mpint.c 83 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522
  1. #include <assert.h>
  2. #include <limits.h>
  3. #include <stdio.h>
  4. #include "defs.h"
  5. #include "misc.h"
  6. #include "puttymem.h"
  7. #include "mpint.h"
  8. #include "mpint_i.h"
  9. #pragma warn -ngu // WINSCP
  10. #define SIZE_T_BITS (CHAR_BIT * sizeof(size_t))
  11. /*
  12. * Inline helpers to take min and max of size_t values, used
  13. * throughout this code.
  14. */
  15. static inline size_t size_t_min(size_t a, size_t b)
  16. {
  17. return a < b ? a : b;
  18. }
  19. static inline size_t size_t_max(size_t a, size_t b)
  20. {
  21. return a > b ? a : b;
  22. }
  23. /*
  24. * Helper to fetch a word of data from x with array overflow checking.
  25. * If x is too short to have that word, 0 is returned.
  26. */
  27. static inline BignumInt mp_word(mp_int *x, size_t i)
  28. {
  29. return i < x->nw ? x->w[i] : 0;
  30. }
  31. static mp_int *mp_make_sized(size_t nw)
  32. {
  33. mp_int *x = snew_plus(mp_int, nw * sizeof(BignumInt));
  34. assert(nw); /* we outlaw the zero-word mp_int */
  35. x->nw = nw;
  36. x->w = snew_plus_get_aux(x);
  37. mp_clear(x);
  38. return x;
  39. }
  40. mp_int *mp_new(size_t maxbits)
  41. {
  42. size_t words = (maxbits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  43. return mp_make_sized(words);
  44. }
  45. mp_int *mp_from_integer(uintmax_t n)
  46. {
  47. mp_int *x = mp_make_sized(
  48. (sizeof(n) + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES);
  49. size_t i; // WINSCP
  50. for (i = 0; i < x->nw; i++)
  51. x->w[i] = n >> (i * BIGNUM_INT_BITS);
  52. return x;
  53. }
  54. size_t mp_max_bytes(mp_int *x)
  55. {
  56. return x->nw * BIGNUM_INT_BYTES;
  57. }
  58. size_t mp_max_bits(mp_int *x)
  59. {
  60. return x->nw * BIGNUM_INT_BITS;
  61. }
  62. void mp_free(mp_int *x)
  63. {
  64. mp_clear(x);
  65. smemclr(x, sizeof(*x));
  66. sfree(x);
  67. }
  68. void mp_dump(FILE *fp, const char *prefix, mp_int *x, const char *suffix)
  69. {
  70. size_t i; // WINSCP
  71. fprintf(fp, "%s0x", prefix);
  72. for (i = mp_max_bytes(x); i-- > 0 ;)
  73. fprintf(fp, "%02X", mp_get_byte(x, i));
  74. fputs(suffix, fp);
  75. }
  76. void mp_copy_into(mp_int *dest, mp_int *src)
  77. {
  78. size_t copy_nw = size_t_min(dest->nw, src->nw);
  79. memmove(dest->w, src->w, copy_nw * sizeof(BignumInt));
  80. smemclr(dest->w + copy_nw, (dest->nw - copy_nw) * sizeof(BignumInt));
  81. }
  82. /*
  83. * Conditional selection is done by negating 'which', to give a mask
  84. * word which is all 1s if which==1 and all 0s if which==0. Then you
  85. * can select between two inputs a,b without data-dependent control
  86. * flow by XORing them to get their difference; ANDing with the mask
  87. * word to replace that difference with 0 if which==0; and XORing that
  88. * into a, which will either turn it into b or leave it alone.
  89. *
  90. * This trick will be used throughout this code and taken as read the
  91. * rest of the time (or else I'd be here all week typing comments),
  92. * but I felt I ought to explain it in words _once_.
  93. */
  94. void mp_select_into(mp_int *dest, mp_int *src0, mp_int *src1,
  95. unsigned which)
  96. {
  97. BignumInt mask = -(BignumInt)(1 & which);
  98. size_t i; // WINSCP
  99. for (i = 0; i < dest->nw; i++) {
  100. BignumInt srcword0 = mp_word(src0, i), srcword1 = mp_word(src1, i);
  101. dest->w[i] = srcword0 ^ ((srcword1 ^ srcword0) & mask);
  102. }
  103. }
  104. void mp_cond_swap(mp_int *x0, mp_int *x1, unsigned swap)
  105. {
  106. pinitassert(x0->nw == x1->nw);
  107. volatile BignumInt mask = -(BignumInt)(1 & swap);
  108. size_t i; // WINSCP
  109. for (i = 0; i < x0->nw; i++) {
  110. BignumInt diff = (x0->w[i] ^ x1->w[i]) & mask;
  111. x0->w[i] ^= diff;
  112. x1->w[i] ^= diff;
  113. }
  114. }
  115. void mp_clear(mp_int *x)
  116. {
  117. smemclr(x->w, x->nw * sizeof(BignumInt));
  118. }
  119. void mp_cond_clear(mp_int *x, unsigned clear)
  120. {
  121. BignumInt mask = ~-(BignumInt)(1 & clear);
  122. size_t i; // WINSCP
  123. for (i = 0; i < x->nw; i++)
  124. x->w[i] &= mask;
  125. }
  126. /*
  127. * Common code between mp_from_bytes_{le,be} which reads bytes in an
  128. * arbitrary arithmetic progression.
  129. */
  130. static mp_int *mp_from_bytes_int(ptrlen bytes, size_t m, size_t c)
  131. {
  132. size_t nw = (bytes.len + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES;
  133. nw = size_t_max(nw, 1);
  134. { // WINSCP
  135. mp_int *n = mp_make_sized(nw);
  136. size_t i; // WINSCP
  137. for (i = 0; i < bytes.len; i++)
  138. n->w[i / BIGNUM_INT_BYTES] |=
  139. (BignumInt)(((const unsigned char *)bytes.ptr)[m*i+c]) <<
  140. (8 * (i % BIGNUM_INT_BYTES));
  141. return n;
  142. } // WINSCP
  143. }
  144. mp_int *mp_from_bytes_le(ptrlen bytes)
  145. {
  146. return mp_from_bytes_int(bytes, 1, 0);
  147. }
  148. mp_int *mp_from_bytes_be(ptrlen bytes)
  149. {
  150. return mp_from_bytes_int(bytes, -1, bytes.len - 1);
  151. }
  152. static mp_int *mp_from_words(size_t nw, const BignumInt *w)
  153. {
  154. mp_int *x = mp_make_sized(nw);
  155. memcpy(x->w, w, x->nw * sizeof(BignumInt));
  156. return x;
  157. }
  158. /*
  159. * Decimal-to-binary conversion: just go through the input string
  160. * adding on the decimal value of each digit, and then multiplying the
  161. * number so far by 10.
  162. */
  163. mp_int *mp_from_decimal_pl(ptrlen decimal)
  164. {
  165. /* 196/59 is an upper bound (and also a continued-fraction
  166. * convergent) for log2(10), so this conservatively estimates the
  167. * number of bits that will be needed to store any number that can
  168. * be written in this many decimal digits. */
  169. pinitassert(decimal.len < (~(size_t)0) / 196);
  170. size_t bits = 196 * decimal.len / 59;
  171. /* Now round that up to words. */
  172. size_t words = bits / BIGNUM_INT_BITS + 1;
  173. mp_int *x = mp_make_sized(words);
  174. size_t i; // WINSCP
  175. for (i = 0; i < decimal.len; i++) {
  176. mp_add_integer_into(x, x, ((char *)decimal.ptr)[i] - '0');
  177. if (i+1 == decimal.len)
  178. break;
  179. mp_mul_integer_into(x, x, 10);
  180. }
  181. return x;
  182. }
  183. mp_int *mp_from_decimal(const char *decimal)
  184. {
  185. return mp_from_decimal_pl(ptrlen_from_asciz(decimal));
  186. }
  187. /*
  188. * Hex-to-binary conversion: _algorithmically_ simpler than decimal
  189. * (none of those multiplications by 10), but there's some fiddly
  190. * bit-twiddling needed to process each hex digit without diverging
  191. * control flow depending on whether it's a letter or a number.
  192. */
  193. mp_int *mp_from_hex_pl(ptrlen hex)
  194. {
  195. pinitassert(hex.len <= (~(size_t)0) / 4);
  196. size_t bits = hex.len * 4;
  197. size_t words = (bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  198. words = size_t_max(words, 1);
  199. { // WINSCP
  200. mp_int *x = mp_make_sized(words);
  201. size_t nibble; // WINSCP
  202. for (nibble = 0; nibble < hex.len; nibble++) {
  203. BignumInt digit = ((char *)hex.ptr)[hex.len-1 - nibble];
  204. BignumInt lmask = ~-((BignumInt)((digit-'a')|('f'-digit))
  205. >> (BIGNUM_INT_BITS-1));
  206. BignumInt umask = ~-((BignumInt)((digit-'A')|('F'-digit))
  207. >> (BIGNUM_INT_BITS-1));
  208. BignumInt digitval = digit - '0';
  209. digitval ^= (digitval ^ (digit - 'a' + 10)) & lmask;
  210. digitval ^= (digitval ^ (digit - 'A' + 10)) & umask;
  211. digitval &= 0xF; /* at least be _slightly_ nice about weird input */
  212. { // WINSCP
  213. size_t word_idx = nibble / (BIGNUM_INT_BYTES*2);
  214. size_t nibble_within_word = nibble % (BIGNUM_INT_BYTES*2);
  215. x->w[word_idx] |= digitval << (nibble_within_word * 4);
  216. } // WINSCP
  217. }
  218. return x;
  219. } // WINSCP
  220. }
  221. mp_int *mp_from_hex(const char *hex)
  222. {
  223. return mp_from_hex_pl(ptrlen_from_asciz(hex));
  224. }
  225. mp_int *mp_copy(mp_int *x)
  226. {
  227. return mp_from_words(x->nw, x->w);
  228. }
  229. uint8_t mp_get_byte(mp_int *x, size_t byte)
  230. {
  231. return 0xFF & (mp_word(x, byte / BIGNUM_INT_BYTES) >>
  232. (8 * (byte % BIGNUM_INT_BYTES)));
  233. }
  234. unsigned mp_get_bit(mp_int *x, size_t bit)
  235. {
  236. return 1 & (mp_word(x, bit / BIGNUM_INT_BITS) >>
  237. (bit % BIGNUM_INT_BITS));
  238. }
  239. void mp_set_bit(mp_int *x, size_t bit, unsigned val)
  240. {
  241. size_t word = bit / BIGNUM_INT_BITS;
  242. pinitassert(word < x->nw);
  243. unsigned shift = (bit % BIGNUM_INT_BITS);
  244. x->w[word] &= ~((BignumInt)1 << shift);
  245. x->w[word] |= (BignumInt)(val & 1) << shift;
  246. }
  247. /*
  248. * Helper function used here and there to normalise any nonzero input
  249. * value to 1.
  250. */
  251. static inline unsigned normalise_to_1(BignumInt n)
  252. {
  253. n = (n >> 1) | (n & 1); /* ensure top bit is clear */
  254. n = (BignumInt)(-n) >> (BIGNUM_INT_BITS - 1); /* normalise to 0 or 1 */
  255. return n;
  256. }
  257. static inline unsigned normalise_to_1_u64(uint64_t n)
  258. {
  259. n = (n >> 1) | (n & 1); /* ensure top bit is clear */
  260. n = (-n) >> 63; /* normalise to 0 or 1 */
  261. return n;
  262. }
  263. /*
  264. * Find the highest nonzero word in a number. Returns the index of the
  265. * word in x->w, and also a pair of output uint64_t in which that word
  266. * appears in the high one shifted left by 'shift_wanted' bits, the
  267. * words immediately below it occupy the space to the right, and the
  268. * words below _that_ fill up the low one.
  269. *
  270. * If there is no nonzero word at all, the passed-by-reference output
  271. * variables retain their original values.
  272. */
  273. static inline void mp_find_highest_nonzero_word_pair(
  274. mp_int *x, size_t shift_wanted, size_t *index,
  275. uint64_t *hi, uint64_t *lo)
  276. {
  277. uint64_t curr_hi = 0, curr_lo = 0;
  278. size_t curr_index; // WINSCP
  279. for (curr_index = 0; curr_index < x->nw; curr_index++) {
  280. BignumInt curr_word = x->w[curr_index];
  281. unsigned indicator = normalise_to_1(curr_word);
  282. curr_lo = (BIGNUM_INT_BITS < 64 ? (curr_lo >> BIGNUM_INT_BITS) : 0) |
  283. (curr_hi << (64 - BIGNUM_INT_BITS));
  284. curr_hi = (BIGNUM_INT_BITS < 64 ? (curr_hi >> BIGNUM_INT_BITS) : 0) |
  285. ((uint64_t)curr_word << shift_wanted);
  286. if (hi) *hi ^= (curr_hi ^ *hi ) & -(uint64_t)indicator;
  287. if (lo) *lo ^= (curr_lo ^ *lo ) & -(uint64_t)indicator;
  288. if (index) *index ^= (curr_index ^ *index) & -(size_t) indicator;
  289. }
  290. }
  291. size_t mp_get_nbits(mp_int *x)
  292. {
  293. /* Sentinel values in case there are no bits set at all: we
  294. * imagine that there's a word at position -1 (i.e. the topmost
  295. * fraction word) which is all 1s, because that way, we handle a
  296. * zero input by considering its highest set bit to be the top one
  297. * of that word, i.e. just below the units digit, i.e. at bit
  298. * index -1, i.e. so we'll return 0 on output. */
  299. size_t hiword_index = -(size_t)1;
  300. uint64_t hiword64 = ~(BignumInt)0;
  301. /*
  302. * Find the highest nonzero word and its index.
