/free churn in recursive or iterative work).
  637. *
  638. * mp_alloc_from_scratch creates an alias of size 'len' to part of
  639. * 'pool', and adjusts 'pool' itself so that further allocations won't
  640. * overwrite that space.
  641. *
  642. * There's no free function to go with this. Typically you just copy
  643. * the pool mp_int by value, allocate from the copy, and when you're
  644. * done with those allocations, throw the copy away and go back to the
  645. * original value of pool. (A mark/release system.)
  646. */
  647. static mp_int mp_alloc_from_scratch(mp_int *pool, size_t len)
  648. {
  649. pinitassert(len <= pool->nw);
  650. mp_int toret = mp_make_alias(pool, 0, len);
  651. *pool = mp_make_alias(pool, len, pool->nw);
  652. return toret;
  653. }
  654. /*
  655. * Internal component common to lots of assorted add/subtract code.
  656. * Reads words from a,b; writes into w_out (which might be NULL if the
  657. * output isn't even needed). Takes an input carry flag in 'carry',
  658. * and returns the output carry. Each word read from b is ANDed with
  659. * b_and and then XORed with b_xor.
  660. *
  661. * So you can implement addition by setting b_and to all 1s and b_xor
  662. * to 0; you can subtract by making b_xor all 1s too (effectively
  663. * bit-flipping b) and also passing 1 as the input carry (to turn
  664. * one's complement into two's complement). And you can do conditional
  665. * add/subtract by choosing b_and to be all 1s or all 0s based on a
  666. * condition, because the value of b will be totally ignored if b_and
  667. * == 0.
  668. */
  669. static BignumCarry mp_add_masked_into(
  670. BignumInt *w_out, size_t rw, mp_int *a, mp_int *b,
  671. BignumInt b_and, BignumInt b_xor, BignumCarry carry)
  672. {
  673. size_t i; // WINSCP
  674. for (i = 0; i < rw; i++) {
  675. BignumInt aword = mp_word(a, i), bword = mp_word(b, i), out;
  676. bword = (bword & b_and) ^ b_xor;
  677. BignumADC(out, carry, aword, bword, carry);
  678. if (w_out)
  679. w_out[i] = out;
  680. }
  681. return carry;
  682. }
  683. /*
  684. * Like the public mp_add_into except that it returns the output carry.
  685. */
  686. static inline BignumCarry mp_add_into_internal(mp_int *r, mp_int *a, mp_int *b)
  687. {
  688. return mp_add_masked_into(r->w, r->nw, a, b, ~(BignumInt)0, 0, 0);
  689. }
  690. void mp_add_into(mp_int *r, mp_int *a, mp_int *b)
  691. {
  692. mp_add_into_internal(r, a, b);
  693. }
  694. void mp_sub_into(mp_int *r, mp_int *a, mp_int *b)
  695. {
  696. mp_add_masked_into(r->w, r->nw, a, b, ~(BignumInt)0, ~(BignumInt)0, 1);
  697. }
  698. void mp_and_into(mp_int *r, mp_int *a, mp_int *b)
  699. {
  700. size_t i; // WINSCP
  701. for (i = 0; i < r->nw; i++) {
  702. BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
  703. r->w[i] = aword & bword;
  704. }
  705. }
  706. void mp_or_into(mp_int *r, mp_int *a, mp_int *b)
  707. {
  708. size_t i; // WINSCP
  709. for (i = 0; i < r->nw; i++) {
  710. BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
  711. r->w[i] = aword | bword;
  712. }
  713. }
  714. void mp_xor_into(mp_int *r, mp_int *a, mp_int *b)
  715. {
  716. size_t i; // WINSCP
  717. for (i = 0; i < r->nw; i++) {
  718. BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
  719. r->w[i] = aword ^ bword;
  720. }
  721. }
  722. void mp_bic_into(mp_int *r, mp_int *a, mp_int *b)
  723. {
  724. size_t i; // WINSCP
  725. for (i = 0; i < r->nw; i++) {
  726. BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
  727. r->w[i] = aword & ~bword;
  728. }
  729. }
  730. static void mp_cond_negate(mp_int *r, mp_int *x, unsigned yes)
  731. {
  732. BignumCarry carry = yes;
  733. BignumInt flip = -(BignumInt)yes;
  734. size_t i; // WINSCP
  735. for (i = 0; i < r->nw; i++) {
  736. BignumInt xword = mp_word(x, i);
  737. xword ^= flip;
  738. BignumADC(r->w[i], carry, 0, xword, carry);
  739. }
  740. }
  741. /*
  742. * Similar to mp_add_masked_into, but takes a C integer instead of an
  743. * mp_int as the masked operand.
  744. */
  745. static BignumCarry mp_add_masked_integer_into(
  746. BignumInt *w_out, size_t rw, mp_int *a, uintmax_t b,
  747. BignumInt b_and, BignumInt b_xor, BignumCarry carry)
  748. {
  749. size_t i; // WINSCP
  750. for (i = 0; i < rw; i++) {
  751. BignumInt aword = mp_word(a, i);
  752. BignumInt bword = b;
  753. b = shift_right_by_one_word(b);
  754. { // WINSCP
  755. BignumInt out;
  756. bword = (bword ^ b_xor) & b_and;
  757. BignumADC(out, carry, aword, bword, carry);
  758. if (w_out)
  759. w_out[i] = out;
  760. } // WINSCP
  761. }
  762. return carry;
  763. }
  764. void mp_add_integer_into(mp_int *r, mp_int *a, uintmax_t n)
  765. {
  766. mp_add_masked_integer_into(r->w, r->nw, a, n, ~(BignumInt)0, 0, 0);
  767. }
  768. void mp_sub_integer_into(mp_int *r, mp_int *a, uintmax_t n)
  769. {
  770. mp_add_masked_integer_into(r->w, r->nw, a, n,
  771. ~(BignumInt)0, ~(BignumInt)0, 1);
  772. }
  773. /*
  774. * Sets r to a + n << (word_index * BIGNUM_INT_BITS), treating
  775. * word_index as secret data.
  776. */
  777. static void mp_add_integer_into_shifted_by_words(
  778. mp_int *r, mp_int *a, uintmax_t n, size_t word_index)
  779. {
  780. unsigned indicator = 0;
  781. BignumCarry carry = 0;
  782. size_t i; // WINSCP
  783. for (i = 0; i < r->nw; i++) {
  784. /* indicator becomes 1 when we reach the index that the least
  785. * significant bits of n want to be placed at, and it stays 1
  786. * thereafter. */
  787. indicator |= 1 ^ normalise_to_1(i ^ word_index);
  788. /* If indicator is 1, we add the low bits of n into r, and
  789. * shift n down. If it's 0, we add zero bits into r, and
  790. * leave n alone. */
  791. { // WINSCP
  792. BignumInt bword = n & -(BignumInt)indicator;
  793. uintmax_t new_n = shift_right_by_one_word(n);
  794. n ^= (n ^ new_n) & -(uintmax_t)indicator;
  795. { // WINSCP
  796. BignumInt aword = mp_word(a, i);
  797. BignumInt out;
  798. BignumADC(out, carry, aword, bword, carry);
  799. r->w[i] = out;
  800. } // WINSCP
  801. } // WINSCP
  802. }
  803. }
  804. void mp_mul_integer_into(mp_int *r, mp_int *a, uint16_t n)
  805. {
  806. BignumInt carry = 0, mult = n;
  807. size_t i; // WINSCP
  808. for (i = 0; i < r->nw; i++) {
  809. BignumInt aword = mp_word(a, i);
  810. BignumMULADD(carry, r->w[i], aword, mult, carry);
  811. }
  812. assert(!carry);
  813. }
  814. void mp_cond_add_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes)
  815. {
  816. BignumInt mask = -(BignumInt)(yes & 1);
  817. mp_add_masked_into(r->w, r->nw, a, b, mask, 0, 0);
  818. }
  819. void mp_cond_sub_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes)
  820. {
  821. BignumInt mask = -(BignumInt)(yes & 1);
  822. mp_add_masked_into(r->w, r->nw, a, b, mask, mask, 1 & mask);
  823. }
  824. /*
  825. * Ordered comparison between unsigned numbers is done by subtracting
  826. * one from the other and looking at the output carry.
  827. */
  828. unsigned mp_cmp_hs(mp_int *a, mp_int *b)
  829. {
  830. size_t rw = size_t_max(a->nw, b->nw);
  831. return mp_add_masked_into(NULL, rw, a, b, ~(BignumInt)0, ~(BignumInt)0, 1);
  832. }
  833. unsigned mp_hs_integer(mp_int *x, uintmax_t n)
  834. {
  835. BignumInt carry = 1;
  836. size_t nwords = sizeof(n)/BIGNUM_INT_BYTES;
  837. size_t i, e; // WINSCP
  838. for (i = 0, e = size_t_max(x->nw, nwords); i < e; i++) {
  839. BignumInt nword = n;
  840. n = shift_right_by_one_word(n);
  841. { // WINSCP
  842. BignumInt dummy_out;
  843. BignumADC(dummy_out, carry, mp_word(x, i), ~nword, carry);
  844. (void)dummy_out;
  845. } // WINSCP
  846. }
  847. return carry;
  848. }
  849. /*
  850. * Equality comparison is done by bitwise XOR of the input numbers,
  851. * ORing together all the output words, and normalising the result
  852. * using our careful normalise_to_1 helper function.
  853. */
  854. unsigned mp_cmp_eq(mp_int *a, mp_int *b)
  855. {
  856. BignumInt diff = 0;
  857. size_t i, limit; // WINSCP
  858. for (i = 0, limit = size_t_max(a->nw, b->nw); i < limit; i++)
  859. diff |= mp_word(a, i) ^ mp_word(b, i);
  860. return 1 ^ normalise_to_1(diff); /* return 1 if diff _is_ zero */
  861. }
  862. unsigned mp_eq_integer(mp_int *x, uintmax_t n)
  863. {
  864. BignumInt diff = 0;
  865. size_t nwords = sizeof(n)/BIGNUM_INT_BYTES;
  866. size_t i, e; // WINSCP
  867. for (i = 0, e = size_t_max(x->nw, nwords); i < e; i++) {
  868. BignumInt nword = n;
  869. n = shift_right_by_one_word(n);
  870. diff |= mp_word(x, i) ^ nword;
  871. }
  872. return 1 ^ normalise_to_1(diff); /* return 1 if diff _is_ zero */
  873. }
  874. static void mp_neg_into(mp_int *r, mp_int *a)
  875. {
  876. mp_int zero;
  877. zero.nw = 0;
  878. mp_sub_into(r, &zero, a);
  879. }
  880. mp_int *mp_add(mp_int *x, mp_int *y)
  881. {
  882. mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw) + 1);
  883. mp_add_into(r, x, y);
  884. return r;
  885. }
  886. mp_int *mp_sub(mp_int *x, mp_int *y)
  887. {
  888. mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw));
  889. mp_sub_into(r, x, y);
  890. return r;
  891. }
  892. /*
  893. * Internal routine: multiply and accumulate in the trivial O(N^2)
  894. * way. Sets r <- r + a*b.
