sshsha.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. /*
  2. * SHA1 hash algorithm. Used in SSH-2 as a MAC, and the transform is
  3. * also used as a `stirring' function for the PuTTY random number
  4. * pool. Implemented directly from the specification by Simon
  5. * Tatham.
  6. */
  7. #include "ssh.h"
  8. #include <assert.h>
  9. /* ----------------------------------------------------------------------
  10. * Core SHA algorithm: processes 16-word blocks into a message digest.
  11. */
  12. #define rol(x,y) ( ((x) << (y)) | (((uint32)x) >> (32-y)) )
  13. static void sha1_sw(SHA_State * s, const unsigned char *q, int len);
  14. static void sha1_ni(SHA_State * s, const unsigned char *q, int len);
  15. static void SHA_Core_Init(uint32 h[5])
  16. {
  17. h[0] = 0x67452301;
  18. h[1] = 0xefcdab89;
  19. h[2] = 0x98badcfe;
  20. h[3] = 0x10325476;
  21. h[4] = 0xc3d2e1f0;
  22. }
  23. void SHATransform(word32 * digest, word32 * block)
  24. {
  25. word32 w[80];
  26. word32 a, b, c, d, e;
  27. int t;
  28. #ifdef RANDOM_DIAGNOSTICS
  29. {
  30. extern int random_diagnostics;
  31. if (random_diagnostics) {
  32. int i;
  33. printf("SHATransform:");
  34. for (i = 0; i < 5; i++)
  35. printf(" %08x", digest[i]);
  36. printf(" +");
  37. for (i = 0; i < 16; i++)
  38. printf(" %08x", block[i]);
  39. }
  40. }
  41. #endif
  42. for (t = 0; t < 16; t++)
  43. w[t] = block[t];
  44. for (t = 16; t < 80; t++) {
  45. word32 tmp = w[t - 3] ^ w[t - 8] ^ w[t - 14] ^ w[t - 16];
  46. w[t] = rol(tmp, 1);
  47. }
  48. a = digest[0];
  49. b = digest[1];
  50. c = digest[2];
  51. d = digest[3];
  52. e = digest[4];
  53. for (t = 0; t < 20; t++) {
  54. word32 tmp =
  55. rol(a, 5) + ((b & c) | (d & ~b)) + e + w[t] + 0x5a827999;
  56. e = d;
  57. d = c;
  58. c = rol(b, 30);
  59. b = a;
  60. a = tmp;
  61. }
  62. for (t = 20; t < 40; t++) {
  63. word32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0x6ed9eba1;
  64. e = d;
  65. d = c;
  66. c = rol(b, 30);
  67. b = a;
  68. a = tmp;
  69. }
  70. for (t = 40; t < 60; t++) {
  71. word32 tmp = rol(a,
  72. 5) + ((b & c) | (b & d) | (c & d)) + e + w[t] +
  73. 0x8f1bbcdc;
  74. e = d;
  75. d = c;
  76. c = rol(b, 30);
  77. b = a;
  78. a = tmp;
  79. }
  80. for (t = 60; t < 80; t++) {
  81. word32 tmp = rol(a, 5) + (b ^ c ^ d) + e + w[t] + 0xca62c1d6;
  82. e = d;
  83. d = c;
  84. c = rol(b, 30);
  85. b = a;
  86. a = tmp;
  87. }
  88. digest[0] += a;
  89. digest[1] += b;
  90. digest[2] += c;
  91. digest[3] += d;
  92. digest[4] += e;
  93. #ifdef RANDOM_DIAGNOSTICS
  94. {
  95. extern int random_diagnostics;
  96. if (random_diagnostics) {
  97. int i;
  98. printf(" =");
  99. for (i = 0; i < 5; i++)
  100. printf(" %08x", digest[i]);
  101. printf("\n");
  102. }
  103. }
  104. #endif
  105. }
  106. /* ----------------------------------------------------------------------
  107. * Outer SHA algorithm: take an arbitrary length byte string,
  108. * convert it into 16-word blocks with the prescribed padding at
  109. * the end, and pass those blocks to the core SHA algorithm.