  303. */
  304. mp_find_highest_nonzero_word_pair(x, 0, &hiword_index, &hiword64, NULL);
  305. { // WINSCP
  306. BignumInt hiword = hiword64; /* in case BignumInt is a narrower type */
  307. /*
  308. * Find the index of the highest set bit within hiword.
  309. */
  310. BignumInt hibit_index = 0;
  311. size_t i; // WINSCP
  312. for (i = (1 << (BIGNUM_INT_BITS_BITS-1)); i != 0; i >>= 1) {
  313. BignumInt shifted_word = hiword >> i;
  314. BignumInt indicator =
  315. (BignumInt)(-shifted_word) >> (BIGNUM_INT_BITS-1);
  316. hiword ^= (shifted_word ^ hiword ) & -indicator;
  317. hibit_index += i & -(size_t)indicator;
  318. }
  319. /*
  320. * Put together the result.
  321. */
  322. return (hiword_index << BIGNUM_INT_BITS_BITS) + hibit_index + 1;
  323. } // WINSCP
  324. }
  325. /*
  326. * Shared code between the hex and decimal output functions to get rid
  327. * of leading zeroes on the output string. The idea is that we wrote
  328. * out a fixed number of digits and a trailing \0 byte into 'buf', and
  329. * now we want to shift it all left so that the first nonzero digit
  330. * moves to buf[0] (or, if there are no nonzero digits at all, we move
  331. * up by 'maxtrim', so that we return 0 as "0" instead of "").
  332. */
  333. static void trim_leading_zeroes(char *buf, size_t bufsize, size_t maxtrim)
  334. {
  335. size_t trim = maxtrim;
  336. /*
  337. * Look for the first character not equal to '0', to find the
  338. * shift count.
  339. */
  340. if (trim > 0) {
  341. size_t pos; // WINSCP
  342. for (pos = trim; pos-- > 0 ;) {
  343. uint8_t diff = buf[pos] ^ '0';
  344. size_t mask = -((((size_t)diff) - 1) >> (SIZE_T_BITS - 1));
  345. trim ^= (trim ^ pos) & ~mask;
  346. }
  347. }
  348. /*
  349. * Now do the shift, in log n passes each of which does a
  350. * conditional shift by 2^i bytes if bit i is set in the shift
  351. * count.
  352. */
  353. { // WINSCP
  354. uint8_t *ubuf = (uint8_t *)buf;
  355. size_t logd; // WINSCP
  356. for (logd = 0; bufsize >> logd; logd++) {
  357. uint8_t mask = -(uint8_t)((trim >> logd) & 1);
  358. size_t d = (size_t)1 << logd;
  359. size_t i; // WINSCP
  360. for (i = 0; i+d < bufsize; i++) {
  361. uint8_t diff = mask & (ubuf[i] ^ ubuf[i+d]);
  362. ubuf[i] ^= diff;
  363. ubuf[i+d] ^= diff;
  364. }
  365. }
  366. } // WINSCP
  367. }
  368. /*
  369. * Binary to decimal conversion. Our strategy here is to extract each
  370. * decimal digit by finding the input number's residue mod 10, then
  371. * subtract that off to give an exact multiple of 10, which then means
  372. * you can safely divide by 10 by means of shifting right one bit and
  373. * then multiplying by the inverse of 5 mod 2^n.
  374. */
  375. char *mp_get_decimal(mp_int *x_orig)
  376. {
  377. mp_int *x = mp_copy(x_orig), *y = mp_make_sized(x->nw);
  378. /*
  379. * The inverse of 5 mod 2^lots is 0xccccccccccccccccccccd, for an
  380. * appropriate number of 'c's. Manually construct an integer the
  381. * right size.
  382. */
  383. mp_int *inv5 = mp_make_sized(x->nw);
  384. pinitassert(BIGNUM_INT_BITS % 8 == 0);
  385. size_t i; // WINSCP
  386. for (i = 0; i < inv5->nw; i++)
  387. inv5->w[i] = BIGNUM_INT_MASK / 5 * 4;
  388. inv5->w[0]++;
  389. /*
  390. * 146/485 is an upper bound (and also a continued-fraction
  391. * convergent) of log10(2), so this is a conservative estimate of
  392. * the number of decimal digits needed to store a value that fits
  393. * in this many binary bits.
  394. */
  395. assert(x->nw < (~(size_t)1) / (146 * BIGNUM_INT_BITS));
  396. { // WINSCP
  397. size_t bufsize = size_t_max(x->nw * (146 * BIGNUM_INT_BITS) / 485, 1) + 2;
  398. char *outbuf = snewn(bufsize, char);
  399. outbuf[bufsize - 1] = '\0';
  400. /*
  401. * Loop over the number generating digits from the least
  402. * significant upwards, so that we write to outbuf in reverse
  403. * order.
  404. */
  405. { // WINSCP
  406. size_t pos; // WINSCP
  407. for (pos = bufsize - 1; pos-- > 0 ;) {
  408. /*
  409. * Find the current residue mod 10. We do this by first
  410. * summing the bytes of the number, with all but the lowest
  411. * one multiplied by 6 (because 256^i == 6 mod 10 for all
  412. * i>0). That gives us a single word congruent mod 10 to the
  413. * input number, and then we reduce it further by manual
  414. * multiplication and shifting, just in case the compiler
  415. * target implements the C division operator in a way that has
  416. * input-dependent timing.
  417. */
  418. uint32_t low_digit = 0, maxval = 0, mult = 1;
  419. size_t i; // WINSCP
  420. for (i = 0; i < x->nw; i++) {
  421. unsigned j; // WINSCP
  422. for (j = 0; j < BIGNUM_INT_BYTES; j++) {
  423. low_digit += mult * (0xFF & (x->w[i] >> (8*j)));
  424. maxval += mult * 0xFF;
  425. mult = 6;
  426. }
  427. /*
  428. * For _really_ big numbers, prevent overflow of t by
  429. * periodically folding the top half of the accumulator
  430. * into the bottom half, using the same rule 'multiply by
  431. * 6 when shifting down by one or more whole bytes'.
  432. */
  433. if (maxval > UINT32_MAX - (6 * 0xFF * BIGNUM_INT_BYTES)) {
  434. low_digit = (low_digit & 0xFFFF) + 6 * (low_digit >> 16);
  435. maxval = (maxval & 0xFFFF) + 6 * (maxval >> 16);
  436. }
  437. }
  438. /*
  439. * Final reduction of low_digit. We multiply by 2^32 / 10
  440. * (that's the constant 0x19999999) to get a 64-bit value
  441. * whose top 32 bits are the approximate quotient
  442. * low_digit/10; then we subtract off 10 times that; and
  443. * finally we do one last trial subtraction of 10 by adding 6
  444. * (which sets bit 4 if the number was just over 10) and then
  445. * testing bit 4.
  446. */
  447. low_digit -= 10 * ((0x19999999ULL * low_digit) >> 32);
  448. low_digit -= 10 * ((low_digit + 6) >> 4);
  449. assert(low_digit < 10); /* make sure we did reduce fully */
  450. outbuf[pos] = '0' + low_digit;
  451. /*
  452. * Now subtract off that digit, divide by 2 (using a right
  453. * shift) and by 5 (using the modular inverse), to get the
  454. * next output digit into the units position.
  455. */
  456. mp_sub_integer_into(x, x, low_digit);
  457. mp_rshift_fixed_into(y, x, 1);
  458. mp_mul_into(x, y, inv5);
  459. }
  460. mp_free(x);
  461. mp_free(y);
  462. mp_free(inv5);
  463. trim_leading_zeroes(outbuf, bufsize, bufsize - 2);
  464. return outbuf;
  465. } // WINSCP
  466. } // WINSCP
  467. }
  468. /*
  469. * Binary to hex conversion. Reasonably simple (only a spot of bit
  470. * twiddling to choose whether to output a digit or a letter for each
  471. * nibble).
  472. */
  473. static char *mp_get_hex_internal(mp_int *x, uint8_t letter_offset)
  474. {
  475. size_t nibbles = x->nw * BIGNUM_INT_BYTES * 2;
  476. size_t bufsize = nibbles + 1;
  477. char *outbuf = snewn(bufsize, char);
  478. size_t nibble; // WINSCP
  479. outbuf[nibbles] = '\0';
  480. for (nibble = 0; nibble < nibbles; nibble++) {
  481. size_t word_idx = nibble / (BIGNUM_INT_BYTES*2);
  482. size_t nibble_within_word = nibble % (BIGNUM_INT_BYTES*2);
  483. uint8_t digitval = 0xF & (x->w[word_idx] >> (nibble_within_word * 4));
  484. uint8_t mask = -((digitval + 6) >> 4);
  485. char digit = digitval + '0' + (letter_offset & mask);
  486. outbuf[nibbles-1 - nibble] = digit;
  487. }
  488. trim_leading_zeroes(outbuf, bufsize, nibbles - 1);
  489. return outbuf;
  490. }
  491. char *mp_get_hex(mp_int *x)
  492. {
  493. return mp_get_hex_internal(x, 'a' - ('0'+10));
  494. }
  495. char *mp_get_hex_uppercase(mp_int *x)
  496. {
  497. return mp_get_hex_internal(x, 'A' - ('0'+10));
  498. }
  499. /*
  500. * Routines for reading and writing the SSH-1 and SSH-2 wire formats
  501. * for multiprecision integers, declared in marshal.h.
  502. *
  503. * These can't avoid having control flow dependent on the true bit
  504. * size of the number, because the wire format requires the number of
  505. * output bytes to depend on that.
  506. */
  507. void BinarySink_put_mp_ssh1(BinarySink *bs, mp_int *x)
  508. {
  509. size_t bits = mp_get_nbits(x);
  510. size_t bytes = (bits + 7) / 8;
  511. size_t i; // WINSCP
  512. assert(bits < 0x10000);
  513. put_uint16(bs, bits);
  514. for (i = bytes; i-- > 0 ;)
  515. put_byte(bs, mp_get_byte(x, i));
  516. }
  517. void BinarySink_put_mp_ssh2(BinarySink *bs, mp_int *x)
  518. {
  519. size_t bytes = (mp_get_nbits(x) + 8) / 8;
  520. size_t i; // WINSCP
  521. put_uint32(bs, bytes);
  522. for (i = bytes; i-- > 0 ;)
  523. put_byte(bs, mp_get_byte(x, i));
  524. }
  525. mp_int *BinarySource_get_mp_ssh1(BinarySource *src)
  526. {
  527. unsigned bitc = get_uint16(src);
  528. ptrlen bytes = get_data(src, (bitc + 7) / 8);
  529. if (get_err(src)) {
  530. return mp_from_integer(0);
  531. } else {
  532. mp_int *toret = mp_from_bytes_be(bytes);
  533. /* SSH-1.5 spec says that it's OK for the prefix uint16 to be
  534. * _greater_ than the actual number of bits */
  535. if (mp_get_nbits(toret) > bitc) {
  536. src->err = BSE_INVALID;
  537. mp_free(toret);
  538. toret = mp_from_integer(0);
  539. }
  540. return toret;
  541. }
  542. }
  543. mp_int *BinarySource_get_mp_ssh2(BinarySource *src)
  544. {
  545. ptrlen bytes = get_string(src);
  546. if (get_err(src)) {
  547. return mp_from_integer(0);
  548. } else {
  549. const unsigned char *p = bytes.ptr;
  550. if ((bytes.len > 0 &&
  551. ((p[0] & 0x80) ||
  552. (p[0] == 0 && (bytes.len <= 1 || !(p[1] & 0x80)))))) {
  553. src->err = BSE_INVALID;
  554. return mp_from_integer(0);
  555. }
  556. return mp_from_bytes_be(bytes);
  557. }
  558. }
  559. /*
  560. * Make an mp_int structure whose words array aliases a subinterval of
  561. * some other mp_int. This makes it easy to read or write just the low
  562. * or high words of a number, e.g. to add a number starting from a
  563. * high bit position, or to reduce mod 2^{n*BIGNUM_INT_BITS}.
  564. *
  565. * The convention throughout this code is that when we store an mp_int
  566. * directly by value, we always expect it to be an alias of some kind,
  567. * so its words array won't ever need freeing. Whereas an 'mp_int *'
  568. * has an owner, who knows whether it needs freeing or whether it was
  569. * created by address-taking an alias.
  570. */
  571. static mp_int mp_make_alias(mp_int *in, size_t offset, size_t len)
  572. {
  573. /*
  574. * Bounds-check the offset and length so that we always return
  575. * something valid, even if it's not necessarily the length the
  576. * caller asked for.
  577. */
  578. if (offset > in->nw)
  579. offset = in->nw;
  580. if (len > in->nw - offset)
  581. len = in->nw - offset;
  582. { // WINSCP
  583. mp_int toret;
  584. toret.nw = len;
  585. toret.w = in->w + offset;
  586. return toret;
  587. } // WINSCP
  588. }
  589. /*
  590. * A special case of mp_make_alias: in some cases we preallocate a
  591. * large mp_int to use as scratch space (to avoid pointless
  592. * malloc/free churn in recursive or iterative work).