  895. */
  896. static void mp_mul_add_simple(mp_int *r, mp_int *a, mp_int *b)
  897. {
  898. BignumInt *aend = a->w + a->nw, *bend = b->w + b->nw, *rend = r->w + r->nw;
  899. BignumInt *ap, *rp; // WINSCP
  900. for (ap = a->w, rp = r->w;
  901. ap < aend && rp < rend; ap++, rp++) {
  902. BignumInt adata = *ap, carry = 0, *rq = rp;
  903. { // WINSCP
  904. BignumInt *bp; // WINSCP
  905. for (bp = b->w; bp < bend && rq < rend; bp++, rq++) {
  906. BignumInt bdata = bp < bend ? *bp : 0;
  907. BignumMULADD2(carry, *rq, adata, bdata, *rq, carry);
  908. }
  909. } // WINSCP
  910. for (; rq < rend; rq++)
  911. BignumADC(*rq, carry, carry, *rq, 0);
  912. }
  913. }
  914. #ifndef KARATSUBA_THRESHOLD /* allow redefinition via -D for testing */
  915. #define KARATSUBA_THRESHOLD 24
  916. #endif
  917. static inline size_t mp_mul_scratchspace_unary(size_t n)
  918. {
  919. /*
  920. * Simplistic and overcautious bound on the amount of scratch
  921. * space that the recursive multiply function will need.
  922. *
  923. * The rationale is: on the main Karatsuba branch of
  924. * mp_mul_internal, which is the most space-intensive one, we
  925. * allocate space for (a0+a1) and (b0+b1) (each just over half the
  926. * input length n) and their product (the sum of those sizes, i.e.
  927. * just over n itself). Then in order to actually compute the
  928. * product, we do a recursive multiplication of size just over n.
  929. *
  930. * If all those 'just over' weren't there, and everything was
  931. * _exactly_ half the length, you'd get the amount of space for a
  932. * size-n multiply defined by the recurrence M(n) = 2n + M(n/2),
  933. * which is satisfied by M(n) = 4n. But instead it's (2n plus a
  934. * word or two) and M(n/2 plus a word or two). On the assumption
  935. * that there's still some constant k such that M(n) <= kn, this
  936. * gives us kn = 2n + w + k(n/2 + w), where w is a small constant
  937. * (one or two words). That simplifies to kn/2 = 2n + (k+1)w, and
  938. * since we don't even _start_ needing scratch space until n is at
  939. * least 50, we can bound 2n + (k+1)w above by 3n, giving k=6.
  940. *
  941. * So I claim that 6n words of scratch space will suffice, and I
  942. * check that by assertion at every stage of the recursion.
  943. */
  944. return n * 6;
  945. }
  946. static size_t mp_mul_scratchspace(size_t rw, size_t aw, size_t bw)
  947. {
  948. size_t inlen = size_t_min(rw, size_t_max(aw, bw));
  949. return mp_mul_scratchspace_unary(inlen);
  950. }
  951. static void mp_mul_internal(mp_int *r, mp_int *a, mp_int *b, mp_int scratch)
  952. {
  953. size_t inlen = size_t_min(r->nw, size_t_max(a->nw, b->nw));
  954. assert(scratch.nw >= mp_mul_scratchspace_unary(inlen));
  955. mp_clear(r);
  956. if (inlen < KARATSUBA_THRESHOLD || a->nw == 0 || b->nw == 0) {
  957. /*
  958. * The input numbers are too small to bother optimising. Go
  959. * straight to the simple primitive approach.
  960. */
  961. mp_mul_add_simple(r, a, b);
  962. return;
  963. }
  964. /*
  965. * Karatsuba divide-and-conquer algorithm. We cut each input in
  966. * half, so that it's expressed as two big 'digits' in a giant
  967. * base D:
  968. *
  969. * a = a_1 D + a_0
  970. * b = b_1 D + b_0
  971. *
  972. * Then the product is of course
  973. *
  974. * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
  975. *
  976. * and we compute the three coefficients by recursively calling
  977. * ourself to do half-length multiplications.
  978. *
  979. * The clever bit that makes this worth doing is that we only need
  980. * _one_ half-length multiplication for the central coefficient
  981. * rather than the two that it obviouly looks like, because we can
  982. * use a single multiplication to compute
  983. *
  984. * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
  985. *
  986. * and then we subtract the other two coefficients (a_1 b_1 and
  987. * a_0 b_0) which we were computing anyway.
  988. *
  989. * Hence we get to multiply two numbers of length N in about three
  990. * times as much work as it takes to multiply numbers of length
  991. * N/2, which is obviously better than the four times as much work
  992. * it would take if we just did a long conventional multiply.
  993. */
  994. { // WINSCP
  995. /* Break up the input as botlen + toplen, with botlen >= toplen.
  996. * The 'base' D is equal to 2^{botlen * BIGNUM_INT_BITS}. */
  997. size_t toplen = inlen / 2;
  998. size_t botlen = inlen - toplen;
  999. /* Alias bignums that address the two halves of a,b, and useful
  1000. * pieces of r. */
  1001. mp_int a0 = mp_make_alias(a, 0, botlen);
  1002. mp_int b0 = mp_make_alias(b, 0, botlen);
  1003. mp_int a1 = mp_make_alias(a, botlen, toplen);
  1004. mp_int b1 = mp_make_alias(b, botlen, toplen);
  1005. mp_int r0 = mp_make_alias(r, 0, botlen*2);
  1006. mp_int r1 = mp_make_alias(r, botlen, r->nw);
  1007. mp_int r2 = mp_make_alias(r, botlen*2, r->nw);
  1008. /* Recurse to compute a0*b0 and a1*b1, in their correct positions
  1009. * in the output bignum. They can't overlap. */
  1010. mp_mul_internal(&r0, &a0, &b0, scratch);
  1011. mp_mul_internal(&r2, &a1, &b1, scratch);
  1012. if (r->nw < inlen*2) {
  1013. /*
  1014. * The output buffer isn't large enough to require the whole
  1015. * product, so some of a1*b1 won't have been stored. In that
  1016. * case we won't try to do the full Karatsuba optimisation;
  1017. * we'll just recurse again to compute a0*b1 and a1*b0 - or at
  1018. * least as much of them as the output buffer size requires -
  1019. * and add each one in.
  1020. */
  1021. mp_int s = mp_alloc_from_scratch(
  1022. &scratch, size_t_min(botlen+toplen, r1.nw));
  1023. mp_mul_internal(&s, &a0, &b1, scratch);
  1024. mp_add_into(&r1, &r1, &s);
  1025. mp_mul_internal(&s, &a1, &b0, scratch);
  1026. mp_add_into(&r1, &r1, &s);
  1027. return;
  1028. }
  1029. { // WINSCP
  1030. /* a0+a1 and b0+b1 */
  1031. mp_int asum = mp_alloc_from_scratch(&scratch, botlen+1);
  1032. mp_int bsum = mp_alloc_from_scratch(&scratch, botlen+1);
  1033. mp_add_into(&asum, &a0, &a1);
  1034. mp_add_into(&bsum, &b0, &b1);
  1035. { // WINSCP
  1036. /* Their product */
  1037. mp_int product = mp_alloc_from_scratch(&scratch, botlen*2+1);
  1038. mp_mul_internal(&product, &asum, &bsum, scratch);
  1039. /* Subtract off the outer terms we already have */
  1040. mp_sub_into(&product, &product, &r0);
  1041. mp_sub_into(&product, &product, &r2);
  1042. /* And add it in with the right offset. */
  1043. mp_add_into(&r1, &r1, &product);
  1044. } // WINSCP
  1045. } // WINSCP
  1046. } // WINSCP
  1047. }
  1048. void mp_mul_into(mp_int *r, mp_int *a, mp_int *b)
  1049. {
  1050. mp_int *scratch = mp_make_sized(mp_mul_scratchspace(r->nw, a->nw, b->nw));
  1051. mp_mul_internal(r, a, b, *scratch);
  1052. mp_free(scratch);
  1053. }
  1054. mp_int *mp_mul(mp_int *x, mp_int *y)
  1055. {
  1056. mp_int *r = mp_make_sized(x->nw + y->nw);
  1057. mp_mul_into(r, x, y);
  1058. return r;
  1059. }
  1060. void mp_lshift_fixed_into(mp_int *r, mp_int *a, size_t bits)
  1061. {
  1062. size_t words = bits / BIGNUM_INT_BITS;
  1063. size_t bitoff = bits % BIGNUM_INT_BITS;
  1064. size_t i; // WINSCP
  1065. for (i = r->nw; i-- > 0 ;) {
  1066. if (i < words) {
  1067. r->w[i] = 0;
  1068. } else {
  1069. r->w[i] = mp_word(a, i - words);
  1070. if (bitoff != 0) {
  1071. r->w[i] <<= bitoff;
  1072. if (i > words)
  1073. r->w[i] |= mp_word(a, i - words - 1) >>
  1074. (BIGNUM_INT_BITS - bitoff);
  1075. }
  1076. }
  1077. }
  1078. }
  1079. void mp_rshift_fixed_into(mp_int *r, mp_int *a, size_t bits)
  1080. {
  1081. size_t words = bits / BIGNUM_INT_BITS;
  1082. size_t bitoff = bits % BIGNUM_INT_BITS;
  1083. size_t i; // WINSCP
  1084. for (i = 0; i < r->nw; i++) {
  1085. r->w[i] = mp_word(a, i + words);
  1086. if (bitoff != 0) {
  1087. r->w[i] >>= bitoff;
  1088. r->w[i] |= mp_word(a, i + words + 1) << (BIGNUM_INT_BITS - bitoff);
  1089. }
  1090. }
  1091. }
  1092. mp_int *mp_lshift_fixed(mp_int *x, size_t bits)
  1093. {
  1094. size_t words = (bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1095. mp_int *r = mp_make_sized(x->nw + words);
  1096. mp_lshift_fixed_into(r, x, bits);
  1097. return r;
  1098. }
  1099. mp_int *mp_rshift_fixed(mp_int *x, size_t bits)
  1100. {
  1101. size_t words = bits / BIGNUM_INT_BITS;
  1102. size_t nw = x->nw - size_t_min(x->nw, words);
  1103. mp_int *r = mp_make_sized(size_t_max(nw, 1));
  1104. mp_rshift_fixed_into(r, x, bits);
  1105. return r;
  1106. }
  1107. /*
  1108. * Safe right shift is done using the same technique as
  1109. * trim_leading_zeroes above: you make an n-word left shift by
  1110. * composing an appropriate subset of power-of-2-sized shifts, so it
  1111. * takes log_2(n) loop iterations each of which does a different shift
  1112. * by a power of 2 words, using the usual bit twiddling to make the
  1113. * whole shift conditional on the appropriate bit of n.
  1114. */
  1115. static void mp_rshift_safe_in_place(mp_int *r, size_t bits)
  1116. {
  1117. size_t wordshift = bits / BIGNUM_INT_BITS;
  1118. size_t bitshift = bits % BIGNUM_INT_BITS;
  1119. unsigned bit; // WINSCP
  1120. unsigned clear = (r->nw - wordshift) >> (CHAR_BIT * sizeof(size_t) - 1);
  1121. mp_cond_clear(r, clear);
  1122. for (bit = 0; r->nw >> bit; bit++) {
  1123. size_t word_offset = (size_t)1 << bit;
  1124. BignumInt mask = -(BignumInt)((wordshift >> bit) & 1);
  1125. size_t i; // WINSCP
  1126. for (i = 0; i < r->nw; i++) {
  1127. BignumInt w = mp_word(r, i + word_offset);
  1128. r->w[i] ^= (r->w[i] ^ w) & mask;
  1129. }
  1130. }
  1131. /*
  1132. * That's done the shifting by words; now we do the shifting by
  1133. * bits.