  110. */
  111. static void SHA_BinarySink_write(BinarySink *bs, const void *p, size_t len);
  112. void SHA_Init(SHA_State * s)
  113. {
  114. SHA_Core_Init(s->h);
  115. s->blkused = 0;
  116. s->lenhi = s->lenlo = 0;
  117. if (supports_sha_ni())
  118. s->sha1 = &sha1_ni;
  119. else
  120. s->sha1 = &sha1_sw;
  121. BinarySink_INIT(s, SHA_BinarySink_write);
  122. }
  123. static void SHA_BinarySink_write(BinarySink *bs, const void *p, size_t len)
  124. {
  125. struct SHA_State *s = BinarySink_DOWNCAST(bs, struct SHA_State);
  126. const unsigned char *q = (const unsigned char *) p;
  127. uint32 lenw = len;
  128. assert(lenw == len);
  129. /*
  130. * Update the length field.
  131. */
  132. s->lenlo += lenw;
  133. s->lenhi += (s->lenlo < lenw);
  134. (*(s->sha1))(s, q, len);
  135. }
  136. static void sha1_sw(SHA_State * s, const unsigned char *q, int len)
  137. {
  138. uint32 wordblock[16];
  139. int i;
  140. if (s->blkused && s->blkused + len < 64) {
  141. /*
  142. * Trivial case: just add to the block.
  143. */
  144. memcpy(s->block + s->blkused, q, len);
  145. s->blkused += len;
  146. } else {
  147. /*
  148. * We must complete and process at least one block.
  149. */
  150. while (s->blkused + len >= 64) {
  151. memcpy(s->block + s->blkused, q, 64 - s->blkused);
  152. q += 64 - s->blkused;
  153. len -= 64 - s->blkused;
  154. /* Now process the block. Gather bytes big-endian into words */
  155. for (i = 0; i < 16; i++) {
  156. wordblock[i] =
  157. (((uint32) s->block[i * 4 + 0]) << 24) |
  158. (((uint32) s->block[i * 4 + 1]) << 16) |
  159. (((uint32) s->block[i * 4 + 2]) << 8) |
  160. (((uint32) s->block[i * 4 + 3]) << 0);
  161. }
  162. SHATransform(s->h, wordblock);
  163. s->blkused = 0;
  164. }
  165. memcpy(s->block, q, len);
  166. s->blkused = len;
  167. }
  168. }
  169. void SHA_Final(SHA_State * s, unsigned char *output)
  170. {
  171. int i;
  172. int pad;
  173. unsigned char c[64];
  174. uint32 lenhi, lenlo;
  175. if (s->blkused >= 56)
  176. pad = 56 + 64 - s->blkused;
  177. else
  178. pad = 56 - s->blkused;
  179. lenhi = (s->lenhi << 3) | (s->lenlo >> (32 - 3));
  180. lenlo = (s->lenlo << 3);
  181. memset(c, 0, pad);
  182. c[0] = 0x80;
  183. put_data(s, &c, pad);
  184. put_uint32(s, lenhi);
  185. put_uint32(s, lenlo);
  186. for (i = 0; i < 5; i++) {
  187. output[i * 4] = (s->h[i] >> 24) & 0xFF;
  188. output[i * 4 + 1] = (s->h[i] >> 16) & 0xFF;
  189. output[i * 4 + 2] = (s->h[i] >> 8) & 0xFF;
  190. output[i * 4 + 3] = (s->h[i]) & 0xFF;
  191. }
  192. }
  193. void SHA_Simple(const void *p, int len, unsigned char *output)
  194. {
  195. SHA_State s;
  196. SHA_Init(&s);
  197. put_data(&s, p, len);
  198. SHA_Final(&s, output);
  199. smemclr(&s, sizeof(s));
  200. }
  201. /*
  202. * Thin abstraction for things where hashes are pluggable.
  203. */
  204. static void *sha1_init(void)
  205. {
  206. SHA_State *s;
  207. s = snew(SHA_State);
  208. SHA_Init(s);
  209. return s;
  210. }
  211. static void *sha1_copy(const void *vold)
  212. {
  213. const SHA_State *old = (const SHA_State *)vold;
  214. SHA_State *s;
  215. s = snew(SHA_State);
  216. *s = *old;
  217. BinarySink_COPIED(s);
  218. return s;
  219. }
  220. static void sha1_free(void *handle)
  221. {
  222. SHA_State *s = handle;
  223. smemclr(s, sizeof(*s));
  224. sfree(s);
  225. }
  226. static BinarySink *sha1_sink(void *handle)
  227. {
  228. SHA_State *s = handle;
  229. return BinarySink_UPCAST(s);
  230. }
  231. static void sha1_final(void *handle, unsigned char *output)
  232. {
  233. SHA_State *s = handle;
  234. SHA_Final(s, output);
  235. sha1_free(s);
  236. }
  237. const struct ssh_hash ssh_sha1 = {
  238. sha1_init, sha1_copy, sha1_sink, sha1_final, sha1_free, 20, "SHA-1"
  239. };
  240. /* ----------------------------------------------------------------------
  241. * The above is the SHA-1 algorithm itself. Now we implement the
  242. * HMAC wrapper on it.