  593. *
  594. * mp_alloc_from_scratch creates an alias of size 'len' to part of
  595. * 'pool', and adjusts 'pool' itself so that further allocations won't
  596. * overwrite that space.
  597. *
  598. * There's no free function to go with this. Typically you just copy
  599. * the pool mp_int by value, allocate from the copy, and when you're
  600. * done with those allocations, throw the copy away and go back to the
  601. * original value of pool. (A mark/release system.)
  602. */
  603. static mp_int mp_alloc_from_scratch(mp_int *pool, size_t len)
  604. {
  605. pinitassert(len <= pool->nw);
  606. mp_int toret = mp_make_alias(pool, 0, len);
  607. *pool = mp_make_alias(pool, len, pool->nw);
  608. return toret;
  609. }
  610. /*
  611. * Internal component common to lots of assorted add/subtract code.
  612. * Reads words from a,b; writes into w_out (which might be NULL if the
  613. * output isn't even needed). Takes an input carry flag in 'carry',
  614. * and returns the output carry. Each word read from b is ANDed with
  615. * b_and and then XORed with b_xor.
  616. *
  617. * So you can implement addition by setting b_and to all 1s and b_xor
  618. * to 0; you can subtract by making b_xor all 1s too (effectively
  619. * bit-flipping b) and also passing 1 as the input carry (to turn
  620. * one's complement into two's complement). And you can do conditional
  621. * add/subtract by choosing b_and to be all 1s or all 0s based on a
  622. * condition, because the value of b will be totally ignored if b_and
  623. * == 0.
  624. */
  625. static BignumCarry mp_add_masked_into(
  626. BignumInt *w_out, size_t rw, mp_int *a, mp_int *b,
  627. BignumInt b_and, BignumInt b_xor, BignumCarry carry)
  628. {
  629. size_t i; // WINSCP
  630. for (i = 0; i < rw; i++) {
  631. BignumInt aword = mp_word(a, i), bword = mp_word(b, i), out;
  632. bword = (bword & b_and) ^ b_xor;
  633. BignumADC(out, carry, aword, bword, carry);
  634. if (w_out)
  635. w_out[i] = out;
  636. }
  637. return carry;
  638. }
  639. /*
  640. * Like the public mp_add_into except that it returns the output carry.
  641. */
  642. static inline BignumCarry mp_add_into_internal(mp_int *r, mp_int *a, mp_int *b)
  643. {
  644. return mp_add_masked_into(r->w, r->nw, a, b, ~(BignumInt)0, 0, 0);
  645. }
  646. void mp_add_into(mp_int *r, mp_int *a, mp_int *b)
  647. {
  648. mp_add_into_internal(r, a, b);
  649. }
  650. void mp_sub_into(mp_int *r, mp_int *a, mp_int *b)
  651. {
  652. mp_add_masked_into(r->w, r->nw, a, b, ~(BignumInt)0, ~(BignumInt)0, 1);
  653. }
  654. void mp_and_into(mp_int *r, mp_int *a, mp_int *b)
  655. {
  656. for (size_t i = 0; i < r->nw; i++) {
  657. BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
  658. r->w[i] = aword & bword;
  659. }
  660. }
  661. void mp_or_into(mp_int *r, mp_int *a, mp_int *b)
  662. {
  663. for (size_t i = 0; i < r->nw; i++) {
  664. BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
  665. r->w[i] = aword | bword;
  666. }
  667. }
  668. void mp_xor_into(mp_int *r, mp_int *a, mp_int *b)
  669. {
  670. for (size_t i = 0; i < r->nw; i++) {
  671. BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
  672. r->w[i] = aword ^ bword;
  673. }
  674. }
  675. void mp_bic_into(mp_int *r, mp_int *a, mp_int *b)
  676. {
  677. for (size_t i = 0; i < r->nw; i++) {
  678. BignumInt aword = mp_word(a, i), bword = mp_word(b, i);
  679. r->w[i] = aword & ~bword;
  680. }
  681. }
  682. static void mp_cond_negate(mp_int *r, mp_int *x, unsigned yes)
  683. {
  684. BignumCarry carry = yes;
  685. BignumInt flip = -(BignumInt)yes;
  686. size_t i; // WINSCP
  687. for (i = 0; i < r->nw; i++) {
  688. BignumInt xword = mp_word(x, i);
  689. xword ^= flip;
  690. BignumADC(r->w[i], carry, 0, xword, carry);
  691. }
  692. }
  693. /*
  694. * Similar to mp_add_masked_into, but takes a C integer instead of an
  695. * mp_int as the masked operand.
  696. */
  697. static BignumCarry mp_add_masked_integer_into(
  698. BignumInt *w_out, size_t rw, mp_int *a, uintmax_t b,
  699. BignumInt b_and, BignumInt b_xor, BignumCarry carry)
  700. {
  701. size_t i; // WINSCP
  702. for (i = 0; i < rw; i++) {
  703. BignumInt aword = mp_word(a, i);
  704. size_t shift = i * BIGNUM_INT_BITS;
  705. BignumInt bword = shift < BIGNUM_INT_BYTES ? b >> shift : 0;
  706. BignumInt out;
  707. bword = (bword ^ b_xor) & b_and;
  708. BignumADC(out, carry, aword, bword, carry);
  709. if (w_out)
  710. w_out[i] = out;
  711. }
  712. return carry;
  713. }
  714. void mp_add_integer_into(mp_int *r, mp_int *a, uintmax_t n)
  715. {
  716. mp_add_masked_integer_into(r->w, r->nw, a, n, ~(BignumInt)0, 0, 0);
  717. }
  718. void mp_sub_integer_into(mp_int *r, mp_int *a, uintmax_t n)
  719. {
  720. mp_add_masked_integer_into(r->w, r->nw, a, n,
  721. ~(BignumInt)0, ~(BignumInt)0, 1);
  722. }
  723. /*
  724. * Sets r to a + n << (word_index * BIGNUM_INT_BITS), treating
  725. * word_index as secret data.
  726. */
  727. static void mp_add_integer_into_shifted_by_words(
  728. mp_int *r, mp_int *a, uintmax_t n, size_t word_index)
  729. {
  730. unsigned indicator = 0;
  731. BignumCarry carry = 0;
  732. size_t i; // WINSCP
  733. for (i = 0; i < r->nw; i++) {
  734. /* indicator becomes 1 when we reach the index that the least
  735. * significant bits of n want to be placed at, and it stays 1
  736. * thereafter. */
  737. indicator |= 1 ^ normalise_to_1(i ^ word_index);
  738. /* If indicator is 1, we add the low bits of n into r, and
  739. * shift n down. If it's 0, we add zero bits into r, and
  740. * leave n alone. */
  741. { // WINSCP
  742. BignumInt bword = n & -(BignumInt)indicator;
  743. uintmax_t new_n = (BIGNUM_INT_BITS < 64 ? n >> BIGNUM_INT_BITS : 0);
  744. n ^= (n ^ new_n) & -(uintmax_t)indicator;
  745. { // WINSCP
  746. BignumInt aword = mp_word(a, i);
  747. BignumInt out;
  748. BignumADC(out, carry, aword, bword, carry);
  749. r->w[i] = out;
  750. } // WINSCP
  751. } // WINSCP
  752. }
  753. }
  754. void mp_mul_integer_into(mp_int *r, mp_int *a, uint16_t n)
  755. {
  756. BignumInt carry = 0, mult = n;
  757. size_t i; // WINSCP
  758. for (i = 0; i < r->nw; i++) {
  759. BignumInt aword = mp_word(a, i);
  760. BignumMULADD(carry, r->w[i], aword, mult, carry);
  761. }
  762. assert(!carry);
  763. }
  764. void mp_cond_add_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes)
  765. {
  766. BignumInt mask = -(BignumInt)(yes & 1);
  767. mp_add_masked_into(r->w, r->nw, a, b, mask, 0, 0);
  768. }
  769. void mp_cond_sub_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes)
  770. {
  771. BignumInt mask = -(BignumInt)(yes & 1);
  772. mp_add_masked_into(r->w, r->nw, a, b, mask, mask, 1 & mask);
  773. }
  774. /*
  775. * Ordered comparison between unsigned numbers is done by subtracting
  776. * one from the other and looking at the output carry.
  777. */
  778. unsigned mp_cmp_hs(mp_int *a, mp_int *b)
  779. {
  780. size_t rw = size_t_max(a->nw, b->nw);
  781. return mp_add_masked_into(NULL, rw, a, b, ~(BignumInt)0, ~(BignumInt)0, 1);
  782. }
  783. unsigned mp_hs_integer(mp_int *x, uintmax_t n)
  784. {
  785. BignumInt carry = 1;
  786. size_t i; // WINSCP
  787. for (i = 0; i < x->nw; i++) {
  788. size_t shift = i * BIGNUM_INT_BITS;
  789. BignumInt nword = shift < CHAR_BIT*sizeof(n) ? n >> shift : 0;
  790. BignumInt dummy_out;
  791. BignumADC(dummy_out, carry, x->w[i], ~nword, carry);
  792. (void)dummy_out;
  793. }
  794. return carry;
  795. }
  796. /*
  797. * Equality comparison is done by bitwise XOR of the input numbers,
  798. * ORing together all the output words, and normalising the result
  799. * using our careful normalise_to_1 helper function.
  800. */
  801. unsigned mp_cmp_eq(mp_int *a, mp_int *b)
  802. {
  803. BignumInt diff = 0;
  804. size_t i, limit; // WINSCP
  805. for (i = 0, limit = size_t_max(a->nw, b->nw); i < limit; i++)
  806. diff |= mp_word(a, i) ^ mp_word(b, i);
  807. return 1 ^ normalise_to_1(diff); /* return 1 if diff _is_ zero */
  808. }
  809. unsigned mp_eq_integer(mp_int *x, uintmax_t n)
  810. {
  811. BignumInt diff = 0;
  812. size_t i; // WINSCP
  813. for (i = 0; i < x->nw; i++) {
  814. size_t shift = i * BIGNUM_INT_BITS;
  815. BignumInt nword = shift < CHAR_BIT*sizeof(n) ? n >> shift : 0;
  816. diff |= x->w[i] ^ nword;
  817. }
  818. return 1 ^ normalise_to_1(diff); /* return 1 if diff _is_ zero */
  819. }
  820. void mp_neg_into(mp_int *r, mp_int *a)
  821. {
  822. mp_int zero;
  823. zero.nw = 0;
  824. mp_sub_into(r, &zero, a);
  825. }
  826. mp_int *mp_add(mp_int *x, mp_int *y)
  827. {
  828. mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw) + 1);
  829. mp_add_into(r, x, y);
  830. return r;
  831. }
  832. mp_int *mp_sub(mp_int *x, mp_int *y)
  833. {
  834. mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw));
  835. mp_sub_into(r, x, y);
  836. return r;
  837. }
  838. mp_int *mp_neg(mp_int *a)
  839. {
  840. mp_int *r = mp_make_sized(a->nw);
  841. mp_neg_into(r, a);
  842. return r;
  843. }
  844. /*
  845. * Internal routine: multiply and accumulate in the trivial O(N^2)
  846. * way. Sets r <- r + a*b.
  847. */
  848. static void mp_mul_add_simple(mp_int *r, mp_int *a, mp_int *b)
  849. {
  850. BignumInt *aend = a->w + a->nw, *bend = b->w + b->nw, *rend = r->w + r->nw;
  851. BignumInt *ap, *rp; // WINSCP
  852. for (ap = a->w, rp = r->w;
  853. ap < aend && rp < rend; ap++, rp++) {
  854. BignumInt adata = *ap, carry = 0, *rq = rp;
  855. { // WINSCP
  856. BignumInt *bp; // WINSCP
  857. for (bp = b->w; bp < bend && rq < rend; bp++, rq++) {
  858. BignumInt bdata = bp < bend ? *bp : 0;
  859. BignumMULADD2(carry, *rq, adata, bdata, *rq, carry);
  860. }
  861. } // WINSCP
  862. for (; rq < rend; rq++)
  863. BignumADC(*rq, carry, carry, *rq, 0);
  864. }
  865. }
  866. #ifndef KARATSUBA_THRESHOLD /* allow redefinition via -D for testing */
  867. #define KARATSUBA_THRESHOLD 24
  868. #endif
  869. static inline size_t mp_mul_scratchspace_unary(size_t n)
  870. {
  871. /*
  872. * Simplistic and overcautious bound on the amount of scratch
  873. * space that the recursive multiply function will need.
  874. *
  875. * The rationale is: on the main Karatsuba branch of
  876. * mp_mul_internal, which is the most space-intensive one, we
  877. * allocate space for (a0+a1) and (b0+b1) (each just over half the
  878. * input length n) and their product (the sum of those sizes, i.e.
  879. * just over n itself). Then in order to actually compute the
  880. * product, we do a recursive multiplication of size just over n.
  881. *
  882. * If all those 'just over' weren't there, and everything was
  883. * _exactly_ half the length, you'd get the amount of space for a
  884. * size-n multiply defined by the recurrence M(n) = 2n + M(n/2),
  885. * which is satisfied by M(n) = 4n. But instead it's (2n plus a
  886. * word or two) and M(n/2 plus a word or two). On the assumption
  887. * that there's still some constant k such that M(n) <= kn, this
  888. * gives us kn = 2n + w + k(n/2 + w), where w is a small constant
  889. * (one or two words). That simplifies to kn/2 = 2n + (k+1)w, and
  890. * since we don't even _start_ needing scratch space until n is at
  891. * least 50, we can bound 2n + (k+1)w above by 3n, giving k=6.