  1134. */
  1135. for (bit = 0; bit < BIGNUM_INT_BITS_BITS; bit++) { // WINSCP
  1136. unsigned shift = 1 << bit, upshift = BIGNUM_INT_BITS - shift;
  1137. BignumInt mask = -(BignumInt)((bitshift >> bit) & 1);
  1138. size_t i; // WINSCP
  1139. for (i = 0; i < r->nw; i++) {
  1140. BignumInt w = ((r->w[i] >> shift) | (mp_word(r, i+1) << upshift));
  1141. r->w[i] ^= (r->w[i] ^ w) & mask;
  1142. }
  1143. }
  1144. }
  1145. mp_int *mp_rshift_safe(mp_int *x, size_t bits)
  1146. {
  1147. mp_int *r = mp_copy(x);
  1148. mp_rshift_safe_in_place(r, bits);
  1149. return r;
  1150. }
  1151. void mp_rshift_safe_into(mp_int *r, mp_int *x, size_t bits)
  1152. {
  1153. mp_copy_into(r, x);
  1154. mp_rshift_safe_in_place(r, bits);
  1155. }
  1156. static void mp_lshift_safe_in_place(mp_int *r, size_t bits)
  1157. {
  1158. size_t wordshift = bits / BIGNUM_INT_BITS;
  1159. size_t bitshift = bits % BIGNUM_INT_BITS;
  1160. /*
  1161. * Same strategy as mp_rshift_safe_in_place, but of course the
  1162. * other way up.
  1163. */
  1164. unsigned clear = (r->nw - wordshift) >> (CHAR_BIT * sizeof(size_t) - 1);
  1165. mp_cond_clear(r, clear);
  1166. { // WINSCP
  1167. unsigned bit; // WINSCP
  1168. for (bit = 0; r->nw >> bit; bit++) {
  1169. size_t word_offset = (size_t)1 << bit;
  1170. BignumInt mask = -(BignumInt)((wordshift >> bit) & 1);
  1171. size_t i; // WINSCP
  1172. for (i = r->nw; i-- > 0 ;) {
  1173. BignumInt w = mp_word(r, i - word_offset);
  1174. r->w[i] ^= (r->w[i] ^ w) & mask;
  1175. }
  1176. }
  1177. { // WINSCP
  1178. size_t downshift = BIGNUM_INT_BITS - bitshift;
  1179. size_t no_shift = (downshift >> BIGNUM_INT_BITS_BITS);
  1180. downshift &= ~-(size_t)no_shift;
  1181. { // WINSCP
  1182. BignumInt downshifted_mask = ~-(BignumInt)no_shift;
  1183. size_t i; // WINSCP
  1184. for (i = r->nw; i-- > 0 ;) {
  1185. r->w[i] = (r->w[i] << bitshift) |
  1186. ((mp_word(r, i-1) >> downshift) & downshifted_mask);
  1187. }
  1188. } // WINSCP
  1189. } // WINSCP
  1190. } // WINSCP
  1191. }
  1192. void mp_lshift_safe_into(mp_int *r, mp_int *x, size_t bits)
  1193. {
  1194. mp_copy_into(r, x);
  1195. mp_lshift_safe_in_place(r, bits);
  1196. }
  1197. void mp_reduce_mod_2to(mp_int *x, size_t p)
  1198. {
  1199. size_t word = p / BIGNUM_INT_BITS;
  1200. size_t mask = ((size_t)1 << (p % BIGNUM_INT_BITS)) - 1;
  1201. for (; word < x->nw; word++) {
  1202. x->w[word] &= mask;
  1203. mask = 0;
  1204. }
  1205. }
  1206. /*
  1207. * Inverse mod 2^n is computed by an iterative technique which doubles
  1208. * the number of bits at each step.
  1209. */
  1210. mp_int *mp_invert_mod_2to(mp_int *x, size_t p)
  1211. {
  1212. /* Input checks: x must be coprime to the modulus, i.e. odd, and p
  1213. * can't be zero */
  1214. assert(x->nw > 0);
  1215. assert(x->w[0] & 1);
  1216. assert(p > 0);
  1217. { // WINSCP
  1218. size_t rw = (p + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1219. rw = size_t_max(rw, 1);
  1220. { // WINSCP
  1221. mp_int *r = mp_make_sized(rw);
  1222. size_t mul_scratchsize = mp_mul_scratchspace(2*rw, rw, rw);
  1223. mp_int *scratch_orig = mp_make_sized(6 * rw + mul_scratchsize);
  1224. mp_int scratch_per_iter = *scratch_orig;
  1225. mp_int mul_scratch = mp_alloc_from_scratch(
  1226. &scratch_per_iter, mul_scratchsize);
  1227. size_t b; // WINSCP
  1228. r->w[0] = 1;
  1229. for (b = 1; b < p; b <<= 1) {
  1230. /*
  1231. * In each step of this iteration, we have the inverse of x
  1232. * mod 2^b, and we want the inverse of x mod 2^{2b}.
  1233. *
  1234. * Write B = 2^b for convenience, so we want x^{-1} mod B^2.
  1235. * Let x = x_0 + B x_1 + k B^2, with 0 <= x_0,x_1 < B.
  1236. *
  1237. * We want to find r_0 and r_1 such that
  1238. * (r_1 B + r_0) (x_1 B + x_0) == 1 (mod B^2)
  1239. *
  1240. * To begin with, we know r_0 must be the inverse mod B of
  1241. * x_0, i.e. of x, i.e. it is the inverse we computed in the
  1242. * previous iteration. So now all we need is r_1.
  1243. *
  1244. * Multiplying out, neglecting multiples of B^2, and writing
  1245. * x_0 r_0 = K B + 1, we have
  1246. *
  1247. * r_1 x_0 B + r_0 x_1 B + K B == 0 (mod B^2)
  1248. * => r_1 x_0 B == - r_0 x_1 B - K B (mod B^2)
  1249. * => r_1 x_0 == - r_0 x_1 - K (mod B)
  1250. * => r_1 == r_0 (- r_0 x_1 - K) (mod B)
  1251. *
  1252. * (the last step because we multiply through by the inverse
  1253. * of x_0, which we already know is r_0).
  1254. */
  1255. mp_int scratch_this_iter = scratch_per_iter;
  1256. size_t Bw = (b + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1257. size_t B2w = (2*b + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1258. /* Start by finding K: multiply x_0 by r_0, and shift down. */
  1259. mp_int x0 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1260. mp_copy_into(&x0, x);
  1261. mp_reduce_mod_2to(&x0, b);
  1262. { // WINSCP
  1263. mp_int r0 = mp_make_alias(r, 0, Bw);
  1264. mp_int Kshift = mp_alloc_from_scratch(&scratch_this_iter, B2w);
  1265. mp_mul_internal(&Kshift, &x0, &r0, mul_scratch);
  1266. { // WINSCP
  1267. mp_int K = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1268. mp_rshift_fixed_into(&K, &Kshift, b);
  1269. /* Now compute the product r_0 x_1, reusing the space of Kshift. */
  1270. { // WINSCP
  1271. mp_int x1 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1272. mp_rshift_fixed_into(&x1, x, b);
  1273. mp_reduce_mod_2to(&x1, b);
  1274. { // WINSCP
  1275. mp_int r0x1 = mp_make_alias(&Kshift, 0, Bw);
  1276. mp_mul_internal(&r0x1, &r0, &x1, mul_scratch);
  1277. /* Add K to that. */
  1278. mp_add_into(&r0x1, &r0x1, &K);
  1279. /* Negate it. */
  1280. mp_neg_into(&r0x1, &r0x1);
  1281. /* Multiply by r_0. */
  1282. { // WINSCP
  1283. mp_int r1 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1284. mp_mul_internal(&r1, &r0, &r0x1, mul_scratch);
  1285. mp_reduce_mod_2to(&r1, b);
  1286. /* That's our r_1, so add it on to r_0 to get the full inverse
  1287. * output from this iteration. */
  1288. mp_lshift_fixed_into(&K, &r1, (b % BIGNUM_INT_BITS));
  1289. { // WINSCP
  1290. size_t Bpos = b / BIGNUM_INT_BITS;
  1291. mp_int r1_position = mp_make_alias(r, Bpos, B2w-Bpos);
  1292. mp_add_into(&r1_position, &r1_position, &K);
  1293. } // WINSCP
  1294. } // WINSCP
  1295. } // WINSCP
  1296. } // WINSCP
  1297. } // WINSCP
  1298. } // WINSCP
  1299. }
  1300. /* Finally, reduce mod the precise desired number of bits. */
  1301. mp_reduce_mod_2to(r, p);
  1302. mp_free(scratch_orig);
  1303. return r;
  1304. } // WINSCP
  1305. } // WINSCP
  1306. }
  1307. static size_t monty_scratch_size(MontyContext *mc)
  1308. {
  1309. return 3*mc->rw + mc->pw + mp_mul_scratchspace(mc->pw, mc->rw, mc->rw);
  1310. }
  1311. MontyContext *monty_new(mp_int *modulus)
  1312. {
  1313. MontyContext *mc = snew(MontyContext);
  1314. mc->rw = modulus->nw;
  1315. mc->rbits = mc->rw * BIGNUM_INT_BITS;
  1316. mc->pw = mc->rw * 2 + 1;
  1317. mc->m = mp_copy(modulus);
  1318. mc->minus_minv_mod_r = mp_invert_mod_2to(mc->m, mc->rbits);
  1319. mp_neg_into(mc->minus_minv_mod_r, mc->minus_minv_mod_r);
  1320. { // WINSCP
  1321. size_t j; // WINSCP
  1322. mp_int *r = mp_make_sized(mc->rw + 1);
  1323. r->w[mc->rw] = 1;
  1324. mc->powers_of_r_mod_m[0] = mp_mod(r, mc->m);
  1325. mp_free(r);
  1326. for (j = 1; j < lenof(mc->powers_of_r_mod_m); j++)
  1327. mc->powers_of_r_mod_m[j] = mp_modmul(
  1328. mc->powers_of_r_mod_m[0], mc->powers_of_r_mod_m[j-1], mc->m);
  1329. mc->scratch = mp_make_sized(monty_scratch_size(mc));
  1330. return mc;
  1331. } // WINSCP
  1332. }
  1333. void monty_free(MontyContext *mc)
  1334. {
  1335. size_t j; // WINSCP
  1336. mp_free(mc->m);
  1337. for (j = 0; j < 3; j++)
  1338. mp_free(mc->powers_of_r_mod_m[j]);
  1339. mp_free(mc->minus_minv_mod_r);
  1340. mp_free(mc->scratch);
  1341. smemclr(mc, sizeof(*mc));
  1342. sfree(mc);
  1343. }
  1344. /*
  1345. * The main Montgomery reduction step.
  1346. */
  1347. static mp_int monty_reduce_internal(MontyContext *mc, mp_int *x, mp_int scratch)
  1348. {
  1349. /*
  1350. * The trick with Montgomery reduction is that on the one hand we
  1351. * want to reduce the size of the input by a factor of about r,
  1352. * and on the other hand, the two numbers we just multiplied were
  1353. * both stored with an extra factor of r multiplied in. So we
  1354. * computed ar*br = ab r^2, but we want to return abr, so we need
  1355. * to divide by r - and if we can do that by _actually dividing_
  1356. * by r then this also reduces the size of the number.