  243. */
  244. static void *sha1_make_context(void *cipher_ctx)
  245. {
  246. return snewn(3, SHA_State);
  247. }
  248. static void sha1_free_context(void *handle)
  249. {
  250. smemclr(handle, 3 * sizeof(SHA_State));
  251. sfree(handle);
  252. }
  253. static void sha1_key_internal(void *handle, const unsigned char *key, int len)
  254. {
  255. SHA_State *keys = (SHA_State *)handle;
  256. unsigned char foo[64];
  257. int i;
  258. memset(foo, 0x36, 64);
  259. for (i = 0; i < len && i < 64; i++)
  260. foo[i] ^= key[i];
  261. SHA_Init(&keys[0]);
  262. put_data(&keys[0], foo, 64);
  263. memset(foo, 0x5C, 64);
  264. for (i = 0; i < len && i < 64; i++)
  265. foo[i] ^= key[i];
  266. SHA_Init(&keys[1]);
  267. put_data(&keys[1], foo, 64);
  268. smemclr(foo, 64); /* burn the evidence */
  269. }
  270. static void sha1_key(void *handle, const void *key)
  271. {
  272. sha1_key_internal(handle, key, 20);
  273. }
  274. static void sha1_key_buggy(void *handle, const void *key)
  275. {
  276. sha1_key_internal(handle, key, 16);
  277. }
  278. static void hmacsha1_start(void *handle)
  279. {
  280. SHA_State *keys = (SHA_State *)handle;
  281. keys[2] = keys[0]; /* structure copy */
  282. BinarySink_COPIED(&keys[2]);
  283. }
  284. static BinarySink *hmacsha1_sink(void *handle)
  285. {
  286. SHA_State *keys = (SHA_State *)handle;
  287. return BinarySink_UPCAST(&keys[2]);
  288. }
  289. static void hmacsha1_genresult(void *handle, unsigned char *hmac)
  290. {
  291. SHA_State *keys = (SHA_State *)handle;
  292. SHA_State s;
  293. unsigned char intermediate[20];
  294. s = keys[2]; /* structure copy */
  295. BinarySink_COPIED(&s);
  296. SHA_Final(&s, intermediate);
  297. s = keys[1]; /* structure copy */
  298. BinarySink_COPIED(&s);
  299. put_data(&s, intermediate, 20);
  300. SHA_Final(&s, hmac);
  301. }
  302. static void sha1_do_hmac(void *handle, const unsigned char *blk, int len,
  303. unsigned long seq, unsigned char *hmac)
  304. {
  305. BinarySink *bs = hmacsha1_sink(handle);
  306. hmacsha1_start(handle);
  307. put_uint32(bs, seq);
  308. put_data(bs, blk, len);
  309. hmacsha1_genresult(handle, hmac);
  310. }
  311. static void sha1_generate(void *handle, void *vblk, int len,
  312. unsigned long seq)
  313. {
  314. unsigned char *blk = (unsigned char *)vblk;
  315. sha1_do_hmac(handle, blk, len, seq, blk + len);
  316. }
  317. static int hmacsha1_verresult(void *handle, unsigned char const *hmac)
  318. {
  319. unsigned char correct[20];
  320. hmacsha1_genresult(handle, correct);
  321. return smemeq(correct, hmac, 20);
  322. }
  323. static int sha1_verify(void *handle, const void *vblk, int len,
  324. unsigned long seq)
  325. {
  326. const unsigned char *blk = (const unsigned char *)vblk;
  327. unsigned char correct[20];
  328. sha1_do_hmac(handle, blk, len, seq, correct);
  329. return smemeq(correct, blk + len, 20);
  330. }
  331. static void hmacsha1_96_genresult(void *handle, unsigned char *hmac)
  332. {
  333. unsigned char full[20];
  334. hmacsha1_genresult(handle, full);
  335. memcpy(hmac, full, 12);
  336. }
  337. static void sha1_96_generate(void *handle, void *vblk, int len,
  338. unsigned long seq)
  339. {
  340. unsigned char *blk = (unsigned char *)vblk;
  341. unsigned char full[20];
  342. sha1_do_hmac(handle, blk, len, seq, full);
  343. memcpy(blk + len, full, 12);
  344. }
  345. static int hmacsha1_96_verresult(void *handle, unsigned char const *hmac)
  346. {
  347. unsigned char correct[20];
  348. hmacsha1_genresult(handle, correct);
  349. return smemeq(correct, hmac, 12);
  350. }
  351. static int sha1_96_verify(void *handle, const void *vblk, int len,
  352. unsigned long seq)
  353. {