  892. *
  893. * So I claim that 6n words of scratch space will suffice, and I
  894. * check that by assertion at every stage of the recursion.
  895. */
  896. return n * 6;
  897. }
  898. static size_t mp_mul_scratchspace(size_t rw, size_t aw, size_t bw)
  899. {
  900. size_t inlen = size_t_min(rw, size_t_max(aw, bw));
  901. return mp_mul_scratchspace_unary(inlen);
  902. }
  903. static void mp_mul_internal(mp_int *r, mp_int *a, mp_int *b, mp_int scratch)
  904. {
  905. size_t inlen = size_t_min(r->nw, size_t_max(a->nw, b->nw));
  906. assert(scratch.nw >= mp_mul_scratchspace_unary(inlen));
  907. mp_clear(r);
  908. if (inlen < KARATSUBA_THRESHOLD || a->nw == 0 || b->nw == 0) {
  909. /*
  910. * The input numbers are too small to bother optimising. Go
  911. * straight to the simple primitive approach.
  912. */
  913. mp_mul_add_simple(r, a, b);
  914. return;
  915. }
  916. /*
  917. * Karatsuba divide-and-conquer algorithm. We cut each input in
  918. * half, so that it's expressed as two big 'digits' in a giant
  919. * base D:
  920. *
  921. * a = a_1 D + a_0
  922. * b = b_1 D + b_0
  923. *
  924. * Then the product is of course
  925. *
  926. * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
  927. *
  928. * and we compute the three coefficients by recursively calling
  929. * ourself to do half-length multiplications.
  930. *
  931. * The clever bit that makes this worth doing is that we only need
  932. * _one_ half-length multiplication for the central coefficient
  933. * rather than the two that it obviouly looks like, because we can
  934. * use a single multiplication to compute
  935. *
  936. * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
  937. *
  938. * and then we subtract the other two coefficients (a_1 b_1 and
  939. * a_0 b_0) which we were computing anyway.
  940. *
  941. * Hence we get to multiply two numbers of length N in about three
  942. * times as much work as it takes to multiply numbers of length
  943. * N/2, which is obviously better than the four times as much work
  944. * it would take if we just did a long conventional multiply.
  945. */
  946. { // WINSCP
  947. /* Break up the input as botlen + toplen, with botlen >= toplen.
  948. * The 'base' D is equal to 2^{botlen * BIGNUM_INT_BITS}. */
  949. size_t toplen = inlen / 2;
  950. size_t botlen = inlen - toplen;
  951. /* Alias bignums that address the two halves of a,b, and useful
  952. * pieces of r. */
  953. mp_int a0 = mp_make_alias(a, 0, botlen);
  954. mp_int b0 = mp_make_alias(b, 0, botlen);
  955. mp_int a1 = mp_make_alias(a, botlen, toplen);
  956. mp_int b1 = mp_make_alias(b, botlen, toplen);
  957. mp_int r0 = mp_make_alias(r, 0, botlen*2);
  958. mp_int r1 = mp_make_alias(r, botlen, r->nw);
  959. mp_int r2 = mp_make_alias(r, botlen*2, r->nw);
  960. /* Recurse to compute a0*b0 and a1*b1, in their correct positions
  961. * in the output bignum. They can't overlap. */
  962. mp_mul_internal(&r0, &a0, &b0, scratch);
  963. mp_mul_internal(&r2, &a1, &b1, scratch);
  964. if (r->nw < inlen*2) {
  965. /*
  966. * The output buffer isn't large enough to require the whole
  967. * product, so some of a1*b1 won't have been stored. In that
  968. * case we won't try to do the full Karatsuba optimisation;
  969. * we'll just recurse again to compute a0*b1 and a1*b0 - or at
  970. * least as much of them as the output buffer size requires -
  971. * and add each one in.
  972. */
  973. mp_int s = mp_alloc_from_scratch(
  974. &scratch, size_t_min(botlen+toplen, r1.nw));
  975. mp_mul_internal(&s, &a0, &b1, scratch);
  976. mp_add_into(&r1, &r1, &s);
  977. mp_mul_internal(&s, &a1, &b0, scratch);
  978. mp_add_into(&r1, &r1, &s);
  979. return;
  980. }
  981. { // WINSCP
  982. /* a0+a1 and b0+b1 */
  983. mp_int asum = mp_alloc_from_scratch(&scratch, botlen+1);
  984. mp_int bsum = mp_alloc_from_scratch(&scratch, botlen+1);
  985. mp_add_into(&asum, &a0, &a1);
  986. mp_add_into(&bsum, &b0, &b1);
  987. { // WINSCP
  988. /* Their product */
  989. mp_int product = mp_alloc_from_scratch(&scratch, botlen*2+1);
  990. mp_mul_internal(&product, &asum, &bsum, scratch);
  991. /* Subtract off the outer terms we already have */
  992. mp_sub_into(&product, &product, &r0);
  993. mp_sub_into(&product, &product, &r2);
  994. /* And add it in with the right offset. */
  995. mp_add_into(&r1, &r1, &product);
  996. } // WINSCP
  997. } // WINSCP
  998. } // WINSCP
  999. }
  1000. void mp_mul_into(mp_int *r, mp_int *a, mp_int *b)
  1001. {
  1002. mp_int *scratch = mp_make_sized(mp_mul_scratchspace(r->nw, a->nw, b->nw));
  1003. mp_mul_internal(r, a, b, *scratch);
  1004. mp_free(scratch);
  1005. }
  1006. mp_int *mp_mul(mp_int *x, mp_int *y)
  1007. {
  1008. mp_int *r = mp_make_sized(x->nw + y->nw);
  1009. mp_mul_into(r, x, y);
  1010. return r;
  1011. }
  1012. void mp_lshift_fixed_into(mp_int *r, mp_int *a, size_t bits)
  1013. {
  1014. size_t words = bits / BIGNUM_INT_BITS;
  1015. size_t bitoff = bits % BIGNUM_INT_BITS;
  1016. size_t i; // WINSCP
  1017. for (i = r->nw; i-- > 0 ;) {
  1018. if (i < words) {
  1019. r->w[i] = 0;
  1020. } else {
  1021. r->w[i] = mp_word(a, i - words);
  1022. if (bitoff != 0) {
  1023. r->w[i] <<= bitoff;
  1024. if (i > words)
  1025. r->w[i] |= mp_word(a, i - words - 1) >>
  1026. (BIGNUM_INT_BITS - bitoff);
  1027. }
  1028. }
  1029. }
  1030. }
  1031. void mp_rshift_fixed_into(mp_int *r, mp_int *a, size_t bits)
  1032. {
  1033. size_t words = bits / BIGNUM_INT_BITS;
  1034. size_t bitoff = bits % BIGNUM_INT_BITS;
  1035. size_t i; // WINSCP
  1036. for (i = 0; i < r->nw; i++) {
  1037. r->w[i] = mp_word(a, i + words);
  1038. if (bitoff != 0) {
  1039. r->w[i] >>= bitoff;
  1040. r->w[i] |= mp_word(a, i + words + 1) << (BIGNUM_INT_BITS - bitoff);
  1041. }
  1042. }
  1043. }
  1044. mp_int *mp_rshift_fixed(mp_int *x, size_t bits)
  1045. {
  1046. size_t words = bits / BIGNUM_INT_BITS;
  1047. size_t nw = x->nw - size_t_min(x->nw, words);
  1048. mp_int *r = mp_make_sized(size_t_max(nw, 1));
  1049. mp_rshift_fixed_into(r, x, bits);
  1050. return r;
  1051. }
  1052. /*
  1053. * Safe right shift is done using the same technique as
  1054. * trim_leading_zeroes above: you make an n-word left shift by
  1055. * composing an appropriate subset of power-of-2-sized shifts, so it
  1056. * takes log_2(n) loop iterations each of which does a different shift
  1057. * by a power of 2 words, using the usual bit twiddling to make the
  1058. * whole shift conditional on the appropriate bit of n.
  1059. */
  1060. mp_int *mp_rshift_safe(mp_int *x, size_t bits)
  1061. {
  1062. size_t wordshift = bits / BIGNUM_INT_BITS;
  1063. size_t bitshift = bits % BIGNUM_INT_BITS;
  1064. mp_int *r = mp_copy(x);
  1065. unsigned bit; // WINSCP
  1066. unsigned clear = (r->nw - wordshift) >> (CHAR_BIT * sizeof(size_t) - 1);
  1067. mp_cond_clear(r, clear);
  1068. for (bit = 0; r->nw >> bit; bit++) {
  1069. size_t word_offset = 1 << bit;
  1070. BignumInt mask = -(BignumInt)((wordshift >> bit) & 1);
  1071. size_t i; // WINSCP
  1072. for (i = 0; i < r->nw; i++) {
  1073. BignumInt w = mp_word(r, i + word_offset);
  1074. r->w[i] ^= (r->w[i] ^ w) & mask;
  1075. }
  1076. }
  1077. /*
  1078. * That's done the shifting by words; now we do the shifting by
  1079. * bits.
  1080. */
  1081. for (bit = 0; bit < BIGNUM_INT_BITS_BITS; bit++) { // WINSCP
  1082. unsigned shift = 1 << bit, upshift = BIGNUM_INT_BITS - shift;
  1083. BignumInt mask = -(BignumInt)((bitshift >> bit) & 1);
  1084. size_t i; // WINSCP
  1085. for (i = 0; i < r->nw; i++) {
  1086. BignumInt w = ((r->w[i] >> shift) | (mp_word(r, i+1) << upshift));
  1087. r->w[i] ^= (r->w[i] ^ w) & mask;
  1088. }
  1089. }
  1090. return r;
  1091. }
  1092. void mp_reduce_mod_2to(mp_int *x, size_t p)
  1093. {
  1094. size_t word = p / BIGNUM_INT_BITS;
  1095. size_t mask = ((size_t)1 << (p % BIGNUM_INT_BITS)) - 1;
  1096. for (; word < x->nw; word++) {
  1097. x->w[word] &= mask;
  1098. mask = 0;
  1099. }
  1100. }
  1101. /*
  1102. * Inverse mod 2^n is computed by an iterative technique which doubles
  1103. * the number of bits at each step.
  1104. */
  1105. mp_int *mp_invert_mod_2to(mp_int *x, size_t p)
  1106. {
  1107. /* Input checks: x must be coprime to the modulus, i.e. odd, and p
  1108. * can't be zero */
  1109. assert(x->nw > 0);
  1110. assert(x->w[0] & 1);
  1111. assert(p > 0);
  1112. { // WINSCP
  1113. size_t rw = (p + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1114. rw = size_t_max(rw, 1);
  1115. { // WINSCP
  1116. mp_int *r = mp_make_sized(rw);
  1117. size_t mul_scratchsize = mp_mul_scratchspace(2*rw, rw, rw);
  1118. mp_int *scratch_orig = mp_make_sized(6 * rw + mul_scratchsize);
  1119. mp_int scratch_per_iter = *scratch_orig;
  1120. mp_int mul_scratch = mp_alloc_from_scratch(
  1121. &scratch_per_iter, mul_scratchsize);
  1122. size_t b; // WINSCP
  1123. r->w[0] = 1;
  1124. for (b = 1; b < p; b <<= 1) {
  1125. /*
  1126. * In each step of this iteration, we have the inverse of x
  1127. * mod 2^b, and we want the inverse of x mod 2^{2b}.
  1128. *
  1129. * Write B = 2^b for convenience, so we want x^{-1} mod B^2.
  1130. * Let x = x_0 + B x_1 + k B^2, with 0 <= x_0,x_1 < B.
  1131. *
  1132. * We want to find r_0 and r_1 such that
  1133. * (r_1 B + r_0) (x_1 B + x_0) == 1 (mod B^2)
  1134. *
  1135. * To begin with, we know r_0 must be the inverse mod B of
  1136. * x_0, i.e. of x, i.e. it is the inverse we computed in the
  1137. * previous iteration. So now all we need is r_1.
  1138. *
  1139. * Multiplying out, neglecting multiples of B^2, and writing
  1140. * x_0 r_0 = K B + 1, we have
  1141. *
  1142. * r_1 x_0 B + r_0 x_1 B + K B == 0 (mod B^2)
  1143. * => r_1 x_0 B == - r_0 x_1 B - K B (mod B^2)
  1144. * => r_1 x_0 == - r_0 x_1 - K (mod B)
  1145. * => r_1 == r_0 (- r_0 x_1 - K) (mod B)
  1146. *
  1147. * (the last step because we multiply through by the inverse
  1148. * of x_0, which we already know is r_0).