  1357. *
  1358. * But we can only do that if the number we're dividing by r is a
  1359. * multiple of r. So first we must add an adjustment to it which
  1360. * clears its bottom 'rbits' bits. That adjustment must be a
  1361. * multiple of m in order to leave the residue mod n unchanged, so
  1362. * the question is, what multiple of m can we add to x to make it
  1363. * congruent to 0 mod r? And the answer is, x * (-m)^{-1} mod r.
  1364. */
  1365. /* x mod r */
  1366. mp_int x_lo = mp_make_alias(x, 0, mc->rbits);
  1367. /* x * (-m)^{-1}, i.e. the number we want to multiply by m */
  1368. mp_int k = mp_alloc_from_scratch(&scratch, mc->rw);
  1369. mp_mul_internal(&k, &x_lo, mc->minus_minv_mod_r, scratch);
  1370. /* m times that, i.e. the number we want to add to x */
  1371. { // WINSCP
  1372. mp_int mk = mp_alloc_from_scratch(&scratch, mc->pw);
  1373. mp_mul_internal(&mk, mc->m, &k, scratch);
  1374. /* Add it to x */
  1375. mp_add_into(&mk, x, &mk);
  1376. /* Reduce mod r, by simply making an alias to the upper words of x */
  1377. { // WINSCP
  1378. mp_int toret = mp_make_alias(&mk, mc->rw, mk.nw - mc->rw);
  1379. /*
  1380. * We'll generally be doing this after a multiplication of two
  1381. * fully reduced values. So our input could be anything up to m^2,
  1382. * and then we added up to rm to it. Hence, the maximum value is
  1383. * rm+m^2, and after dividing by r, that becomes r + m(m/r) < 2r.
  1384. * So a single trial-subtraction will finish reducing to the
  1385. * interval [0,m).
  1386. */
  1387. mp_cond_sub_into(&toret, &toret, mc->m, mp_cmp_hs(&toret, mc->m));
  1388. return toret;
  1389. } // WINSCP
  1390. } // WINSCP
  1391. }
  1392. void monty_mul_into(MontyContext *mc, mp_int *r, mp_int *x, mp_int *y)
  1393. {
  1394. assert(x->nw <= mc->rw);
  1395. assert(y->nw <= mc->rw);
  1396. { // WINSCP
  1397. mp_int scratch = *mc->scratch;
  1398. mp_int tmp = mp_alloc_from_scratch(&scratch, 2*mc->rw);
  1399. mp_mul_into(&tmp, x, y);
  1400. { // WINSCP
  1401. mp_int reduced = monty_reduce_internal(mc, &tmp, scratch);
  1402. mp_copy_into(r, &reduced);
  1403. mp_clear(mc->scratch);
  1404. } // WINSCP
  1405. } // WINSCP
  1406. }
  1407. mp_int *monty_mul(MontyContext *mc, mp_int *x, mp_int *y)
  1408. {
  1409. mp_int *toret = mp_make_sized(mc->rw);
  1410. monty_mul_into(mc, toret, x, y);
  1411. return toret;
  1412. }
  1413. mp_int *monty_modulus(MontyContext *mc)
  1414. {
  1415. return mc->m;
  1416. }
  1417. mp_int *monty_identity(MontyContext *mc)
  1418. {
  1419. return mc->powers_of_r_mod_m[0];
  1420. }
  1421. mp_int *monty_invert(MontyContext *mc, mp_int *x)
  1422. {
  1423. /* Given xr, we want to return x^{-1}r = (xr)^{-1} r^2 =
  1424. * monty_reduce((xr)^{-1} r^3) */
  1425. mp_int *tmp = mp_invert(x, mc->m);
  1426. mp_int *toret = monty_mul(mc, tmp, mc->powers_of_r_mod_m[2]);
  1427. mp_free(tmp);
  1428. return toret;
  1429. }
  1430. /*
  1431. * Importing a number into Montgomery representation involves
  1432. * multiplying it by r and reducing mod m. We use the general-purpose
  1433. * mp_modmul for this, in case the input number is out of range.
  1434. */
  1435. mp_int *monty_import(MontyContext *mc, mp_int *x)
  1436. {
  1437. return mp_modmul(x, mc->powers_of_r_mod_m[0], mc->m);
  1438. }
  1439. void monty_import_into(MontyContext *mc, mp_int *r, mp_int *x)
  1440. {
  1441. mp_int *imported = monty_import(mc, x);
  1442. mp_copy_into(r, imported);
  1443. mp_free(imported);
  1444. }
  1445. /*
  1446. * Exporting a number means multiplying it by r^{-1}, which is exactly
  1447. * what monty_reduce does anyway, so we just do that.
  1448. */
  1449. void monty_export_into(MontyContext *mc, mp_int *r, mp_int *x)
  1450. {
  1451. pinitassert(x->nw <= 2*mc->rw);
  1452. mp_int reduced = monty_reduce_internal(mc, x, *mc->scratch);
  1453. mp_copy_into(r, &reduced);
  1454. mp_clear(mc->scratch);
  1455. }
  1456. mp_int *monty_export(MontyContext *mc, mp_int *x)
  1457. {
  1458. mp_int *toret = mp_make_sized(mc->rw);
  1459. monty_export_into(mc, toret, x);
  1460. return toret;
  1461. }
  1462. static void monty_reduce(MontyContext *mc, mp_int *x)
  1463. {
  1464. mp_int reduced = monty_reduce_internal(mc, x, *mc->scratch);
  1465. mp_copy_into(x, &reduced);
  1466. mp_clear(mc->scratch);
  1467. }
  1468. mp_int *monty_pow(MontyContext *mc, mp_int *base, mp_int *exponent)
  1469. {
  1470. /* square builds up powers of the form base^{2^i}. */
  1471. mp_int *square = mp_copy(base);
  1472. size_t i = 0;
  1473. /* out accumulates the output value. Starts at 1 (in Montgomery
  1474. * representation) and we multiply in each base^{2^i}. */
  1475. mp_int *out = mp_copy(mc->powers_of_r_mod_m[0]);
  1476. /* tmp holds each product we compute and reduce. */
  1477. mp_int *tmp = mp_make_sized(mc->rw * 2);
  1478. while (true) {
  1479. mp_mul_into(tmp, out, square);
  1480. monty_reduce(mc, tmp);
  1481. mp_select_into(out, out, tmp, mp_get_bit(exponent, i));
  1482. if (++i >= exponent->nw * BIGNUM_INT_BITS)
  1483. break;
  1484. mp_mul_into(tmp, square, square);
  1485. monty_reduce(mc, tmp);
  1486. mp_copy_into(square, tmp);
  1487. }
  1488. mp_free(square);
  1489. mp_free(tmp);
  1490. mp_clear(mc->scratch);
  1491. return out;
  1492. }
  1493. mp_int *mp_modpow(mp_int *base, mp_int *exponent, mp_int *modulus)
  1494. {
  1495. assert(modulus->nw > 0);
  1496. assert(modulus->w[0] & 1);
  1497. { // WINSCP
  1498. MontyContext *mc = monty_new(modulus);
  1499. mp_int *m_base = monty_import(mc, base);
  1500. mp_int *m_out = monty_pow(mc, m_base, exponent);
  1501. mp_int *out = monty_export(mc, m_out);
  1502. mp_free(m_base);
  1503. mp_free(m_out);
  1504. monty_free(mc);
  1505. return out;
  1506. } // WINSCP
  1507. }
  1508. /*
  1509. * Given two input integers a,b which are not both even, computes d =
  1510. * gcd(a,b) and also two integers A,B such that A*a - B*b = d. A,B
  1511. * will be the minimal non-negative pair satisfying that criterion,
  1512. * which is equivalent to saying that 0 <= A < b/d and 0 <= B < a/d.
  1513. *
  1514. * This algorithm is an adapted form of Stein's algorithm, which
  1515. * computes gcd(a,b) using only addition and bit shifts (i.e. without
  1516. * needing general division), using the following rules:
  1517. *
  1518. * - if both of a,b are even, divide off a common factor of 2
  1519. * - if one of a,b (WLOG a) is even, then gcd(a,b) = gcd(a/2,b), so
  1520. * just divide a by 2
  1521. * - if both of a,b are odd, then WLOG a>b, and gcd(a,b) =
  1522. * gcd(b,(a-b)/2).
  1523. *
  1524. * Sometimes this function is used for modular inversion, in which
  1525. * case we already know we expect the two inputs to be coprime, so to
  1526. * save time the 'both even' initial case is assumed not to arise (or
  1527. * to have been handled already by the caller). So this function just
  1528. * performs a sequence of reductions in the following form:
  1529. *
  1530. * - if a,b are both odd, sort them so that a > b, and replace a with
  1531. * b-a; otherwise sort them so that a is the even one
  1532. * - either way, now a is even and b is odd, so divide a by 2.
  1533. *
  1534. * The big change to Stein's algorithm is that we need the Bezout
  1535. * coefficients as output, not just the gcd. So we need to know how to
  1536. * generate those in each case, based on the coefficients from the
  1537. * reduced pair of numbers:
  1538. *
  1539. * - If a is even, and u,v are such that u*(a/2) + v*b = d:
  1540. * + if u is also even, then this is just (u/2)*a + v*b = d
  1541. * + otherwise, (u+b)*(a/2) + (v-a/2)*b is also equal to d, and
  1542. * since u and b are both odd, (u+b)/2 is an integer, so we have
  1543. * ((u+b)/2)*a + (v-a/2)*b = d.
  1544. *
  1545. * - If a,b are both odd, and u,v are such that u*b + v*(a-b) = d,
  1546. * then v*a + (u-v)*b = d.
  1547. *
  1548. * In the case where we passed from (a,b) to (b,(a-b)/2), we regard it
  1549. * as having first subtracted b from a and then halved a, so both of
  1550. * these transformations must be done in sequence.
  1551. *
  1552. * The code below transforms this from a recursive to an iterative
  1553. * algorithm. We first reduce a,b to 0,1, recording at each stage
  1554. * whether we did the initial subtraction, and whether we had to swap
  1555. * the two values; then we iterate backwards over that record of what
  1556. * we did, applying the above rules for building up the Bezout
  1557. * coefficients as we go. Of course, all the case analysis is done by
  1558. * the usual bit-twiddling conditionalisation to avoid data-dependent
  1559. * control flow.
  1560. *
  1561. * Also, since these mp_ints are generally treated as unsigned, we
  1562. * store the coefficients by absolute value, with the semantics that
  1563. * they always have opposite sign, and in the unwinding loop we keep a
  1564. * bit indicating whether Aa-Bb is currently expected to be +d or -d,
  1565. * so that we can do one final conditional adjustment if it's -d.
  1566. *
  1567. * Once the reduction rules have managed to reduce the input numbers
  1568. * to (0,d), then they are stable (the next reduction will always
  1569. * divide the even one by 2, which maps 0 to 0). So it doesn't matter
  1570. * if we do more steps of the algorithm than necessary; hence, for
  1571. * constant time, we just need to find the maximum number we could
  1572. * _possibly_ require, and do that many.
  1573. *
  1574. * If a,b < 2^n, at most 2n iterations are required. Proof: consider
  1575. * the quantity Q = log_2(a) + log_2(b). Every step halves one of the
  1576. * numbers (and may also reduce one of them further by doing a
  1577. * subtraction beforehand, but in the worst case, not by much or not
  1578. * at all). So Q reduces by at least 1 per iteration, and it starts
  1579. * off with a value at most 2n.