  354. const unsigned char *blk = (const unsigned char *)vblk;
  355. unsigned char correct[20];
  356. sha1_do_hmac(handle, blk, len, seq, correct);
  357. return smemeq(correct, blk + len, 12);
  358. }
  359. void hmac_sha1_simple(void *key, int keylen, void *data, int datalen,
  360. unsigned char *output) {
  361. SHA_State states[2];
  362. unsigned char intermediate[20];
  363. sha1_key_internal(states, key, keylen);
  364. put_data(&states[0], data, datalen);
  365. SHA_Final(&states[0], intermediate);
  366. put_data(&states[1], intermediate, 20);
  367. SHA_Final(&states[1], output);
  368. }
  369. const struct ssh_mac ssh_hmac_sha1 = {
  370. sha1_make_context, sha1_free_context, sha1_key,
  371. sha1_generate, sha1_verify,
  372. hmacsha1_start, hmacsha1_sink, hmacsha1_genresult, hmacsha1_verresult,
  373. "hmac-sha1", "[email protected]",
  374. 20, 20,
  375. "HMAC-SHA1"
  376. };
  377. const struct ssh_mac ssh_hmac_sha1_96 = {
  378. sha1_make_context, sha1_free_context, sha1_key,
  379. sha1_96_generate, sha1_96_verify,
  380. hmacsha1_start, hmacsha1_sink,
  381. hmacsha1_96_genresult, hmacsha1_96_verresult,
  382. "hmac-sha1-96", "[email protected]",
  383. 12, 20,
  384. "HMAC-SHA1-96"
  385. };
  386. const struct ssh_mac ssh_hmac_sha1_buggy = {
  387. sha1_make_context, sha1_free_context, sha1_key_buggy,
  388. sha1_generate, sha1_verify,
  389. hmacsha1_start, hmacsha1_sink, hmacsha1_genresult, hmacsha1_verresult,
  390. "hmac-sha1", NULL,
  391. 20, 16,
  392. "bug-compatible HMAC-SHA1"
  393. };
  394. const struct ssh_mac ssh_hmac_sha1_96_buggy = {
  395. sha1_make_context, sha1_free_context, sha1_key_buggy,
  396. sha1_96_generate, sha1_96_verify,
  397. hmacsha1_start, hmacsha1_sink,
  398. hmacsha1_96_genresult, hmacsha1_96_verresult,
  399. "hmac-sha1-96", NULL,
  400. 12, 16,
  401. "bug-compatible HMAC-SHA1-96"
  402. };
  403. #ifdef COMPILER_SUPPORTS_SHA_NI
  404. #if defined _MSC_VER && defined _M_AMD64
  405. # include <intrin.h>
  406. #endif
  407. /*
  408. * Set target architecture for Clang and GCC
  409. */
  410. #if !defined(__clang__) && defined(__GNUC__)
  411. # pragma GCC target("sha")
  412. # pragma GCC target("sse4.1")
  413. #endif
  414. #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ >= 5))
  415. # define FUNC_ISA __attribute__ ((target("sse4.1,sha")))
  416. #else
  417. # define FUNC_ISA
  418. #endif
  419. #include <wmmintrin.h>
  420. #include <smmintrin.h>
  421. #include <immintrin.h>
  422. #if defined(__clang__) || defined(__GNUC__)
  423. #include <shaintrin.h>
  424. #endif
  425. /*
  426. * Determinators of CPU type
  427. */
  428. #if defined(__clang__) || defined(__GNUC__)
  429. #include <cpuid.h>
  430. int supports_sha_ni(void)
  431. {
  432. unsigned int CPUInfo[4];
  433. __cpuid(0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
  434. if (CPUInfo[0] < 7)
  435. return 0;
  436. __cpuid_count(7, 0, CPUInfo[0], CPUInfo[1], CPUInfo[2], CPUInfo[3]);
  437. return CPUInfo[1] & (1 << 29); /* SHA */
  438. }
  439. #else /* defined(__clang__) || defined(__GNUC__) */
  440. int supports_sha_ni(void)
  441. {
  442. unsigned int CPUInfo[4];
  443. __cpuid(CPUInfo, 0);
  444. if (CPUInfo[0] < 7)
  445. return 0;
  446. __cpuidex(CPUInfo, 7, 0);
  447. return CPUInfo[1] & (1 << 29); /* Check SHA */
  448. }
  449. #endif /* defined(__clang__) || defined(__GNUC__) */
  450. /* SHA1 implementation using new instructions
  451. The code is based on Jeffrey Walton's SHA1 implementation:
  452. https://github.com/noloader/SHA-Intrinsics
  453. */
  454. FUNC_ISA
  455. static void sha1_ni_(SHA_State * s, const unsigned char *q, int len)
  456. {
  457. if (s->blkused && s->blkused + len < 64) {
  458. /*
  459. * Trivial case: just add to the block.