  1149. */
  1150. mp_int scratch_this_iter = scratch_per_iter;
  1151. size_t Bw = (b + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1152. size_t B2w = (2*b + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1153. /* Start by finding K: multiply x_0 by r_0, and shift down. */
  1154. mp_int x0 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1155. mp_copy_into(&x0, x);
  1156. mp_reduce_mod_2to(&x0, b);
  1157. { // WINSCP
  1158. mp_int r0 = mp_make_alias(r, 0, Bw);
  1159. mp_int Kshift = mp_alloc_from_scratch(&scratch_this_iter, B2w);
  1160. mp_mul_internal(&Kshift, &x0, &r0, mul_scratch);
  1161. { // WINSCP
  1162. mp_int K = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1163. mp_rshift_fixed_into(&K, &Kshift, b);
  1164. /* Now compute the product r_0 x_1, reusing the space of Kshift. */
  1165. { // WINSCP
  1166. mp_int x1 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1167. mp_rshift_fixed_into(&x1, x, b);
  1168. mp_reduce_mod_2to(&x1, b);
  1169. { // WINSCP
  1170. mp_int r0x1 = mp_make_alias(&Kshift, 0, Bw);
  1171. mp_mul_internal(&r0x1, &r0, &x1, mul_scratch);
  1172. /* Add K to that. */
  1173. mp_add_into(&r0x1, &r0x1, &K);
  1174. /* Negate it. */
  1175. mp_neg_into(&r0x1, &r0x1);
  1176. /* Multiply by r_0. */
  1177. { // WINSCP
  1178. mp_int r1 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1179. mp_mul_internal(&r1, &r0, &r0x1, mul_scratch);
  1180. mp_reduce_mod_2to(&r1, b);
  1181. /* That's our r_1, so add it on to r_0 to get the full inverse
  1182. * output from this iteration. */
  1183. mp_lshift_fixed_into(&K, &r1, (b % BIGNUM_INT_BITS));
  1184. { // WINSCP
  1185. size_t Bpos = b / BIGNUM_INT_BITS;
  1186. mp_int r1_position = mp_make_alias(r, Bpos, B2w-Bpos);
  1187. mp_add_into(&r1_position, &r1_position, &K);
  1188. } // WINSCP
  1189. } // WINSCP
  1190. } // WINSCP
  1191. } // WINSCP
  1192. } // WINSCP
  1193. } // WINSCP
  1194. }
  1195. /* Finally, reduce mod the precise desired number of bits. */
  1196. mp_reduce_mod_2to(r, p);
  1197. mp_free(scratch_orig);
  1198. return r;
  1199. } // WINSCP
  1200. } // WINSCP
  1201. }
  1202. static size_t monty_scratch_size(MontyContext *mc)
  1203. {
  1204. return 3*mc->rw + mc->pw + mp_mul_scratchspace(mc->pw, mc->rw, mc->rw);
  1205. }
  1206. MontyContext *monty_new(mp_int *modulus)
  1207. {
  1208. MontyContext *mc = snew(MontyContext);
  1209. mc->rw = modulus->nw;
  1210. mc->rbits = mc->rw * BIGNUM_INT_BITS;
  1211. mc->pw = mc->rw * 2 + 1;
  1212. mc->m = mp_copy(modulus);
  1213. mc->minus_minv_mod_r = mp_invert_mod_2to(mc->m, mc->rbits);
  1214. mp_neg_into(mc->minus_minv_mod_r, mc->minus_minv_mod_r);
  1215. { // WINSCP
  1216. size_t j; // WINSCP
  1217. mp_int *r = mp_make_sized(mc->rw + 1);
  1218. r->w[mc->rw] = 1;
  1219. mc->powers_of_r_mod_m[0] = mp_mod(r, mc->m);
  1220. mp_free(r);
  1221. for (j = 1; j < lenof(mc->powers_of_r_mod_m); j++)
  1222. mc->powers_of_r_mod_m[j] = mp_modmul(
  1223. mc->powers_of_r_mod_m[0], mc->powers_of_r_mod_m[j-1], mc->m);
  1224. mc->scratch = mp_make_sized(monty_scratch_size(mc));
  1225. return mc;
  1226. } // WINSCP
  1227. }
  1228. void monty_free(MontyContext *mc)
  1229. {
  1230. size_t j; // WINSCP
  1231. mp_free(mc->m);
  1232. for (j = 0; j < 3; j++)
  1233. mp_free(mc->powers_of_r_mod_m[j]);
  1234. mp_free(mc->minus_minv_mod_r);
  1235. mp_free(mc->scratch);
  1236. smemclr(mc, sizeof(*mc));
  1237. sfree(mc);
  1238. }
  1239. /*
  1240. * The main Montgomery reduction step.
  1241. */
  1242. static mp_int monty_reduce_internal(MontyContext *mc, mp_int *x, mp_int scratch)
  1243. {
  1244. /*
  1245. * The trick with Montgomery reduction is that on the one hand we
  1246. * want to reduce the size of the input by a factor of about r,
  1247. * and on the other hand, the two numbers we just multiplied were
  1248. * both stored with an extra factor of r multiplied in. So we
  1249. * computed ar*br = ab r^2, but we want to return abr, so we need
  1250. * to divide by r - and if we can do that by _actually dividing_
  1251. * by r then this also reduces the size of the number.
  1252. *
  1253. * But we can only do that if the number we're dividing by r is a
  1254. * multiple of r. So first we must add an adjustment to it which
  1255. * clears its bottom 'rbits' bits. That adjustment must be a
  1256. * multiple of m in order to leave the residue mod n unchanged, so
  1257. * the question is, what multiple of m can we add to x to make it
  1258. * congruent to 0 mod r? And the answer is, x * (-m)^{-1} mod r.
  1259. */
  1260. /* x mod r */
  1261. mp_int x_lo = mp_make_alias(x, 0, mc->rbits);
  1262. /* x * (-m)^{-1}, i.e. the number we want to multiply by m */
  1263. mp_int k = mp_alloc_from_scratch(&scratch, mc->rw);
  1264. mp_mul_internal(&k, &x_lo, mc->minus_minv_mod_r, scratch);
  1265. /* m times that, i.e. the number we want to add to x */
  1266. { // WINSCP
  1267. mp_int mk = mp_alloc_from_scratch(&scratch, mc->pw);
  1268. mp_mul_internal(&mk, mc->m, &k, scratch);
  1269. /* Add it to x */
  1270. mp_add_into(&mk, x, &mk);
  1271. /* Reduce mod r, by simply making an alias to the upper words of x */
  1272. { // WINSCP
  1273. mp_int toret = mp_make_alias(&mk, mc->rw, mk.nw - mc->rw);
  1274. /*
  1275. * We'll generally be doing this after a multiplication of two
  1276. * fully reduced values. So our input could be anything up to m^2,
  1277. * and then we added up to rm to it. Hence, the maximum value is
  1278. * rm+m^2, and after dividing by r, that becomes r + m(m/r) < 2r.
  1279. * So a single trial-subtraction will finish reducing to the
  1280. * interval [0,m).
  1281. */
  1282. mp_cond_sub_into(&toret, &toret, mc->m, mp_cmp_hs(&toret, mc->m));
  1283. return toret;
  1284. } // WINSCP
  1285. } // WINSCP
  1286. }
  1287. void monty_mul_into(MontyContext *mc, mp_int *r, mp_int *x, mp_int *y)
  1288. {
  1289. assert(x->nw <= mc->rw);
  1290. assert(y->nw <= mc->rw);
  1291. { // WINSCP
  1292. mp_int scratch = *mc->scratch;
  1293. mp_int tmp = mp_alloc_from_scratch(&scratch, 2*mc->rw);
  1294. mp_mul_into(&tmp, x, y);
  1295. { // WINSCP
  1296. mp_int reduced = monty_reduce_internal(mc, &tmp, scratch);
  1297. mp_copy_into(r, &reduced);
  1298. mp_clear(mc->scratch);
  1299. } // WINSCP
  1300. } // WINSCP
  1301. }
  1302. mp_int *monty_mul(MontyContext *mc, mp_int *x, mp_int *y)
  1303. {
  1304. mp_int *toret = mp_make_sized(mc->rw);
  1305. monty_mul_into(mc, toret, x, y);
  1306. return toret;
  1307. }
  1308. mp_int *monty_modulus(MontyContext *mc)
  1309. {
  1310. return mc->m;
  1311. }
  1312. mp_int *monty_identity(MontyContext *mc)
  1313. {
  1314. return mc->powers_of_r_mod_m[0];
  1315. }
  1316. mp_int *monty_invert(MontyContext *mc, mp_int *x)
  1317. {
  1318. /* Given xr, we want to return x^{-1}r = (xr)^{-1} r^2 =
  1319. * monty_reduce((xr)^{-1} r^3) */
  1320. mp_int *tmp = mp_invert(x, mc->m);
  1321. mp_int *toret = monty_mul(mc, tmp, mc->powers_of_r_mod_m[2]);
  1322. mp_free(tmp);
  1323. return toret;
  1324. }
  1325. /*
  1326. * Importing a number into Montgomery representation involves
  1327. * multiplying it by r and reducing mod m. We use the general-purpose
  1328. * mp_modmul for this, in case the input number is out of range.
  1329. */
  1330. mp_int *monty_import(MontyContext *mc, mp_int *x)
  1331. {
  1332. return mp_modmul(x, mc->powers_of_r_mod_m[0], mc->m);
  1333. }
  1334. void monty_import_into(MontyContext *mc, mp_int *r, mp_int *x)
  1335. {
  1336. mp_int *imported = monty_import(mc, x);
  1337. mp_copy_into(r, imported);
  1338. mp_free(imported);
  1339. }
  1340. /*
  1341. * Exporting a number means multiplying it by r^{-1}, which is exactly
  1342. * what monty_reduce does anyway, so we just do that.
  1343. */
  1344. void monty_export_into(MontyContext *mc, mp_int *r, mp_int *x)
  1345. {
  1346. pinitassert(x->nw <= 2*mc->rw);
  1347. mp_int reduced = monty_reduce_internal(mc, x, *mc->scratch);
  1348. mp_copy_into(r, &reduced);
  1349. mp_clear(mc->scratch);
  1350. }
  1351. mp_int *monty_export(MontyContext *mc, mp_int *x)
  1352. {
  1353. mp_int *toret = mp_make_sized(mc->rw);
  1354. monty_export_into(mc, toret, x);
  1355. return toret;
  1356. }
  1357. static void monty_reduce(MontyContext *mc, mp_int *x)
  1358. {
  1359. mp_int reduced = monty_reduce_internal(mc, x, *mc->scratch);
  1360. mp_copy_into(x, &reduced);
  1361. mp_clear(mc->scratch);
  1362. }
  1363. mp_int *monty_pow(MontyContext *mc, mp_int *base, mp_int *exponent)
  1364. {
  1365. /* square builds up powers of the form base^{2^i}. */
  1366. mp_int *square = mp_copy(base);
  1367. size_t i = 0;
  1368. /* out accumulates the output value. Starts at 1 (in Montgomery
  1369. * representation) and we multiply in each base^{2^i}. */
  1370. mp_int *out = mp_copy(mc->powers_of_r_mod_m[0]);
  1371. /* tmp holds each product we compute and reduce. */
  1372. mp_int *tmp = mp_make_sized(mc->rw * 2);
  1373. while (true) {
  1374. mp_mul_into(tmp, out, square);
  1375. monty_reduce(mc, tmp);
  1376. mp_select_into(out, out, tmp, mp_get_bit(exponent, i));
  1377. if (++i >= exponent->nw * BIGNUM_INT_BITS)
  1378. break;
  1379. mp_mul_into(tmp, square, square);
  1380. monty_reduce(mc, tmp);
  1381. mp_copy_into(square, tmp);
  1382. }
  1383. mp_free(square);
  1384. mp_free(tmp);
  1385. mp_clear(mc->scratch);
  1386. return out;
  1387. }
  1388. mp_int *mp_modpow(mp_int *base, mp_int *exponent, mp_int *modulus)
  1389. {
  1390. assert(modulus->nw > 0);
  1391. assert(modulus->w[0] & 1);
  1392. { // WINSCP
  1393. MontyContext *mc = monty_new(modulus);
  1394. mp_int *m_base = monty_import(mc, base);
  1395. mp_int *m_out = monty_pow(mc, m_base, exponent);
  1396. mp_int *out = monty_export(mc, m_out);
  1397. mp_free(m_base);
  1398. mp_free(m_out);
  1399. monty_free(mc);
  1400. return out;
  1401. } // WINSCP
  1402. }
  1403. /*
  1404. * Given two coprime nonzero input integers a,b, returns two integers
  1405. * A,B such that A*a - B*b = 1. A,B will be the minimal non-negative
  1406. * pair satisfying that criterion, which is equivalent to saying that
  1407. * 0<=A<b and 0<=B<a.
  1408. *
  1409. * This algorithm is an adapted form of Stein's algorithm, which
  1410. * computes gcd(a,b) using only addition and bit shifts (i.e. without
  1411. * needing general division), using the following rules:
  1412. *
  1413. * - if both of a,b are even, divide off a common factor of 2
  1414. * - if one of a,b (WLOG a) is even, then gcd(a,b) = gcd(a/2,b), so
  1415. * just divide a by 2
  1416. * - if both of a,b are odd, then WLOG a>b, and gcd(a,b) =
  1417. * gcd(b,(a-b)/2).
  1418. *
  1419. * For this application, I always expect the actual gcd to be coprime,
  1420. * so we can rule out the 'both even' initial case. So this function
  1421. * just performs a sequence of reductions in the following form:
  1422. *
  1423. * - if a,b are both odd, sort them so that a > b, and replace a with
  1424. * b-a; otherwise sort them so that a is the even one
  1425. * - either way, now a is even and b is odd, so divide a by 2.