  1580. *
  1581. * The worst case inputs (I think) are where x=2^{n-1} and y=2^n-1
  1582. * (i.e. x is a power of 2 and y is all 1s). In that situation, the
  1583. * first n-1 steps repeatedly halve x until it's 1, and then there are
  1584. * n further steps each of which subtracts 1 from y and halves it.
  1585. */
  1586. static void mp_bezout_into(mp_int *a_coeff_out, mp_int *b_coeff_out,
  1587. mp_int *gcd_out, mp_int *a_in, mp_int *b_in)
  1588. {
  1589. size_t nw = size_t_max(1, size_t_max(a_in->nw, b_in->nw));
  1590. /* Make mutable copies of the input numbers */
  1591. mp_int *a = mp_make_sized(nw), *b = mp_make_sized(nw);
  1592. mp_copy_into(a, a_in);
  1593. mp_copy_into(b, b_in);
  1594. /* Space to build up the output coefficients, with an extra word
  1595. * so that intermediate values can overflow off the top and still
  1596. * right-shift back down to the correct value */
  1597. { // WINSCP
  1598. mp_int *ac = mp_make_sized(nw + 1), *bc = mp_make_sized(nw + 1);
  1599. /* And a general-purpose temp register */
  1600. mp_int *tmp = mp_make_sized(nw);
  1601. /* Space to record the sequence of reduction steps to unwind. We
  1602. * make it a BignumInt for no particular reason except that (a)
  1603. * mp_make_sized conveniently zeroes the allocation and mp_free
  1604. * wipes it, and (b) this way I can use mp_dump() if I have to
  1605. * debug this code. */
  1606. size_t steps = 2 * nw * BIGNUM_INT_BITS;
  1607. mp_int *record = mp_make_sized(
  1608. (steps*2 + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
  1609. size_t step; // WINSCP
  1610. for (step = 0; step < steps; step++) {
  1611. /*
  1612. * If a and b are both odd, we want to sort them so that a is
  1613. * larger. But if one is even, we want to sort them so that a
  1614. * is the even one.
  1615. */
  1616. unsigned swap_if_both_odd = mp_cmp_hs(b, a);
  1617. unsigned swap_if_one_even = a->w[0] & 1;
  1618. unsigned both_odd = a->w[0] & b->w[0] & 1;
  1619. unsigned swap = swap_if_one_even ^ (
  1620. (swap_if_both_odd ^ swap_if_one_even) & both_odd);
  1621. mp_cond_swap(a, b, swap);
  1622. /*
  1623. * If a,b are both odd, then a is the larger number, so
  1624. * subtract the smaller one from it.
  1625. */
  1626. mp_cond_sub_into(a, a, b, both_odd);
  1627. /*
  1628. * Now a is even, so divide it by two.
  1629. */
  1630. mp_rshift_fixed_into(a, a, 1);
  1631. /*
  1632. * Record the two 1-bit values both_odd and swap.
  1633. */
  1634. mp_set_bit(record, step*2, both_odd);
  1635. mp_set_bit(record, step*2+1, swap);
  1636. }
  1637. /*
  1638. * Now we expect to have reduced the two numbers to 0 and d,
  1639. * although we don't know which way round. (But we avoid checking
  1640. * this by assertion; sometimes we'll need to do this computation
  1641. * without giving away that we already know the inputs were bogus.
  1642. * So we'd prefer to just press on and return nonsense.)
  1643. */
  1644. if (gcd_out) {
  1645. /*
  1646. * At this point we can return the actual gcd. Since one of
  1647. * a,b is it and the other is zero, the easiest way to get it
  1648. * is to add them together.
  1649. */
  1650. mp_add_into(gcd_out, a, b);
  1651. }
  1652. /*
  1653. * If the caller _only_ wanted the gcd, and neither Bezout
  1654. * coefficient is even required, we can skip the entire unwind
  1655. * stage.
  1656. */
  1657. if (a_coeff_out || b_coeff_out) {
  1658. /*
  1659. * The Bezout coefficients of a,b at this point are simply 0
  1660. * for whichever of a,b is zero, and 1 for whichever is
  1661. * nonzero. The nonzero number equals gcd(a,b), which by
  1662. * assumption is odd, so we can do this by just taking the low
  1663. * bit of each one.
  1664. */
  1665. ac->w[0] = mp_get_bit(a, 0);
  1666. bc->w[0] = mp_get_bit(b, 0);
  1667. /*
  1668. * Overwrite a,b themselves with those same numbers. This has
  1669. * the effect of dividing both of them by d, which will
  1670. * arrange that during the unwind stage we generate the
  1671. * minimal coefficients instead of a larger pair.
  1672. */
  1673. mp_copy_into(a, ac);
  1674. mp_copy_into(b, bc);
  1675. /*
  1676. * We'll maintain the invariant as we unwind that ac * a - bc
  1677. * * b is either +d or -d (or rather, +1/-1 after scaling by
  1678. * d), and we'll remember which. (We _could_ keep it at +d the
  1679. * whole time, but it would cost more work every time round
  1680. * the loop, so it's cheaper to fix that up once at the end.)
  1681. *
  1682. * Initially, the result is +d if a was the nonzero value after
  1683. * reduction, and -d if b was.
  1684. */
  1685. { // WINSCP
  1686. unsigned minus_d = b->w[0];
  1687. size_t step; // WINSCP
  1688. for (step = steps; step-- > 0 ;) {
  1689. /*
  1690. * Recover the data from the step we're unwinding.
  1691. */
  1692. unsigned both_odd = mp_get_bit(record, step*2);
  1693. unsigned swap = mp_get_bit(record, step*2+1);
  1694. /*
  1695. * Unwind the division: if our coefficient of a is odd, we
  1696. * adjust the coefficients by +b and +a respectively.
  1697. */
  1698. unsigned adjust = ac->w[0] & 1;
  1699. mp_cond_add_into(ac, ac, b, adjust);
  1700. mp_cond_add_into(bc, bc, a, adjust);
  1701. /*
  1702. * Now ac is definitely even, so we divide it by two.
  1703. */
  1704. mp_rshift_fixed_into(ac, ac, 1);
  1705. /*
  1706. * Now unwind the subtraction, if there was one, by adding
  1707. * ac to bc.
  1708. */
  1709. mp_cond_add_into(bc, bc, ac, both_odd);
  1710. /*
  1711. * Undo the transformation of the input numbers, by
  1712. * multiplying a by 2 and then adding b to a (the latter
  1713. * only if both_odd).
  1714. */
  1715. mp_lshift_fixed_into(a, a, 1);
  1716. mp_cond_add_into(a, a, b, both_odd);
  1717. /*
  1718. * Finally, undo the swap. If we do swap, this also
  1719. * reverses the sign of the current result ac*a+bc*b.
  1720. */
  1721. mp_cond_swap(a, b, swap);
  1722. mp_cond_swap(ac, bc, swap);
  1723. minus_d ^= swap;
  1724. }
  1725. /*
  1726. * Now we expect to have recovered the input a,b (or rather,
  1727. * the versions of them divided by d). But we might find that
  1728. * our current result is -d instead of +d, that is, we have
  1729. * A',B' such that A'a - B'b = -d.
  1730. *
  1731. * In that situation, we set A = b-A' and B = a-B', giving us
  1732. * Aa-Bb = ab - A'a - ab + B'b = +1.
  1733. */
  1734. mp_sub_into(tmp, b, ac);
  1735. mp_select_into(ac, ac, tmp, minus_d);
  1736. mp_sub_into(tmp, a, bc);
  1737. mp_select_into(bc, bc, tmp, minus_d);
  1738. /*
  1739. * Now we really are done. Return the outputs.
  1740. */
  1741. if (a_coeff_out)
  1742. mp_copy_into(a_coeff_out, ac);
  1743. if (b_coeff_out)
  1744. mp_copy_into(b_coeff_out, bc);
  1745. } // WINSCP
  1746. }
  1747. mp_free(a);
  1748. mp_free(b);
  1749. mp_free(ac);
  1750. mp_free(bc);
  1751. mp_free(tmp);
  1752. mp_free(record);
  1753. } // WINSCP
  1754. }
  1755. mp_int *mp_invert(mp_int *x, mp_int *m)
  1756. {
  1757. mp_int *result = mp_make_sized(m->nw);
  1758. mp_bezout_into(result, NULL, NULL, x, m);
  1759. return result;
  1760. }
  1761. void mp_gcd_into(mp_int *a, mp_int *b, mp_int *gcd, mp_int *A, mp_int *B)
  1762. {
  1763. /*
  1764. * Identify shared factors of 2. To do this we OR the two numbers
  1765. * to get something whose lowest set bit is in the right place,
  1766. * remove all higher bits by ANDing it with its own negation, and
  1767. * use mp_get_nbits to find the location of the single remaining
  1768. * set bit.
  1769. */
  1770. mp_int *tmp = mp_make_sized(size_t_max(a->nw, b->nw));
  1771. size_t i; // WINSCP
  1772. for (i = 0; i < tmp->nw; i++)
  1773. tmp->w[i] = mp_word(a, i) | mp_word(b, i);
  1774. { // WINSCP
  1775. BignumCarry carry = 1;
  1776. size_t i;
  1777. for (i = 0; i < tmp->nw; i++) {
  1778. BignumInt negw;
  1779. BignumADC(negw, carry, 0, ~tmp->w[i], carry);
  1780. tmp->w[i] &= negw;
  1781. }
  1782. { // WINSCP
  1783. size_t shift = mp_get_nbits(tmp) - 1;
  1784. mp_free(tmp);
  1785. /*
  1786. * Make copies of a,b with those shared factors of 2 divided off,
  1787. * so that at least one is odd (which is the precondition for
  1788. * mp_bezout_into). Compute the gcd of those.
  1789. */
  1790. { // WINSCP
  1791. mp_int *as = mp_rshift_safe(a, shift);
  1792. mp_int *bs = mp_rshift_safe(b, shift);
  1793. mp_bezout_into(A, B, gcd, as, bs);
  1794. mp_free(as);
  1795. mp_free(bs);
  1796. /*
  1797. * And finally shift the gcd back up (unless the caller didn't
  1798. * even ask for it), to put the shared factors of 2 back in.
  1799. */
  1800. if (gcd)
  1801. mp_lshift_safe_in_place(gcd, shift);
  1802. } // WINSCP
  1803. } // WINSCP
  1804. } // WINSCP
  1805. }
  1806. mp_int *mp_gcd(mp_int *a, mp_int *b)
  1807. {
  1808. mp_int *gcd = mp_make_sized(size_t_min(a->nw, b->nw));
  1809. mp_gcd_into(a, b, gcd, NULL, NULL);
  1810. return gcd;
  1811. }
  1812. unsigned mp_coprime(mp_int *a, mp_int *b)
  1813. {
  1814. mp_int *gcd = mp_gcd(a, b);
  1815. unsigned toret = mp_eq_integer(gcd, 1);
  1816. mp_free(gcd);
  1817. return toret;
  1818. }
  1819. static uint32_t recip_approx_32(uint32_t x)
  1820. {
  1821. /*
  1822. * Given an input x in [2^31,2^32), i.e. a uint32_t with its high
  1823. * bit set, this function returns an approximation to 2^63/x,
  1824. * computed using only multiplications and bit shifts just in case
  1825. * the C divide operator has non-constant time (either because the
  1826. * underlying machine instruction does, or because the operator
  1827. * expands to a library function on a CPU without hardware
  1828. * division).