  460. */
  461. memcpy(s->block + s->blkused, q, len);
  462. s->blkused += len;
  463. } else {
  464. __m128i ABCD, ABCD_SAVE, E0, E0_SAVE, E1;
  465. const __m128i MASK = _mm_set_epi64x(0x0001020304050607ULL, 0x08090a0b0c0d0e0fULL);
  466. ABCD = _mm_loadu_si128((const __m128i*) s->h);
  467. E0 = _mm_set_epi32(s->h[4], 0, 0, 0);
  468. ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
  469. /*
  470. * We must complete and process at least one block.
  471. */
  472. while (s->blkused + len >= 64)
  473. {
  474. __m128i MSG0, MSG1, MSG2, MSG3;
  475. memcpy(s->block + s->blkused, q, 64 - s->blkused);
  476. q += 64 - s->blkused;
  477. len -= 64 - s->blkused;
  478. /* Save current state */
  479. ABCD_SAVE = ABCD;
  480. E0_SAVE = E0;
  481. /* Rounds 0-3 */
  482. MSG0 = _mm_loadu_si128((const __m128i*)(s->block + 0));
  483. MSG0 = _mm_shuffle_epi8(MSG0, MASK);
  484. E0 = _mm_add_epi32(E0, MSG0);
  485. E1 = ABCD;
  486. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
  487. /* Rounds 4-7 */
  488. MSG1 = _mm_loadu_si128((const __m128i*)(s->block + 16));
  489. MSG1 = _mm_shuffle_epi8(MSG1, MASK);
  490. E1 = _mm_sha1nexte_epu32(E1, MSG1);
  491. E0 = ABCD;
  492. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
  493. MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
  494. /* Rounds 8-11 */
  495. MSG2 = _mm_loadu_si128((const __m128i*)(s->block + 32));
  496. MSG2 = _mm_shuffle_epi8(MSG2, MASK);
  497. E0 = _mm_sha1nexte_epu32(E0, MSG2);
  498. E1 = ABCD;
  499. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
  500. MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
  501. MSG0 = _mm_xor_si128(MSG0, MSG2);
  502. /* Rounds 12-15 */
  503. MSG3 = _mm_loadu_si128((const __m128i*)(s->block + 48));
  504. MSG3 = _mm_shuffle_epi8(MSG3, MASK);
  505. E1 = _mm_sha1nexte_epu32(E1, MSG3);
  506. E0 = ABCD;
  507. MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
  508. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
  509. MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
  510. MSG1 = _mm_xor_si128(MSG1, MSG3);
  511. /* Rounds 16-19 */
  512. E0 = _mm_sha1nexte_epu32(E0, MSG0);
  513. E1 = ABCD;
  514. MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
  515. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
  516. MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
  517. MSG2 = _mm_xor_si128(MSG2, MSG0);
  518. /* Rounds 20-23 */
  519. E1 = _mm_sha1nexte_epu32(E1, MSG1);
  520. E0 = ABCD;
  521. MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
  522. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
  523. MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
  524. MSG3 = _mm_xor_si128(MSG3, MSG1);
  525. /* Rounds 24-27 */
  526. E0 = _mm_sha1nexte_epu32(E0, MSG2);
  527. E1 = ABCD;
  528. MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
  529. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
  530. MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
  531. MSG0 = _mm_xor_si128(MSG0, MSG2);
  532. /* Rounds 28-31 */
  533. E1 = _mm_sha1nexte_epu32(E1, MSG3);
  534. E0 = ABCD;
  535. MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
  536. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
  537. MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
  538. MSG1 = _mm_xor_si128(MSG1, MSG3);
  539. /* Rounds 32-35 */
  540. E0 = _mm_sha1nexte_epu32(E0, MSG0);
  541. E1 = ABCD;
  542. MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
  543. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
  544. MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
  545. MSG2 = _mm_xor_si128(MSG2, MSG0);
  546. /* Rounds 36-39 */
  547. E1 = _mm_sha1nexte_epu32(E1, MSG1);
  548. E0 = ABCD;
  549. MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