  1426. *
  1427. * The big change to Stein's algorithm is that we need the Bezout
  1428. * coefficients as output, not just the gcd. So we need to know how to
  1429. * generate those in each case, based on the coefficients from the
  1430. * reduced pair of numbers:
  1431. *
  1432. * - If a is even, and u,v are such that u*(a/2) + v*b = 1:
  1433. * + if u is also even, then this is just (u/2)*a + v*b = 1
  1434. * + otherwise, (u+b)*(a/2) + (v-a/2)*b is also equal to 1, and
  1435. * since u and b are both odd, (u+b)/2 is an integer, so we have
  1436. * ((u+b)/2)*a + (v-a/2)*b = 1.
  1437. *
  1438. * - If a,b are both odd, and u,v are such that u*b + v*(a-b) = 1,
  1439. * then v*a + (u-v)*b = 1.
  1440. *
  1441. * In the case where we passed from (a,b) to (b,(a-b)/2), we regard it
  1442. * as having first subtracted b from a and then halved a, so both of
  1443. * these transformations must be done in sequence.
  1444. *
  1445. * The code below transforms this from a recursive to an iterative
  1446. * algorithm. We first reduce a,b to 0,1, recording at each stage
  1447. * whether we did the initial subtraction, and whether we had to swap
  1448. * the two values; then we iterate backwards over that record of what
  1449. * we did, applying the above rules for building up the Bezout
  1450. * coefficients as we go. Of course, all the case analysis is done by
  1451. * the usual bit-twiddling conditionalisation to avoid data-dependent
  1452. * control flow.
  1453. *
  1454. * Also, since these mp_ints are generally treated as unsigned, we
  1455. * store the coefficients by absolute value, with the semantics that
  1456. * they always have opposite sign, and in the unwinding loop we keep a
  1457. * bit indicating whether Aa-Bb is currently expected to be +1 or -1,
  1458. * so that we can do one final conditional adjustment if it's -1.
  1459. *
  1460. * Once the reduction rules have managed to reduce the input numbers
  1461. * to (0,1), then they are stable (the next reduction will always
  1462. * divide the even one by 2, which maps 0 to 0). So it doesn't matter
  1463. * if we do more steps of the algorithm than necessary; hence, for
  1464. * constant time, we just need to find the maximum number we could
  1465. * _possibly_ require, and do that many.
  1466. *
  1467. * If a,b < 2^n, at most 2n iterations are required. Proof: consider
  1468. * the quantity Q = log_2(a) + log_2(b). Every step halves one of the
  1469. * numbers (and may also reduce one of them further by doing a
  1470. * subtraction beforehand, but in the worst case, not by much or not
  1471. * at all). So Q reduces by at least 1 per iteration, and it starts
  1472. * off with a value at most 2n.
  1473. *
  1474. * The worst case inputs (I think) are where x=2^{n-1} and y=2^n-1
  1475. * (i.e. x is a power of 2 and y is all 1s). In that situation, the
  1476. * first n-1 steps repeatedly halve x until it's 1, and then there are
  1477. * n further steps each of which subtracts 1 from y and halves it.
  1478. */
  1479. static void mp_bezout_into(mp_int *a_coeff_out, mp_int *b_coeff_out,
  1480. mp_int *a_in, mp_int *b_in)
  1481. {
  1482. size_t nw = size_t_max(1, size_t_max(a_in->nw, b_in->nw));
  1483. /* Make mutable copies of the input numbers */
  1484. mp_int *a = mp_make_sized(nw), *b = mp_make_sized(nw);
  1485. mp_copy_into(a, a_in);
  1486. mp_copy_into(b, b_in);
  1487. /* Space to build up the output coefficients, with an extra word
  1488. * so that intermediate values can overflow off the top and still
  1489. * right-shift back down to the correct value */
  1490. { // WINSCP
  1491. mp_int *ac = mp_make_sized(nw + 1), *bc = mp_make_sized(nw + 1);
  1492. /* And a general-purpose temp register */
  1493. mp_int *tmp = mp_make_sized(nw);
  1494. /* Space to record the sequence of reduction steps to unwind. We
  1495. * make it a BignumInt for no particular reason except that (a)
  1496. * mp_make_sized conveniently zeroes the allocation and mp_free
  1497. * wipes it, and (b) this way I can use mp_dump() if I have to
  1498. * debug this code. */
  1499. size_t steps = 2 * nw * BIGNUM_INT_BITS;
  1500. mp_int *record = mp_make_sized(
  1501. (steps*2 + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
  1502. size_t step; // WINSCP
  1503. for (step = 0; step < steps; step++) {
  1504. /*
  1505. * If a and b are both odd, we want to sort them so that a is
  1506. * larger. But if one is even, we want to sort them so that a
  1507. * is the even one.
  1508. */
  1509. unsigned swap_if_both_odd = mp_cmp_hs(b, a);
  1510. unsigned swap_if_one_even = a->w[0] & 1;
  1511. unsigned both_odd = a->w[0] & b->w[0] & 1;
  1512. unsigned swap = swap_if_one_even ^ (
  1513. (swap_if_both_odd ^ swap_if_one_even) & both_odd);
  1514. mp_cond_swap(a, b, swap);
  1515. /*
  1516. * If a,b are both odd, then a is the larger number, so
  1517. * subtract the smaller one from it.
  1518. */
  1519. mp_cond_sub_into(a, a, b, both_odd);
  1520. /*
  1521. * Now a is even, so divide it by two.
  1522. */
  1523. mp_rshift_fixed_into(a, a, 1);
  1524. /*
  1525. * Record the two 1-bit values both_odd and swap.
  1526. */
  1527. mp_set_bit(record, step*2, both_odd);
  1528. mp_set_bit(record, step*2+1, swap);
  1529. }
  1530. /*
  1531. * Now we expect to have reduced the two numbers to 0 and 1,
  1532. * although we don't know which way round. (But we avoid checking
  1533. * this by assertion; sometimes we'll need to do this computation
  1534. * without giving away that we already know the inputs were bogus.
  1535. * So we'd prefer to just press on and return nonsense.)
  1536. */
  1537. /*
  1538. * So their Bezout coefficients at this point are simply
  1539. * themselves.
  1540. */
  1541. mp_copy_into(ac, a);
  1542. mp_copy_into(bc, b);
  1543. /*
  1544. * We'll maintain the invariant as we unwind that ac * a - bc * b
  1545. * is either +1 or -1, and we'll remember which. (We _could_ keep
  1546. * it at +1 the whole time, but it would cost more work every time
  1547. * round the loop, so it's cheaper to fix that up once at the
  1548. * end.)
  1549. *
  1550. * Initially, the result is +1 if a was the nonzero value after
  1551. * reduction, and -1 if b was.
  1552. */
  1553. { // WINSCP
  1554. unsigned minus_one = b->w[0];
  1555. for (step = steps; step-- > 0 ;) {
  1556. /*
  1557. * Recover the data from the step we're unwinding.
  1558. */
  1559. unsigned both_odd = mp_get_bit(record, step*2);
  1560. unsigned swap = mp_get_bit(record, step*2+1);
  1561. /*
  1562. * Unwind the division: if our coefficient of a is odd, we
  1563. * adjust the coefficients by +b and +a respectively.
  1564. */
  1565. unsigned adjust = ac->w[0] & 1;
  1566. mp_cond_add_into(ac, ac, b, adjust);
  1567. mp_cond_add_into(bc, bc, a, adjust);
  1568. /*
  1569. * Now ac is definitely even, so we divide it by two.
  1570. */
  1571. mp_rshift_fixed_into(ac, ac, 1);
  1572. /*
  1573. * Now unwind the subtraction, if there was one, by adding
  1574. * ac to bc.
  1575. */
  1576. mp_cond_add_into(bc, bc, ac, both_odd);
  1577. /*
  1578. * Undo the transformation of the input numbers, by
  1579. * multiplying a by 2 and then adding b to a (the latter
  1580. * only if both_odd).
  1581. */
  1582. mp_lshift_fixed_into(a, a, 1);
  1583. mp_cond_add_into(a, a, b, both_odd);
  1584. /*
  1585. * Finally, undo the swap. If we do swap, this also
  1586. * reverses the sign of the current result ac*a+bc*b.
  1587. */
  1588. mp_cond_swap(a, b, swap);
  1589. mp_cond_swap(ac, bc, swap);
  1590. minus_one ^= swap;
  1591. }
  1592. /*
  1593. * Now we expect to have recovered the input a,b.
  1594. */
  1595. assert(mp_cmp_eq(a, a_in) & mp_cmp_eq(b, b_in));
  1596. /*
  1597. * But we might find that our current result is -1 instead of +1,
  1598. * that is, we have A',B' such that A'a - B'b = -1.
  1599. *
  1600. * In that situation, we set A = b-A' and B = a-B', giving us
  1601. * Aa-Bb = ab - A'a - ab + B'b = +1.
  1602. */
  1603. mp_sub_into(tmp, b, ac);
  1604. mp_select_into(ac, ac, tmp, minus_one);
  1605. mp_sub_into(tmp, a, bc);
  1606. mp_select_into(bc, bc, tmp, minus_one);
  1607. /*
  1608. * Now we really are done. Return the outputs.
  1609. */
  1610. if (a_coeff_out)
  1611. mp_copy_into(a_coeff_out, ac);
  1612. if (b_coeff_out)
  1613. mp_copy_into(b_coeff_out, bc);
  1614. mp_free(a);
  1615. mp_free(b);
  1616. mp_free(ac);
  1617. mp_free(bc);
  1618. mp_free(tmp);
  1619. mp_free(record);
  1620. } // WINSCP
  1621. } // WINSCP
  1622. }
  1623. mp_int *mp_invert(mp_int *x, mp_int *m)
  1624. {
  1625. mp_int *result = mp_make_sized(m->nw);
  1626. mp_bezout_into(result, NULL, x, m);
  1627. return result;
  1628. }
  1629. static uint32_t recip_approx_32(uint32_t x)
  1630. {
  1631. /*
  1632. * Given an input x in [2^31,2^32), i.e. a uint32_t with its high
  1633. * bit set, this function returns an approximation to 2^63/x,
  1634. * computed using only multiplications and bit shifts just in case
  1635. * the C divide operator has non-constant time (either because the
  1636. * underlying machine instruction does, or because the operator
  1637. * expands to a library function on a CPU without hardware
  1638. * division).
  1639. *
  1640. * The coefficients are derived from those of the degree-9
  1641. * polynomial which is the minimax-optimal approximation to that
  1642. * function on the given interval (generated using the Remez
  1643. * algorithm), converted into integer arithmetic with shifts used
  1644. * to maximise the number of significant bits at every state. (A
  1645. * sort of 'static floating point' - the exponent is statically
  1646. * known at every point in the code, so it never needs to be
  1647. * stored at run time or to influence runtime decisions.)
  1648. *
  1649. * Exhaustive iteration over the whole input space shows the
  1650. * largest possible error to be 1686.54. (The input value
  1651. * attaining that bound is 4226800006 == 0xfbefd986, whose true
  1652. * reciprocal is 2182116973.540... == 0x8210766d.8a6..., whereas
  1653. * this function returns 2182115287 == 0x82106fd7.)
  1654. */
  1655. uint64_t r = 0x92db03d6ULL;
  1656. r = 0xf63e71eaULL - ((r*x) >> 34);
  1657. r = 0xb63721e8ULL - ((r*x) >> 34);
  1658. r = 0x9c2da00eULL - ((r*x) >> 33);
  1659. r = 0xaada0bb8ULL - ((r*x) >> 32);
  1660. r = 0xf75cd403ULL - ((r*x) >> 31);
  1661. r = 0xecf97a41ULL - ((r*x) >> 31);
  1662. r = 0x90d876cdULL - ((r*x) >> 31);
  1663. r = 0x6682799a0ULL - ((r*x) >> 26);
  1664. return r;
  1665. }
  1666. void mp_divmod_into(mp_int *n, mp_int *d, mp_int *q_out, mp_int *r_out)
  1667. {
  1668. pinitassert(!mp_eq_integer(d, 0));
  1669. /*
  1670. * We do division by using Newton-Raphson iteration to converge to
  1671. * the reciprocal of d (or rather, R/d for R a sufficiently large
  1672. * power of 2); then we multiply that reciprocal by n; and we
  1673. * finish up with conditional subtraction.
  1674. *
  1675. * But we have to do it in a fixed number of N-R iterations, so we
  1676. * need some error analysis to know how many we might need.
  1677. *
  1678. * The iteration is derived by defining f(r) = d - R/r.
  1679. * Differentiating gives f'(r) = R/r^2, and the Newton-Raphson
  1680. * formula applied to those functions gives
  1681. *
  1682. * r_{i+1} = r_i - f(r_i) / f'(r_i)
  1683. * = r_i - (d - R/r_i) r_i^2 / R
  1684. * = r_i (2 R - d r_i) / R
  1685. *
  1686. * Now let e_i be the error in a given iteration, in the sense
  1687. * that
  1688. *
  1689. * d r_i = R + e_i
  1690. * i.e. e_i/R = (r_i - r_true) / r_true
  1691. *
  1692. * so e_i is the _relative_ error in r_i.