  1829. *
  1830. * The coefficients are derived from those of the degree-9
  1831. * polynomial which is the minimax-optimal approximation to that
  1832. * function on the given interval (generated using the Remez
  1833. * algorithm), converted into integer arithmetic with shifts used
  1834. * to maximise the number of significant bits at every state. (A
  1835. * sort of 'static floating point' - the exponent is statically
  1836. * known at every point in the code, so it never needs to be
  1837. * stored at run time or to influence runtime decisions.)
  1838. *
  1839. * Exhaustive iteration over the whole input space shows the
  1840. * largest possible error to be 1686.54. (The input value
  1841. * attaining that bound is 4226800006 == 0xfbefd986, whose true
  1842. * reciprocal is 2182116973.540... == 0x8210766d.8a6..., whereas
  1843. * this function returns 2182115287 == 0x82106fd7.)
  1844. */
  1845. uint64_t r = 0x92db03d6ULL;
  1846. r = 0xf63e71eaULL - ((r*x) >> 34);
  1847. r = 0xb63721e8ULL - ((r*x) >> 34);
  1848. r = 0x9c2da00eULL - ((r*x) >> 33);
  1849. r = 0xaada0bb8ULL - ((r*x) >> 32);
  1850. r = 0xf75cd403ULL - ((r*x) >> 31);
  1851. r = 0xecf97a41ULL - ((r*x) >> 31);
  1852. r = 0x90d876cdULL - ((r*x) >> 31);
  1853. r = 0x6682799a0ULL - ((r*x) >> 26);
  1854. return r;
  1855. }
  1856. void mp_divmod_into(mp_int *n, mp_int *d, mp_int *q_out, mp_int *r_out)
  1857. {
  1858. pinitassert(!mp_eq_integer(d, 0));
  1859. /*
  1860. * We do division by using Newton-Raphson iteration to converge to
  1861. * the reciprocal of d (or rather, R/d for R a sufficiently large
  1862. * power of 2); then we multiply that reciprocal by n; and we
  1863. * finish up with conditional subtraction.
  1864. *
  1865. * But we have to do it in a fixed number of N-R iterations, so we
  1866. * need some error analysis to know how many we might need.
  1867. *
  1868. * The iteration is derived by defining f(r) = d - R/r.
  1869. * Differentiating gives f'(r) = R/r^2, and the Newton-Raphson
  1870. * formula applied to those functions gives
  1871. *
  1872. * r_{i+1} = r_i - f(r_i) / f'(r_i)
  1873. * = r_i - (d - R/r_i) r_i^2 / R
  1874. * = r_i (2 R - d r_i) / R
  1875. *
  1876. * Now let e_i be the error in a given iteration, in the sense
  1877. * that
  1878. *
  1879. * d r_i = R + e_i
  1880. * i.e. e_i/R = (r_i - r_true) / r_true
  1881. *
  1882. * so e_i is the _relative_ error in r_i.
  1883. *
  1884. * We must also introduce a rounding-error term, because the
  1885. * division by R always gives an integer. This might make the
  1886. * output off by up to 1 (in the negative direction, because
  1887. * right-shifting gives floor of the true quotient). So when we
  1888. * divide by R, we must imagine adding some f in [0,1). Then we
  1889. * have
  1890. *
  1891. * d r_{i+1} = d r_i (2 R - d r_i) / R - d f
  1892. * = (R + e_i) (R - e_i) / R - d f
  1893. * = (R^2 - e_i^2) / R - d f
  1894. * = R - (e_i^2 / R + d f)
  1895. * => e_{i+1} = - (e_i^2 / R + d f)
  1896. *
  1897. * The sum of two positive quantities is bounded above by twice
  1898. * their max, and max |f| = 1, so we can bound this as follows:
  1899. *
  1900. * |e_{i+1}| <= 2 max (e_i^2/R, d)
  1901. * |e_{i+1}/R| <= 2 max ((e_i/R)^2, d/R)
  1902. * log2 |R/e_{i+1}| <= min (2 log2 |R/e_i|, log2 |R/d|) - 1
  1903. *
  1904. * which tells us that the number of 'good' bits - i.e.
  1905. * log2(R/e_i) - very nearly doubles at every iteration (apart
  1906. * from that subtraction of 1), until it gets to the same size as
  1907. * log2(R/d). In other words, the size of R in bits has to be the
  1908. * size of denominator we're putting in, _plus_ the amount of
  1909. * precision we want to get back out.
  1910. *
  1911. * So when we multiply n (the input numerator) by our final
  1912. * reciprocal approximation r, but actually r differs from R/d by
  1913. * up to 2, then it follows that
  1914. *
  1915. * n/d - nr/R = n/d - [ n (R/d + e) ] / R
  1916. * = n/d - [ (n/d) R + n e ] / R
  1917. * = -ne/R
  1918. * => 0 <= n/d - nr/R < 2n/R
  1919. *
  1920. * so our computed quotient can differ from the true n/d by up to
  1921. * 2n/R. Hence, as long as we also choose R large enough that 2n/R
  1922. * is bounded above by a constant, we can guarantee a bounded
  1923. * number of final conditional-subtraction steps.
  1924. */
  1925. /*
  1926. * Get at least 32 of the most significant bits of the input
  1927. * number.
  1928. */
  1929. size_t hiword_index = 0;
  1930. uint64_t hibits = 0, lobits = 0;
  1931. mp_find_highest_nonzero_word_pair(d, 64 - BIGNUM_INT_BITS,
  1932. &hiword_index, &hibits, &lobits);
  1933. /*
  1934. * Make a shifted combination of those two words which puts the
  1935. * topmost bit of the number at bit 63.
  1936. */
  1937. { // WINSCP
  1938. size_t shift_up = 0;
  1939. size_t i; // WINSCP
  1940. for (i = BIGNUM_INT_BITS_BITS; i-- > 0;) {
  1941. size_t sl = (size_t)1 << i; /* left shift count */
  1942. size_t sr = 64 - sl; /* complementary right-shift count */
  1943. /* Should we shift up? */
  1944. unsigned indicator = 1 ^ normalise_to_1_u64(hibits >> sr);
  1945. /* If we do, what will we get? */
  1946. uint64_t new_hibits = (hibits << sl) | (lobits >> sr);
  1947. uint64_t new_lobits = lobits << sl;
  1948. size_t new_shift_up = shift_up + sl;
  1949. /* Conditionally swap those values in. */
  1950. hibits ^= (hibits ^ new_hibits ) & -(uint64_t)indicator;
  1951. lobits ^= (lobits ^ new_lobits ) & -(uint64_t)indicator;
  1952. shift_up ^= (shift_up ^ new_shift_up ) & -(size_t) indicator;
  1953. }
  1954. /*
  1955. * So now we know the most significant 32 bits of d are at the top
  1956. * of hibits. Approximate the reciprocal of those bits.
  1957. */
  1958. lobits = (uint64_t)recip_approx_32(hibits >> 32) << 32;
  1959. hibits = 0;
  1960. /*
  1961. * And shift that up by as many bits as the input was shifted up
  1962. * just now, so that the product of this approximation and the
  1963. * actual input will be close to a fixed power of two regardless
  1964. * of where the MSB was.
  1965. *
  1966. * I do this in another log n individual passes, partly in case
  1967. * the CPU's register-controlled shift operation isn't
  1968. * time-constant, and also in case the compiler code-generates
  1969. * uint64_t shifts out of a variable number of smaller-word shift
  1970. * instructions, e.g. by splitting up into cases.
  1971. */
  1972. for (i = BIGNUM_INT_BITS_BITS; i-- > 0;) {
  1973. size_t sl = (size_t)1 << i; /* left shift count */
  1974. size_t sr = 64 - sl; /* complementary right-shift count */
  1975. /* Should we shift up? */
  1976. unsigned indicator = 1 & (shift_up >> i);
  1977. /* If we do, what will we get? */
  1978. uint64_t new_hibits = (hibits << sl) | (lobits >> sr);
  1979. uint64_t new_lobits = lobits << sl;
  1980. /* Conditionally swap those values in. */
  1981. hibits ^= (hibits ^ new_hibits ) & -(uint64_t)indicator;
  1982. lobits ^= (lobits ^ new_lobits ) & -(uint64_t)indicator;
  1983. }
  1984. /*
  1985. * The product of the 128-bit value now in hibits:lobits with the
  1986. * 128-bit value we originally retrieved in the same variables
  1987. * will be in the vicinity of 2^191. So we'll take log2(R) to be
  1988. * 191, plus a multiple of BIGNUM_INT_BITS large enough to allow R
  1989. * to hold the combined sizes of n and d.
  1990. */
  1991. { // WINSCP
  1992. size_t log2_R;
  1993. {
  1994. size_t max_log2_n = (n->nw + d->nw) * BIGNUM_INT_BITS;
  1995. log2_R = max_log2_n + 3;
  1996. log2_R -= size_t_min(191, log2_R);
  1997. log2_R = (log2_R + BIGNUM_INT_BITS - 1) & ~(BIGNUM_INT_BITS - 1);
  1998. log2_R += 191;
  1999. }
  2000. /* Number of words in a bignum capable of holding numbers the size
  2001. * of twice R. */
  2002. { // WINSCP
  2003. size_t rw = ((log2_R+2) + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  2004. /*
  2005. * Now construct our full-sized starting reciprocal approximation.
  2006. */
  2007. mp_int *r_approx = mp_make_sized(rw);
  2008. size_t output_bit_index;
  2009. {
  2010. /* Where in the input number did the input 128-bit value come from? */
  2011. size_t input_bit_index =
  2012. (hiword_index * BIGNUM_INT_BITS) - (128 - BIGNUM_INT_BITS);
  2013. /* So how far do we need to shift our 64-bit output, if the
  2014. * product of those two fixed-size values is 2^191 and we want
  2015. * to make it 2^log2_R instead? */
  2016. output_bit_index = log2_R - 191 - input_bit_index;
  2017. /* If we've done all that right, it should be a whole number
  2018. * of words. */
  2019. assert(output_bit_index % BIGNUM_INT_BITS == 0);
  2020. { // WINSCP
  2021. size_t output_word_index = output_bit_index / BIGNUM_INT_BITS;
  2022. mp_add_integer_into_shifted_by_words(
  2023. r_approx, r_approx, lobits, output_word_index);
  2024. mp_add_integer_into_shifted_by_words(
  2025. r_approx, r_approx, hibits,
  2026. output_word_index + 64 / BIGNUM_INT_BITS);
  2027. } // WINSCP
  2028. }
  2029. /*
  2030. * Make the constant 2*R, which we'll need in the iteration.
  2031. */
  2032. { // WINSCP
  2033. mp_int *two_R = mp_make_sized(rw);
  2034. mp_add_integer_into_shifted_by_words(
  2035. two_R, two_R, (BignumInt)1 << ((log2_R+1) % BIGNUM_INT_BITS),
  2036. (log2_R+1) / BIGNUM_INT_BITS);
  2037. /*
  2038. * Scratch space.