  550. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
  551. MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
  552. MSG3 = _mm_xor_si128(MSG3, MSG1);
  553. /* Rounds 40-43 */
  554. E0 = _mm_sha1nexte_epu32(E0, MSG2);
  555. E1 = ABCD;
  556. MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
  557. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
  558. MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
  559. MSG0 = _mm_xor_si128(MSG0, MSG2);
  560. /* Rounds 44-47 */
  561. E1 = _mm_sha1nexte_epu32(E1, MSG3);
  562. E0 = ABCD;
  563. MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
  564. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
  565. MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
  566. MSG1 = _mm_xor_si128(MSG1, MSG3);
  567. /* Rounds 48-51 */
  568. E0 = _mm_sha1nexte_epu32(E0, MSG0);
  569. E1 = ABCD;
  570. MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
  571. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
  572. MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
  573. MSG2 = _mm_xor_si128(MSG2, MSG0);
  574. /* Rounds 52-55 */
  575. E1 = _mm_sha1nexte_epu32(E1, MSG1);
  576. E0 = ABCD;
  577. MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
  578. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
  579. MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
  580. MSG3 = _mm_xor_si128(MSG3, MSG1);
  581. /* Rounds 56-59 */
  582. E0 = _mm_sha1nexte_epu32(E0, MSG2);
  583. E1 = ABCD;
  584. MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
  585. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
  586. MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
  587. MSG0 = _mm_xor_si128(MSG0, MSG2);
  588. /* Rounds 60-63 */
  589. E1 = _mm_sha1nexte_epu32(E1, MSG3);
  590. E0 = ABCD;
  591. MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
  592. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
  593. MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
  594. MSG1 = _mm_xor_si128(MSG1, MSG3);
  595. /* Rounds 64-67 */
  596. E0 = _mm_sha1nexte_epu32(E0, MSG0);
  597. E1 = ABCD;
  598. MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
  599. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
  600. MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
  601. MSG2 = _mm_xor_si128(MSG2, MSG0);
  602. /* Rounds 68-71 */
  603. E1 = _mm_sha1nexte_epu32(E1, MSG1);
  604. E0 = ABCD;
  605. MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
  606. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
  607. MSG3 = _mm_xor_si128(MSG3, MSG1);
  608. /* Rounds 72-75 */
  609. E0 = _mm_sha1nexte_epu32(E0, MSG2);
  610. E1 = ABCD;
  611. MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
  612. ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
  613. /* Rounds 76-79 */
  614. E1 = _mm_sha1nexte_epu32(E1, MSG3);
  615. E0 = ABCD;
  616. ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
  617. /* Combine state */
  618. E0 = _mm_sha1nexte_epu32(E0, E0_SAVE);
  619. ABCD = _mm_add_epi32(ABCD, ABCD_SAVE);
  620. s->blkused = 0;
  621. }
  622. ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
  623. /* Save state */
  624. _mm_storeu_si128((__m128i*) s->h, ABCD);
  625. s->h[4] = _mm_extract_epi32(E0, 3);
  626. memcpy(s->block, q, len);
  627. s->blkused = len;
  628. }
  629. }
  630. /*
  631. * Workaround LLVM bug https://bugs.llvm.org/show_bug.cgi?id=34980
  632. */
  633. static void sha1_ni(SHA_State * s, const unsigned char *q, int len)
  634. {
  635. sha1_ni_(s, q, len);
  636. }
  637. #else /* COMPILER_SUPPORTS_AES_NI */
  638. static void sha1_ni(SHA_State * s, const unsigned char *q, int len)
  639. {
  640. assert(0);
  641. }
  642. int supports_sha_ni(void)
  643. {
  644. return 0;
  645. }
  646. #endif /* COMPILER_SUPPORTS_AES_NI */