  1693. *
  1694. * We must also introduce a rounding-error term, because the
  1695. * division by R always gives an integer. This might make the
  1696. * output off by up to 1 (in the negative direction, because
  1697. * right-shifting gives floor of the true quotient). So when we
  1698. * divide by R, we must imagine adding some f in [0,1). Then we
  1699. * have
  1700. *
  1701. * d r_{i+1} = d r_i (2 R - d r_i) / R - d f
  1702. * = (R + e_i) (R - e_i) / R - d f
  1703. * = (R^2 - e_i^2) / R - d f
  1704. * = R - (e_i^2 / R + d f)
  1705. * => e_{i+1} = - (e_i^2 / R + d f)
  1706. *
  1707. * The sum of two positive quantities is bounded above by twice
  1708. * their max, and max |f| = 1, so we can bound this as follows:
  1709. *
  1710. * |e_{i+1}| <= 2 max (e_i^2/R, d)
  1711. * |e_{i+1}/R| <= 2 max ((e_i/R)^2, d/R)
  1712. * log2 |R/e_{i+1}| <= min (2 log2 |R/e_i|, log2 |R/d|) - 1
  1713. *
  1714. * which tells us that the number of 'good' bits - i.e.
  1715. * log2(R/e_i) - very nearly doubles at every iteration (apart
  1716. * from that subtraction of 1), until it gets to the same size as
  1717. * log2(R/d). In other words, the size of R in bits has to be the
  1718. * size of denominator we're putting in, _plus_ the amount of
  1719. * precision we want to get back out.
  1720. *
  1721. * So when we multiply n (the input numerator) by our final
  1722. * reciprocal approximation r, but actually r differs from R/d by
  1723. * up to 2, then it follows that
  1724. *
  1725. * n/d - nr/R = n/d - [ n (R/d + e) ] / R
  1726. * = n/d - [ (n/d) R + n e ] / R
  1727. * = -ne/R
  1728. * => 0 <= n/d - nr/R < 2n/R
  1729. *
  1730. * so our computed quotient can differ from the true n/d by up to
  1731. * 2n/R. Hence, as long as we also choose R large enough that 2n/R
  1732. * is bounded above by a constant, we can guarantee a bounded
  1733. * number of final conditional-subtraction steps.
  1734. */
  1735. /*
  1736. * Get at least 32 of the most significant bits of the input
  1737. * number.
  1738. */
  1739. size_t hiword_index = 0;
  1740. uint64_t hibits = 0, lobits = 0;
  1741. mp_find_highest_nonzero_word_pair(d, 64 - BIGNUM_INT_BITS,
  1742. &hiword_index, &hibits, &lobits);
  1743. /*
  1744. * Make a shifted combination of those two words which puts the
  1745. * topmost bit of the number at bit 63.
  1746. */
  1747. { // WINSCP
  1748. size_t shift_up = 0;
  1749. size_t i; // WINSCP
  1750. for (i = BIGNUM_INT_BITS_BITS; i-- > 0;) {
  1751. size_t sl = 1 << i; /* left shift count */
  1752. size_t sr = 64 - sl; /* complementary right-shift count */
  1753. /* Should we shift up? */
  1754. unsigned indicator = 1 ^ normalise_to_1_u64(hibits >> sr);
  1755. /* If we do, what will we get? */
  1756. uint64_t new_hibits = (hibits << sl) | (lobits >> sr);
  1757. uint64_t new_lobits = lobits << sl;
  1758. size_t new_shift_up = shift_up + sl;
  1759. /* Conditionally swap those values in. */
  1760. hibits ^= (hibits ^ new_hibits ) & -(uint64_t)indicator;
  1761. lobits ^= (lobits ^ new_lobits ) & -(uint64_t)indicator;
  1762. shift_up ^= (shift_up ^ new_shift_up ) & -(size_t) indicator;
  1763. }
  1764. /*
  1765. * So now we know the most significant 32 bits of d are at the top
  1766. * of hibits. Approximate the reciprocal of those bits.
  1767. */
  1768. lobits = (uint64_t)recip_approx_32(hibits >> 32) << 32;
  1769. hibits = 0;
  1770. /*
  1771. * And shift that up by as many bits as the input was shifted up
  1772. * just now, so that the product of this approximation and the
  1773. * actual input will be close to a fixed power of two regardless
  1774. * of where the MSB was.
  1775. *
  1776. * I do this in another log n individual passes, partly in case
  1777. * the CPU's register-controlled shift operation isn't
  1778. * time-constant, and also in case the compiler code-generates
  1779. * uint64_t shifts out of a variable number of smaller-word shift
  1780. * instructions, e.g. by splitting up into cases.
  1781. */
  1782. for (i = BIGNUM_INT_BITS_BITS; i-- > 0;) {
  1783. size_t sl = 1 << i; /* left shift count */
  1784. size_t sr = 64 - sl; /* complementary right-shift count */
  1785. /* Should we shift up? */
  1786. unsigned indicator = 1 & (shift_up >> i);
  1787. /* If we do, what will we get? */
  1788. uint64_t new_hibits = (hibits << sl) | (lobits >> sr);
  1789. uint64_t new_lobits = lobits << sl;
  1790. /* Conditionally swap those values in. */
  1791. hibits ^= (hibits ^ new_hibits ) & -(uint64_t)indicator;
  1792. lobits ^= (lobits ^ new_lobits ) & -(uint64_t)indicator;
  1793. }
  1794. /*
  1795. * The product of the 128-bit value now in hibits:lobits with the
  1796. * 128-bit value we originally retrieved in the same variables
  1797. * will be in the vicinity of 2^191. So we'll take log2(R) to be
  1798. * 191, plus a multiple of BIGNUM_INT_BITS large enough to allow R
  1799. * to hold the combined sizes of n and d.
  1800. */
  1801. { // WINSCP
  1802. size_t log2_R;
  1803. {
  1804. size_t max_log2_n = (n->nw + d->nw) * BIGNUM_INT_BITS;
  1805. log2_R = max_log2_n + 3;
  1806. log2_R -= size_t_min(191, log2_R);
  1807. log2_R = (log2_R + BIGNUM_INT_BITS - 1) & ~(BIGNUM_INT_BITS - 1);
  1808. log2_R += 191;
  1809. }
  1810. /* Number of words in a bignum capable of holding numbers the size
  1811. * of twice R. */
  1812. { // WINSCP
  1813. size_t rw = ((log2_R+2) + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1814. /*
  1815. * Now construct our full-sized starting reciprocal approximation.
  1816. */
  1817. mp_int *r_approx = mp_make_sized(rw);
  1818. size_t output_bit_index;
  1819. {
  1820. /* Where in the input number did the input 128-bit value come from? */
  1821. size_t input_bit_index =
  1822. (hiword_index * BIGNUM_INT_BITS) - (128 - BIGNUM_INT_BITS);
  1823. /* So how far do we need to shift our 64-bit output, if the
  1824. * product of those two fixed-size values is 2^191 and we want
  1825. * to make it 2^log2_R instead? */
  1826. output_bit_index = log2_R - 191 - input_bit_index;
  1827. /* If we've done all that right, it should be a whole number
  1828. * of words. */
  1829. assert(output_bit_index % BIGNUM_INT_BITS == 0);
  1830. { // WINSCP
  1831. size_t output_word_index = output_bit_index / BIGNUM_INT_BITS;
  1832. mp_add_integer_into_shifted_by_words(
  1833. r_approx, r_approx, lobits, output_word_index);
  1834. mp_add_integer_into_shifted_by_words(
  1835. r_approx, r_approx, hibits,
  1836. output_word_index + 64 / BIGNUM_INT_BITS);
  1837. } // WINSCP
  1838. }
  1839. /*
  1840. * Make the constant 2*R, which we'll need in the iteration.
  1841. */
  1842. { // WINSCP
  1843. mp_int *two_R = mp_make_sized(rw);
  1844. mp_add_integer_into_shifted_by_words(
  1845. two_R, two_R, (BignumInt)1 << ((log2_R+1) % BIGNUM_INT_BITS),
  1846. (log2_R+1) / BIGNUM_INT_BITS);
  1847. /*
  1848. * Scratch space.
  1849. */
  1850. { // WINSCP
  1851. mp_int *dr = mp_make_sized(rw + d->nw);
  1852. mp_int *diff = mp_make_sized(size_t_max(rw, dr->nw));
  1853. mp_int *product = mp_make_sized(rw + diff->nw);
  1854. size_t scratchsize = size_t_max(
  1855. mp_mul_scratchspace(dr->nw, r_approx->nw, d->nw),
  1856. mp_mul_scratchspace(product->nw, r_approx->nw, diff->nw));
  1857. mp_int *scratch = mp_make_sized(scratchsize);
  1858. mp_int product_shifted = mp_make_alias(
  1859. product, log2_R / BIGNUM_INT_BITS, product->nw);
  1860. /*
  1861. * Initial error estimate: the 32-bit output of recip_approx_32
  1862. * differs by less than 2048 (== 2^11) from the true top 32 bits
  1863. * of the reciprocal, so the relative error is at most 2^11
  1864. * divided by the 32-bit reciprocal, which at worst is 2^11/2^31 =
  1865. * 2^-20. So even in the worst case, we have 20 good bits of
  1866. * reciprocal to start with.
  1867. */
  1868. size_t good_bits = 31 - 11;
  1869. size_t good_bits_needed = BIGNUM_INT_BITS * n->nw + 4; /* add a few */
  1870. /*
  1871. * Now do Newton-Raphson iterations until we have reason to think
  1872. * they're not converging any more.
  1873. */
  1874. while (good_bits < good_bits_needed) {
  1875. /*
  1876. * Compute the next iterate.
  1877. */
  1878. mp_mul_internal(dr, r_approx, d, *scratch);
  1879. mp_sub_into(diff, two_R, dr);
  1880. mp_mul_internal(product, r_approx, diff, *scratch);
  1881. mp_rshift_fixed_into(r_approx, &product_shifted,
  1882. log2_R % BIGNUM_INT_BITS);
  1883. /*
  1884. * Adjust the error estimate.
  1885. */
  1886. good_bits = good_bits * 2 - 1;
  1887. }
  1888. mp_free(dr);
  1889. mp_free(diff);
  1890. mp_free(product);
  1891. mp_free(scratch);
  1892. /*
  1893. * Now we've got our reciprocal, we can compute the quotient, by
  1894. * multiplying in n and then shifting down by log2_R bits.
  1895. */
  1896. { // WINSCP
  1897. mp_int *quotient_full = mp_mul(r_approx, n);
  1898. mp_int quotient_alias = mp_make_alias(
  1899. quotient_full, log2_R / BIGNUM_INT_BITS, quotient_full->nw);
  1900. mp_int *quotient = mp_make_sized(n->nw);
  1901. mp_rshift_fixed_into(quotient, &quotient_alias, log2_R % BIGNUM_INT_BITS);
  1902. /*
  1903. * Next, compute the remainder.
  1904. */
  1905. { // WINSCP
  1906. mp_int *remainder = mp_make_sized(d->nw);
  1907. mp_mul_into(remainder, quotient, d);
  1908. mp_sub_into(remainder, n, remainder);
  1909. /*
  1910. * Finally, two conditional subtractions to fix up any remaining
  1911. * rounding error. (I _think_ one should be enough, but this
  1912. * routine isn't time-critical enough to take chances.)
  1913. */
  1914. { // WINSCP
  1915. unsigned q_correction = 0;
  1916. unsigned iter; // WINSCP
  1917. for (iter = 0; iter < 2; iter++) {
  1918. unsigned need_correction = mp_cmp_hs(remainder, d);
  1919. mp_cond_sub_into(remainder, remainder, d, need_correction);
  1920. q_correction += need_correction;
  1921. }
  1922. mp_add_integer_into(quotient, quotient, q_correction);
  1923. /*
  1924. * Now we should have a perfect answer, i.e. 0 <= r < d.