  2039. */
  2040. { // WINSCP
  2041. mp_int *dr = mp_make_sized(rw + d->nw);
  2042. mp_int *diff = mp_make_sized(size_t_max(rw, dr->nw));
  2043. mp_int *product = mp_make_sized(rw + diff->nw);
  2044. size_t scratchsize = size_t_max(
  2045. mp_mul_scratchspace(dr->nw, r_approx->nw, d->nw),
  2046. mp_mul_scratchspace(product->nw, r_approx->nw, diff->nw));
  2047. mp_int *scratch = mp_make_sized(scratchsize);
  2048. mp_int product_shifted = mp_make_alias(
  2049. product, log2_R / BIGNUM_INT_BITS, product->nw);
  2050. /*
  2051. * Initial error estimate: the 32-bit output of recip_approx_32
  2052. * differs by less than 2048 (== 2^11) from the true top 32 bits
  2053. * of the reciprocal, so the relative error is at most 2^11
  2054. * divided by the 32-bit reciprocal, which at worst is 2^11/2^31 =
  2055. * 2^-20. So even in the worst case, we have 20 good bits of
  2056. * reciprocal to start with.
  2057. */
  2058. size_t good_bits = 31 - 11;
  2059. size_t good_bits_needed = BIGNUM_INT_BITS * n->nw + 4; /* add a few */
  2060. /*
  2061. * Now do Newton-Raphson iterations until we have reason to think
  2062. * they're not converging any more.
  2063. */
  2064. while (good_bits < good_bits_needed) {
  2065. /*
  2066. * Compute the next iterate.
  2067. */
  2068. mp_mul_internal(dr, r_approx, d, *scratch);
  2069. mp_sub_into(diff, two_R, dr);
  2070. mp_mul_internal(product, r_approx, diff, *scratch);
  2071. mp_rshift_fixed_into(r_approx, &product_shifted,
  2072. log2_R % BIGNUM_INT_BITS);
  2073. /*
  2074. * Adjust the error estimate.
  2075. */
  2076. good_bits = good_bits * 2 - 1;
  2077. }
  2078. mp_free(dr);
  2079. mp_free(diff);
  2080. mp_free(product);
  2081. mp_free(scratch);
  2082. /*
  2083. * Now we've got our reciprocal, we can compute the quotient, by
  2084. * multiplying in n and then shifting down by log2_R bits.
  2085. */
  2086. { // WINSCP
  2087. mp_int *quotient_full = mp_mul(r_approx, n);
  2088. mp_int quotient_alias = mp_make_alias(
  2089. quotient_full, log2_R / BIGNUM_INT_BITS, quotient_full->nw);
  2090. mp_int *quotient = mp_make_sized(n->nw);
  2091. mp_rshift_fixed_into(quotient, &quotient_alias, log2_R % BIGNUM_INT_BITS);
  2092. /*
  2093. * Next, compute the remainder.
  2094. */
  2095. { // WINSCP
  2096. mp_int *remainder = mp_make_sized(d->nw);
  2097. mp_mul_into(remainder, quotient, d);
  2098. mp_sub_into(remainder, n, remainder);
  2099. /*
  2100. * Finally, two conditional subtractions to fix up any remaining
  2101. * rounding error. (I _think_ one should be enough, but this
  2102. * routine isn't time-critical enough to take chances.)
  2103. */
  2104. { // WINSCP
  2105. unsigned q_correction = 0;
  2106. unsigned iter; // WINSCP
  2107. for (iter = 0; iter < 2; iter++) {
  2108. unsigned need_correction = mp_cmp_hs(remainder, d);
  2109. mp_cond_sub_into(remainder, remainder, d, need_correction);
  2110. q_correction += need_correction;
  2111. }
  2112. mp_add_integer_into(quotient, quotient, q_correction);
  2113. /*
  2114. * Now we should have a perfect answer, i.e. 0 <= r < d.
  2115. */
  2116. assert(!mp_cmp_hs(remainder, d));
  2117. if (q_out)
  2118. mp_copy_into(q_out, quotient);
  2119. if (r_out)
  2120. mp_copy_into(r_out, remainder);
  2121. mp_free(r_approx);
  2122. mp_free(two_R);
  2123. mp_free(quotient_full);
  2124. mp_free(quotient);
  2125. mp_free(remainder);
  2126. } // WINSCP
  2127. } // WINSCP
  2128. } // WINSCP
  2129. } // WINSCP
  2130. } // WINSCP
  2131. } // WINSCP
  2132. } // WINSCP
  2133. } // WINSCP
  2134. }
  2135. mp_int *mp_div(mp_int *n, mp_int *d)
  2136. {
  2137. mp_int *q = mp_make_sized(n->nw);
  2138. mp_divmod_into(n, d, q, NULL);
  2139. return q;
  2140. }
  2141. mp_int *mp_mod(mp_int *n, mp_int *d)
  2142. {
  2143. mp_int *r = mp_make_sized(d->nw);
  2144. mp_divmod_into(n, d, NULL, r);
  2145. return r;
  2146. }
  2147. mp_int *mp_nthroot(mp_int *y, unsigned n, mp_int *remainder_out)
  2148. {
  2149. /*
  2150. * Allocate scratch space.
  2151. */
  2152. mp_int **alloc, **powers, **newpowers, *scratch;
  2153. size_t nalloc = 2*(n+1)+1;
  2154. alloc = snewn(nalloc, mp_int *);
  2155. { // WINSCP
  2156. size_t i; // WINSCP
  2157. for (i = 0; i < nalloc; i++)
  2158. alloc[i] = mp_make_sized(y->nw + 1);
  2159. powers = alloc;
  2160. newpowers = alloc + (n+1);
  2161. scratch = alloc[2*n+2];
  2162. /*
  2163. * We're computing the rounded-down nth root of y, i.e. the
  2164. * maximal x such that x^n <= y. We try to add 2^i to it for each
  2165. * possible value of i, starting from the largest one that might
  2166. * fit (i.e. such that 2^{n*i} fits in the size of y) downwards to
  2167. * i=0.
  2168. *
  2169. * We track all the smaller powers of x in the array 'powers'. In
  2170. * each iteration, if we update x, we update all of those values
  2171. * to match.
  2172. */
  2173. mp_copy_integer_into(powers[0], 1);
  2174. { // WINSCP
  2175. size_t s; // WINSCP
  2176. for (s = mp_max_bits(y) / n + 1; s-- > 0 ;) {
  2177. /*
  2178. * Let b = 2^s. We need to compute the powers (x+b)^i for each
  2179. * i, starting from our recorded values of x^i.
  2180. */
  2181. size_t i; // WINSCP
  2182. for (i = 0; i < n+1; i++) {
  2183. /*
  2184. * (x+b)^i = x^i
  2185. * + (i choose 1) x^{i-1} b
  2186. * + (i choose 2) x^{i-2} b^2
  2187. * + ...
  2188. * + b^i
  2189. */
  2190. uint16_t binom = 1; /* coefficient of b^i */
  2191. mp_copy_into(newpowers[i], powers[i]);
  2192. { // WINSCP
  2193. size_t j; // WINSCP
  2194. for (j = 0; j < i; j++) {
  2195. /* newpowers[i] += binom * powers[j] * 2^{(i-j)*s} */
  2196. mp_mul_integer_into(scratch, powers[j], binom);
  2197. mp_lshift_fixed_into(scratch, scratch, (i-j) * s);
  2198. mp_add_into(newpowers[i], newpowers[i], scratch);
  2199. { // WINSCP
  2200. uint32_t binom_mul = binom;
  2201. binom_mul *= (i-j);
  2202. binom_mul /= (j+1);
  2203. assert(binom_mul < 0x10000);
  2204. binom = binom_mul;
  2205. } // WINSCP
  2206. }
  2207. } // WINSCP
  2208. }
  2209. /*
  2210. * Now, is the new value of x^n still <= y? If so, update.
  2211. */
  2212. { // WINSCP
  2213. unsigned newbit = mp_cmp_hs(y, newpowers[n]);
  2214. size_t i; // WINSCP
  2215. for (i = 0; i < n+1; i++)
  2216. mp_select_into(powers[i], powers[i], newpowers[i], newbit);
  2217. } // WINSCP
  2218. }
  2219. if (remainder_out)
  2220. mp_sub_into(remainder_out, y, powers[n]);
  2221. { // WINSCP
  2222. mp_int *root = mp_new(mp_max_bits(y) / n);
  2223. mp_copy_into(root, powers[1]);
  2224. { // WINSCP
  2225. size_t i;
  2226. for (i = 0; i < nalloc; i++)
  2227. mp_free(alloc[i]);
  2228. sfree(alloc);
  2229. return root;
  2230. } // WINSCP
  2231. } // WINSCP
  2232. } // WINSCP
  2233. } // WINSCP
  2234. }
  2235. mp_int *mp_modmul(mp_int *x, mp_int *y, mp_int *modulus)
  2236. {
  2237. mp_int *product = mp_mul(x, y);
  2238. mp_int *reduced = mp_mod(product, modulus);
  2239. mp_free(product);
  2240. return reduced;
  2241. }
  2242. mp_int *mp_modadd(mp_int *x, mp_int *y, mp_int *modulus)
  2243. {
  2244. mp_int *sum = mp_add(x, y);
  2245. mp_int *reduced = mp_mod(sum, modulus);
  2246. mp_free(sum);
  2247. return reduced;
  2248. }
  2249. mp_int *mp_modsub(mp_int *x, mp_int *y, mp_int *modulus)
  2250. {
  2251. mp_int *diff = mp_make_sized(size_t_max(x->nw, y->nw));
  2252. mp_sub_into(diff, x, y);
  2253. { // WINSCP
  2254. unsigned negate = mp_cmp_hs(y, x);
  2255. mp_cond_negate(diff, diff, negate);
  2256. { // WINSCP
  2257. mp_int *residue = mp_mod(diff, modulus);
  2258. mp_cond_negate(residue, residue, negate);
  2259. /* If we've just negated the residue, then it will be < 0 and need
  2260. * the modulus adding to it to make it positive - *except* if the
  2261. * residue was zero when we negated it. */
  2262. { // WINSCP
  2263. unsigned make_positive = negate & ~mp_eq_integer(residue, 0);
  2264. mp_cond_add_into(residue, residue, modulus, make_positive);
  2265. mp_free(diff);
  2266. return residue;
  2267. } // WINSCP
  2268. } // WINSCP
  2269. } // WINSCP
  2270. }
  2271. static mp_int *mp_modadd_in_range(mp_int *x, mp_int *y, mp_int *modulus)
  2272. {
  2273. mp_int *sum = mp_make_sized(modulus->nw);
  2274. unsigned carry = mp_add_into_internal(sum, x, y);
  2275. mp_cond_sub_into(sum, sum, modulus, carry | mp_cmp_hs(sum, modulus));
  2276. return sum;
  2277. }
  2278. static mp_int *mp_modsub_in_range(mp_int *x, mp_int *y, mp_int *modulus)
  2279. {
  2280. mp_int *diff = mp_make_sized(modulus->nw);
  2281. mp_sub_into(diff, x, y);
  2282. mp_cond_add_into(diff, diff, modulus, 1 ^ mp_cmp_hs(x, y));
  2283. return diff;
  2284. }
  2285. mp_int *monty_add(MontyContext *mc, mp_int *x, mp_int *y)
  2286. {
  2287. return mp_modadd_in_range(x, y, mc->m);
  2288. }
  2289. mp_int *monty_sub(MontyContext *mc, mp_int *x, mp_int *y)
  2290. {
  2291. return mp_modsub_in_range(x, y, mc->m);
  2292. }
  2293. void mp_min_into(mp_int *r, mp_int *x, mp_int *y)
  2294. {
  2295. mp_select_into(r, x, y, mp_cmp_hs(x, y));
  2296. }
  2297. void mp_max_into(mp_int *r, mp_int *x, mp_int *y)
  2298. {
  2299. mp_select_into(r, y, x, mp_cmp_hs(x, y));
  2300. }
  2301. mp_int *mp_min(mp_int *x, mp_int *y)
  2302. {
  2303. mp_int *r = mp_make_sized(size_t_min(x->nw, y->nw));
  2304. mp_min_into(r, x, y);
  2305. return r;
  2306. }
  2307. mp_int *mp_max(mp_int *x, mp_int *y)
  2308. {
  2309. mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw));
  2310. mp_max_into(r, x, y);