  1925. */
  1926. assert(!mp_cmp_hs(remainder, d));
  1927. if (q_out)
  1928. mp_copy_into(q_out, quotient);
  1929. if (r_out)
  1930. mp_copy_into(r_out, remainder);
  1931. mp_free(r_approx);
  1932. mp_free(two_R);
  1933. mp_free(quotient_full);
  1934. mp_free(quotient);
  1935. mp_free(remainder);
  1936. } // WINSCP
  1937. } // WINSCP
  1938. } // WINSCP
  1939. } // WINSCP
  1940. } // WINSCP
  1941. } // WINSCP
  1942. } // WINSCP
  1943. } // WINSCP
  1944. }
  1945. mp_int *mp_div(mp_int *n, mp_int *d)
  1946. {
  1947. mp_int *q = mp_make_sized(n->nw);
  1948. mp_divmod_into(n, d, q, NULL);
  1949. return q;
  1950. }
  1951. mp_int *mp_mod(mp_int *n, mp_int *d)
  1952. {
  1953. mp_int *r = mp_make_sized(d->nw);
  1954. mp_divmod_into(n, d, NULL, r);
  1955. return r;
  1956. }
  1957. mp_int *mp_modmul(mp_int *x, mp_int *y, mp_int *modulus)
  1958. {
  1959. mp_int *product = mp_mul(x, y);
  1960. mp_int *reduced = mp_mod(product, modulus);
  1961. mp_free(product);
  1962. return reduced;
  1963. }
  1964. mp_int *mp_modadd(mp_int *x, mp_int *y, mp_int *modulus)
  1965. {
  1966. mp_int *sum = mp_add(x, y);
  1967. mp_int *reduced = mp_mod(sum, modulus);
  1968. mp_free(sum);
  1969. return reduced;
  1970. }
  1971. mp_int *mp_modsub(mp_int *x, mp_int *y, mp_int *modulus)
  1972. {
  1973. mp_int *diff = mp_make_sized(size_t_max(x->nw, y->nw));
  1974. mp_sub_into(diff, x, y);
  1975. { // WINSCP
  1976. unsigned negate = mp_cmp_hs(y, x);
  1977. mp_cond_negate(diff, diff, negate);
  1978. { // WINSCP
  1979. mp_int *residue = mp_mod(diff, modulus);
  1980. mp_cond_negate(residue, residue, negate);
  1981. /* If we've just negated the residue, then it will be < 0 and need
  1982. * the modulus adding to it to make it positive - *except* if the
  1983. * residue was zero when we negated it. */
  1984. { // WINSCP
  1985. unsigned make_positive = negate & ~mp_eq_integer(residue, 0);
  1986. mp_cond_add_into(residue, residue, modulus, make_positive);
  1987. mp_free(diff);
  1988. return residue;
  1989. } // WINSCP
  1990. } // WINSCP
  1991. } // WINSCP
  1992. }
  1993. static mp_int *mp_modadd_in_range(mp_int *x, mp_int *y, mp_int *modulus)
  1994. {
  1995. mp_int *sum = mp_make_sized(modulus->nw);
  1996. unsigned carry = mp_add_into_internal(sum, x, y);
  1997. mp_cond_sub_into(sum, sum, modulus, carry | mp_cmp_hs(sum, modulus));
  1998. return sum;
  1999. }
  2000. static mp_int *mp_modsub_in_range(mp_int *x, mp_int *y, mp_int *modulus)
  2001. {
  2002. mp_int *diff = mp_make_sized(modulus->nw);
  2003. mp_sub_into(diff, x, y);
  2004. mp_cond_add_into(diff, diff, modulus, 1 ^ mp_cmp_hs(x, y));
  2005. return diff;
  2006. }
  2007. mp_int *monty_add(MontyContext *mc, mp_int *x, mp_int *y)
  2008. {
  2009. return mp_modadd_in_range(x, y, mc->m);
  2010. }
  2011. mp_int *monty_sub(MontyContext *mc, mp_int *x, mp_int *y)
  2012. {
  2013. return mp_modsub_in_range(x, y, mc->m);
  2014. }
  2015. void mp_min_into(mp_int *r, mp_int *x, mp_int *y)
  2016. {
  2017. mp_select_into(r, x, y, mp_cmp_hs(x, y));
  2018. }
  2019. void mp_max_into(mp_int *r, mp_int *x, mp_int *y)
  2020. {
  2021. mp_select_into(r, y, x, mp_cmp_hs(x, y));
  2022. }
  2023. mp_int *mp_min(mp_int *x, mp_int *y)
  2024. {
  2025. mp_int *r = mp_make_sized(size_t_min(x->nw, y->nw));
  2026. mp_min_into(r, x, y);
  2027. return r;
  2028. }
  2029. mp_int *mp_max(mp_int *x, mp_int *y)
  2030. {
  2031. mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw));
  2032. mp_max_into(r, x, y);
  2033. return r;
  2034. }
  2035. mp_int *mp_power_2(size_t power)
  2036. {
  2037. mp_int *x = mp_new(power + 1);
  2038. mp_set_bit(x, power, 1);
  2039. return x;
  2040. }
  2041. struct ModsqrtContext {
  2042. mp_int *p; /* the prime */
  2043. MontyContext *mc; /* for doing arithmetic mod p */
  2044. /* Decompose p-1 as 2^e k, for positive integer e and odd k */
  2045. size_t e;
  2046. mp_int *k;
  2047. mp_int *km1o2; /* (k-1)/2 */
  2048. /* The user-provided value z which is not a quadratic residue mod
  2049. * p, and its kth power. Both in Montgomery form. */
  2050. mp_int *z, *zk;
  2051. };
  2052. ModsqrtContext *modsqrt_new(mp_int *p, mp_int *any_nonsquare_mod_p)
  2053. {
  2054. ModsqrtContext *sc = snew(ModsqrtContext);
  2055. memset(sc, 0, sizeof(ModsqrtContext));
  2056. sc->p = mp_copy(p);
  2057. sc->mc = monty_new(sc->p);
  2058. sc->z = monty_import(sc->mc, any_nonsquare_mod_p);
  2059. /* Find the lowest set bit in p-1. Since this routine expects p to
  2060. * be non-secret (typically a well-known standard elliptic curve
  2061. * parameter), for once we don't need clever bit tricks. */
  2062. for (sc->e = 1; sc->e < BIGNUM_INT_BITS * p->nw; sc->e++)
  2063. if (mp_get_bit(p, sc->e))
  2064. break;
  2065. sc->k = mp_rshift_fixed(p, sc->e);
  2066. sc->km1o2 = mp_rshift_fixed(sc->k, 1);
  2067. /* Leave zk to be filled in lazily, since it's more expensive to
  2068. * compute. If this context turns out never to be needed, we can
  2069. * save the bulk of the setup time this way. */
  2070. return sc;
  2071. }
  2072. static void modsqrt_lazy_setup(ModsqrtContext *sc)
  2073. {
  2074. if (!sc->zk)
  2075. sc->zk = monty_pow(sc->mc, sc->z, sc->k);
  2076. }
  2077. void modsqrt_free(ModsqrtContext *sc)
  2078. {
  2079. monty_free(sc->mc);
  2080. mp_free(sc->p);
  2081. mp_free(sc->z);
  2082. mp_free(sc->k);
  2083. mp_free(sc->km1o2);
  2084. if (sc->zk)
  2085. mp_free(sc->zk);
  2086. sfree(sc);
  2087. }
  2088. mp_int *mp_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success)
  2089. {
  2090. mp_int *mx = monty_import(sc->mc, x);
  2091. mp_int *mroot = monty_modsqrt(sc, mx, success);
  2092. mp_free(mx);
  2093. { // WINSCP
  2094. mp_int *root = monty_export(sc->mc, mroot);
  2095. mp_free(mroot);
  2096. return root;
  2097. } // WINSCP
  2098. }
  2099. /*
  2100. * Modular square root, using an algorithm more or less similar to
  2101. * Tonelli-Shanks but adapted for constant time.
  2102. *
  2103. * The basic idea is to write p-1 = k 2^e, where k is odd and e > 0.
  2104. * Then the multiplicative group mod p (call it G) has a sequence of
  2105. * e+1 nested subgroups G = G_0 > G_1 > G_2 > ... > G_e, where each
  2106. * G_i is exactly half the size of G_{i-1} and consists of all the
  2107. * squares of elements in G_{i-1}. So the innermost group G_e has
  2108. * order k, which is odd, and hence within that group you can take a
  2109. * square root by raising to the power (k+1)/2.
  2110. *
  2111. * Our strategy is to iterate over these groups one by one and make
  2112. * sure the number x we're trying to take the square root of is inside
  2113. * each one, by adjusting it if it isn't.
  2114. *
  2115. * Suppose g is a primitive root of p, i.e. a generator of G_0. (We
  2116. * don't actually need to know what g _is_; we just imagine it for the
  2117. * sake of understanding.) Then G_i consists of precisely the (2^i)th
  2118. * powers of g, and hence, you can tell if a number is in G_i if
  2119. * raising it to the power k 2^{e-i} gives 1. So the conceptual
  2120. * algorithm goes: for each i, test whether x is in G_i by that
  2121. * method. If it isn't, then the previous iteration ensured it's in
  2122. * G_{i-1}, so it will be an odd power of g^{2^{i-1}}, and hence
  2123. * multiplying by any other odd power of g^{2^{i-1}} will give x' in
  2124. * G_i. And we have one of those, because our non-square z is an odd
  2125. * power of g, so z^{2^{i-1}} is an odd power of g^{2^{i-1}}.
  2126. *
  2127. * (There's a special case in the very first iteration, where we don't
  2128. * have a G_{i-1}. If it turns out that x is not even in G_1, that
  2129. * means it's not a square, so we set *success to 0. We still run the
  2130. * rest of the algorithm anyway, for the sake of constant time, but we
  2131. * don't give a hoot what it returns.)
  2132. *
  2133. * When we get to the end and have x in G_e, then we can take its
  2134. * square root by raising to (k+1)/2. But of course that's not the
  2135. * square root of the original input - it's only the square root of
  2136. * the adjusted version we produced during the algorithm. To get the
  2137. * true output answer we also have to multiply by a power of z,
  2138. * namely, z to the power of _half_ whatever we've been multiplying in
  2139. * as we go along. (The power of z we multiplied in must have been
  2140. * even, because the case in which we would have multiplied in an odd
  2141. * power of z is the i=0 case, in which we instead set the failure
  2142. * flag.)
  2143. *
  2144. * The code below is an optimised version of that basic idea, in which
  2145. * we _start_ by computing x^k so as to be able to test membership in
  2146. * G_i by only a few squarings rather than a full from-scratch modpow
  2147. * every time; we also start by computing our candidate output value
  2148. * x^{(k+1)/2}. So when the above description says 'adjust x by z^i'
  2149. * for some i, we have to adjust our running values of x^k and
  2150. * x^{(k+1)/2} by z^{ik} and z^{ik/2} respectively (the latter is safe
  2151. * because, as above, i is always even). And it turns out that we
  2152. * don't actually have to store the adjusted version of x itself at
  2153. * all - we _only_ keep those two powers of it.
  2154. */
  2155. mp_int *monty_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success)
  2156. {
  2157. modsqrt_lazy_setup(sc);
  2158. { // WINSCP
  2159. mp_int *scratch_to_free = mp_make_sized(3 * sc->mc->rw);
  2160. mp_int scratch = *scratch_to_free;
  2161. /*
  2162. * Compute toret = x^{(k+1)/2}, our starting point for the output
  2163. * square root, and also xk = x^k which we'll use as we go along
  2164. * for knowing when to apply correction factors. We do this by
  2165. * first computing x^{(k-1)/2}, then multiplying it by x, then
  2166. * multiplying the two together.
  2167. */
  2168. mp_int *toret = monty_pow(sc->mc, x, sc->km1o2);
  2169. mp_int xk = mp_alloc_from_scratch(&scratch, sc->mc->rw);
  2170. mp_copy_into(&xk, toret);
  2171. monty_mul_into(sc->mc, toret, toret, x);
  2172. monty_mul_into(sc->mc, &xk, toret, &xk);
  2173. { // WINSCP
  2174. mp_int tmp = mp_alloc_from_scratch(&scratch, sc->mc->rw);
  2175. mp_int power_of_zk = mp_alloc_from_scratch(&scratch, sc->mc->rw);
  2176. size_t i; // WINSCP
  2177. mp_copy_into(&power_of_zk, sc->zk);
  2178. for (i = 0; i < sc->e; i++) {
  2179. size_t j; // WINSCP
  2180. mp_copy_into(&tmp, &xk);
  2181. for (j = i+1; j < sc->e; j++)
  2182. monty_mul_into(sc->mc, &tmp, &tmp, &tmp);
  2183. { // WINSCP
  2184. unsigned eq1 = mp_cmp_eq(&tmp, monty_identity(sc->mc));
  2185. if (i == 0) {
  2186. /* One special case: if x=0, then no power of x will ever
  2187. * equal 1, but we should still report success on the
  2188. * grounds that 0 does have a square root mod p. */
  2189. *success = eq1 | mp_eq_integer(x, 0);
  2190. } else {
  2191. monty_mul_into(sc->mc, &tmp, toret, &power_of_zk);
  2192. mp_select_into(toret, &tmp, toret, eq1);
  2193. monty_mul_into(sc->mc, &power_of_zk,
  2194. &power_of_zk, &power_of_zk);
  2195. monty_mul_into(sc->mc, &tmp, &xk, &power_of_zk);
  2196. mp_select_into(&xk, &tmp, &xk, eq1);
  2197. }
  2198. } // WINSCP
  2199. }
  2200. mp_free(scratch_to_free);
  2201. return toret;
  2202. } // WINSCP
  2203. } // WINSCP
  2204. }
  2205. mp_int *mp_random_bits_fn(size_t bits, random_read_fn_t random_read)
  2206. {
  2207. size_t bytes = (bits + 7) / 8;
  2208. uint8_t *randbuf = snewn(bytes, uint8_t);
  2209. random_read(randbuf, bytes);
  2210. if (bytes)
  2211. randbuf[0] &= (2 << ((bits-1) & 7)) - 1;
  2212. { // WINSCP
  2213. mp_int *toret = mp_from_bytes_be(make_ptrlen(randbuf, bytes));
  2214. smemclr(randbuf, bytes);
  2215. sfree(randbuf);
  2216. return toret;
  2217. } // WINSCP
  2218. }
  2219. mp_int *mp_random_in_range_fn(mp_int *lo, mp_int *hi, random_read_fn_t rf)
  2220. {
  2221. mp_int *n_outcomes = mp_sub(hi, lo);
  2222. /*
  2223. * It would be nice to generate our random numbers in such a way
  2224. * as to make every possible outcome literally equiprobable. But
  2225. * we can't do that in constant time, so we have to go for a very
  2226. * close approximation instead. I'm going to take the view that a
  2227. * factor of (1+2^-128) between the probabilities of two outcomes
  2228. * is acceptable on the grounds that you'd have to examine so many
  2229. * outputs to even detect it.
  2230. */
  2231. mp_int *unreduced = mp_random_bits_fn(mp_max_bits(n_outcomes) + 128, rf);
  2232. mp_int *reduced = mp_mod(unreduced, n_outcomes);
  2233. mp_add_into(reduced, reduced, lo);
  2234. mp_free(unreduced);
  2235. mp_free(n_outcomes);
  2236. return reduced;
  2237. }