  2311. return r;
  2312. }
  2313. mp_int *mp_power_2(size_t power)
  2314. {
  2315. mp_int *x = mp_new(power + 1);
  2316. mp_set_bit(x, power, 1);
  2317. return x;
  2318. }
  2319. struct ModsqrtContext {
  2320. mp_int *p; /* the prime */
  2321. MontyContext *mc; /* for doing arithmetic mod p */
  2322. /* Decompose p-1 as 2^e k, for positive integer e and odd k */
  2323. size_t e;
  2324. mp_int *k;
  2325. mp_int *km1o2; /* (k-1)/2 */
  2326. /* The user-provided value z which is not a quadratic residue mod
  2327. * p, and its kth power. Both in Montgomery form. */
  2328. mp_int *z, *zk;
  2329. };
  2330. ModsqrtContext *modsqrt_new(mp_int *p, mp_int *any_nonsquare_mod_p)
  2331. {
  2332. ModsqrtContext *sc = snew(ModsqrtContext);
  2333. memset(sc, 0, sizeof(ModsqrtContext));
  2334. sc->p = mp_copy(p);
  2335. sc->mc = monty_new(sc->p);
  2336. sc->z = monty_import(sc->mc, any_nonsquare_mod_p);
  2337. /* Find the lowest set bit in p-1. Since this routine expects p to
  2338. * be non-secret (typically a well-known standard elliptic curve
  2339. * parameter), for once we don't need clever bit tricks. */
  2340. for (sc->e = 1; sc->e < BIGNUM_INT_BITS * p->nw; sc->e++)
  2341. if (mp_get_bit(p, sc->e))
  2342. break;
  2343. sc->k = mp_rshift_fixed(p, sc->e);
  2344. sc->km1o2 = mp_rshift_fixed(sc->k, 1);
  2345. /* Leave zk to be filled in lazily, since it's more expensive to
  2346. * compute. If this context turns out never to be needed, we can
  2347. * save the bulk of the setup time this way. */
  2348. return sc;
  2349. }
  2350. static void modsqrt_lazy_setup(ModsqrtContext *sc)
  2351. {
  2352. if (!sc->zk)
  2353. sc->zk = monty_pow(sc->mc, sc->z, sc->k);
  2354. }
  2355. void modsqrt_free(ModsqrtContext *sc)
  2356. {
  2357. monty_free(sc->mc);
  2358. mp_free(sc->p);
  2359. mp_free(sc->z);
  2360. mp_free(sc->k);
  2361. mp_free(sc->km1o2);
  2362. if (sc->zk)
  2363. mp_free(sc->zk);
  2364. sfree(sc);
  2365. }
  2366. mp_int *mp_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success)
  2367. {
  2368. mp_int *mx = monty_import(sc->mc, x);
  2369. mp_int *mroot = monty_modsqrt(sc, mx, success);
  2370. mp_free(mx);
  2371. { // WINSCP
  2372. mp_int *root = monty_export(sc->mc, mroot);
  2373. mp_free(mroot);
  2374. return root;
  2375. } // WINSCP
  2376. }
  2377. /*
  2378. * Modular square root, using an algorithm more or less similar to
  2379. * Tonelli-Shanks but adapted for constant time.
  2380. *
  2381. * The basic idea is to write p-1 = k 2^e, where k is odd and e > 0.
  2382. * Then the multiplicative group mod p (call it G) has a sequence of
  2383. * e+1 nested subgroups G = G_0 > G_1 > G_2 > ... > G_e, where each
  2384. * G_i is exactly half the size of G_{i-1} and consists of all the
  2385. * squares of elements in G_{i-1}. So the innermost group G_e has
  2386. * order k, which is odd, and hence within that group you can take a
  2387. * square root by raising to the power (k+1)/2.
  2388. *
  2389. * Our strategy is to iterate over these groups one by one and make
  2390. * sure the number x we're trying to take the square root of is inside
  2391. * each one, by adjusting it if it isn't.
  2392. *
  2393. * Suppose g is a primitive root of p, i.e. a generator of G_0. (We
  2394. * don't actually need to know what g _is_; we just imagine it for the
  2395. * sake of understanding.) Then G_i consists of precisely the (2^i)th
  2396. * powers of g, and hence, you can tell if a number is in G_i if
  2397. * raising it to the power k 2^{e-i} gives 1. So the conceptual
  2398. * algorithm goes: for each i, test whether x is in G_i by that
  2399. * method. If it isn't, then the previous iteration ensured it's in
  2400. * G_{i-1}, so it will be an odd power of g^{2^{i-1}}, and hence
  2401. * multiplying by any other odd power of g^{2^{i-1}} will give x' in
  2402. * G_i. And we have one of those, because our non-square z is an odd
  2403. * power of g, so z^{2^{i-1}} is an odd power of g^{2^{i-1}}.
  2404. *
  2405. * (There's a special case in the very first iteration, where we don't
  2406. * have a G_{i-1}. If it turns out that x is not even in G_1, that
  2407. * means it's not a square, so we set *success to 0. We still run the
  2408. * rest of the algorithm anyway, for the sake of constant time, but we
  2409. * don't give a hoot what it returns.)
  2410. *
  2411. * When we get to the end and have x in G_e, then we can take its
  2412. * square root by raising to (k+1)/2. But of course that's not the
  2413. * square root of the original input - it's only the square root of
  2414. * the adjusted version we produced during the algorithm. To get the
  2415. * true output answer we also have to multiply by a power of z,
  2416. * namely, z to the power of _half_ whatever we've been multiplying in
  2417. * as we go along. (The power of z we multiplied in must have been
  2418. * even, because the case in which we would have multiplied in an odd
  2419. * power of z is the i=0 case, in which we instead set the failure
  2420. * flag.)
  2421. *
  2422. * The code below is an optimised version of that basic idea, in which
  2423. * we _start_ by computing x^k so as to be able to test membership in
  2424. * G_i by only a few squarings rather than a full from-scratch modpow
  2425. * every time; we also start by computing our candidate output value
  2426. * x^{(k+1)/2}. So when the above description says 'adjust x by z^i'
  2427. * for some i, we have to adjust our running values of x^k and
  2428. * x^{(k+1)/2} by z^{ik} and z^{ik/2} respectively (the latter is safe
  2429. * because, as above, i is always even). And it turns out that we
  2430. * don't actually have to store the adjusted version of x itself at
  2431. * all - we _only_ keep those two powers of it.
  2432. */
  2433. mp_int *monty_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success)
  2434. {
  2435. modsqrt_lazy_setup(sc);
  2436. { // WINSCP
  2437. mp_int *scratch_to_free = mp_make_sized(3 * sc->mc->rw);
  2438. mp_int scratch = *scratch_to_free;
  2439. /*
  2440. * Compute toret = x^{(k+1)/2}, our starting point for the output
  2441. * square root, and also xk = x^k which we'll use as we go along
  2442. * for knowing when to apply correction factors. We do this by
  2443. * first computing x^{(k-1)/2}, then multiplying it by x, then
  2444. * multiplying the two together.
  2445. */
  2446. mp_int *toret = monty_pow(sc->mc, x, sc->km1o2);
  2447. mp_int xk = mp_alloc_from_scratch(&scratch, sc->mc->rw);
  2448. mp_copy_into(&xk, toret);
  2449. monty_mul_into(sc->mc, toret, toret, x);
  2450. monty_mul_into(sc->mc, &xk, toret, &xk);
  2451. { // WINSCP
  2452. mp_int tmp = mp_alloc_from_scratch(&scratch, sc->mc->rw);
  2453. mp_int power_of_zk = mp_alloc_from_scratch(&scratch, sc->mc->rw);
  2454. size_t i; // WINSCP
  2455. mp_copy_into(&power_of_zk, sc->zk);
  2456. for (i = 0; i < sc->e; i++) {
  2457. size_t j; // WINSCP
  2458. mp_copy_into(&tmp, &xk);
  2459. for (j = i+1; j < sc->e; j++)
  2460. monty_mul_into(sc->mc, &tmp, &tmp, &tmp);
  2461. { // WINSCP
  2462. unsigned eq1 = mp_cmp_eq(&tmp, monty_identity(sc->mc));
  2463. if (i == 0) {
  2464. /* One special case: if x=0, then no power of x will ever
  2465. * equal 1, but we should still report success on the
  2466. * grounds that 0 does have a square root mod p. */
  2467. *success = eq1 | mp_eq_integer(x, 0);
  2468. } else {
  2469. monty_mul_into(sc->mc, &tmp, toret, &power_of_zk);
  2470. mp_select_into(toret, &tmp, toret, eq1);
  2471. monty_mul_into(sc->mc, &power_of_zk,
  2472. &power_of_zk, &power_of_zk);
  2473. monty_mul_into(sc->mc, &tmp, &xk, &power_of_zk);
  2474. mp_select_into(&xk, &tmp, &xk, eq1);
  2475. }
  2476. } // WINSCP
  2477. }
  2478. mp_free(scratch_to_free);
  2479. return toret;
  2480. } // WINSCP
  2481. } // WINSCP
  2482. }
  2483. mp_int *mp_random_bits_fn(size_t bits, random_read_fn_t random_read)
  2484. {
  2485. size_t bytes = (bits + 7) / 8;
  2486. uint8_t *randbuf = snewn(bytes, uint8_t);
  2487. random_read(randbuf, bytes);
  2488. if (bytes)
  2489. randbuf[0] &= (2 << ((bits-1) & 7)) - 1;
  2490. { // WINSCP
  2491. mp_int *toret = mp_from_bytes_be(make_ptrlen(randbuf, bytes));
  2492. smemclr(randbuf, bytes);
  2493. sfree(randbuf);
  2494. return toret;
  2495. } // WINSCP
  2496. }
  2497. mp_int *mp_random_upto_fn(mp_int *limit, random_read_fn_t rf)
  2498. {
  2499. /*
  2500. * It would be nice to generate our random numbers in such a way
  2501. * as to make every possible outcome literally equiprobable. But
  2502. * we can't do that in constant time, so we have to go for a very
  2503. * close approximation instead. I'm going to take the view that a
  2504. * factor of (1+2^-128) between the probabilities of two outcomes
  2505. * is acceptable on the grounds that you'd have to examine so many
  2506. * outputs to even detect it.
  2507. */
  2508. mp_int *unreduced = mp_random_bits_fn(mp_max_bits(limit) + 128, rf);
  2509. mp_int *reduced = mp_mod(unreduced, limit);
  2510. mp_free(unreduced);
  2511. return reduced;
  2512. }
  2513. mp_int *mp_random_in_range_fn(mp_int *lo, mp_int *hi, random_read_fn_t rf)
  2514. {
  2515. mp_int *n_outcomes = mp_sub(hi, lo);
  2516. mp_int *addend = mp_random_upto_fn(n_outcomes, rf);
  2517. mp_int *result = mp_make_sized(hi->nw);
  2518. mp_add_into(result, addend, lo);
  2519. mp_free(addend);
  2520. mp_free(n_outcomes);
  2521. return result;
  2522. }