sha256.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417
  1. /*
  2. * Copyright 2004-2023 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. /*
  10. * SHA256 low level APIs are deprecated for public use, but still ok for
  11. * internal use.
  12. */
  13. #include "internal/deprecated.h"
  14. #include <openssl/opensslconf.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <openssl/crypto.h>
  18. #include <openssl/sha.h>
  19. #include <openssl/opensslv.h>
  20. #include "internal/endian.h"
  21. #include "crypto/sha.h"
  22. int SHA224_Init(SHA256_CTX *c)
  23. {
  24. memset(c, 0, sizeof(*c));
  25. c->h[0] = 0xc1059ed8UL;
  26. c->h[1] = 0x367cd507UL;
  27. c->h[2] = 0x3070dd17UL;
  28. c->h[3] = 0xf70e5939UL;
  29. c->h[4] = 0xffc00b31UL;
  30. c->h[5] = 0x68581511UL;
  31. c->h[6] = 0x64f98fa7UL;
  32. c->h[7] = 0xbefa4fa4UL;
  33. c->md_len = SHA224_DIGEST_LENGTH;
  34. return 1;
  35. }
  36. int SHA256_Init(SHA256_CTX *c)
  37. {
  38. memset(c, 0, sizeof(*c));
  39. c->h[0] = 0x6a09e667UL;
  40. c->h[1] = 0xbb67ae85UL;
  41. c->h[2] = 0x3c6ef372UL;
  42. c->h[3] = 0xa54ff53aUL;
  43. c->h[4] = 0x510e527fUL;
  44. c->h[5] = 0x9b05688cUL;
  45. c->h[6] = 0x1f83d9abUL;
  46. c->h[7] = 0x5be0cd19UL;
  47. c->md_len = SHA256_DIGEST_LENGTH;
  48. return 1;
  49. }
  50. int ossl_sha256_192_init(SHA256_CTX *c)
  51. {
  52. SHA256_Init(c);
  53. c->md_len = SHA256_192_DIGEST_LENGTH;
  54. return 1;
  55. }
  56. int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
  57. {
  58. return SHA256_Update(c, data, len);
  59. }
  60. int SHA224_Final(unsigned char *md, SHA256_CTX *c)
  61. {
  62. return SHA256_Final(md, c);
  63. }
  64. #define DATA_ORDER_IS_BIG_ENDIAN
  65. #define HASH_LONG SHA_LONG
  66. #define HASH_CTX SHA256_CTX
  67. #define HASH_CBLOCK SHA_CBLOCK
  68. /*
  69. * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
  70. * default: case below covers for it. It's not clear however if it's
  71. * permitted to truncate to amount of bytes not divisible by 4. I bet not,
  72. * but if it is, then default: case shall be extended. For reference.
  73. * Idea behind separate cases for pre-defined lengths is to let the
  74. * compiler decide if it's appropriate to unroll small loops.
  75. */
  76. #define HASH_MAKE_STRING(c,s) do { \
  77. unsigned long ll; \
  78. unsigned int nn; \
  79. switch ((c)->md_len) \
  80. { case SHA256_192_DIGEST_LENGTH: \
  81. for (nn=0;nn<SHA256_192_DIGEST_LENGTH/4;nn++) \
  82. { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \
  83. break; \
  84. case SHA224_DIGEST_LENGTH: \
  85. for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) \
  86. { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \
  87. break; \
  88. case SHA256_DIGEST_LENGTH: \
  89. for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) \
  90. { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \
  91. break; \
  92. default: \
  93. if ((c)->md_len > SHA256_DIGEST_LENGTH) \
  94. return 0; \
  95. for (nn=0;nn<(c)->md_len/4;nn++) \
  96. { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \
  97. break; \
  98. } \
  99. } while (0)
  100. #define HASH_UPDATE SHA256_Update
  101. #define HASH_TRANSFORM SHA256_Transform
  102. #define HASH_FINAL SHA256_Final
  103. #define HASH_BLOCK_DATA_ORDER sha256_block_data_order
  104. #ifndef SHA256_ASM
  105. static
  106. #endif
  107. void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num);
  108. #include "crypto/md32_common.h"
  109. #ifndef SHA256_ASM
  110. static const SHA_LONG K256[64] = {
  111. 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
  112. 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
  113. 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
  114. 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
  115. 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
  116. 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
  117. 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
  118. 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
  119. 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
  120. 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
  121. 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
  122. 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
  123. 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
  124. 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
  125. 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
  126. 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
  127. };
  128. # ifndef PEDANTIC
  129. # if defined(__GNUC__) && __GNUC__>=2 && \
  130. !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
  131. # if defined(__riscv_zknh)
  132. # define Sigma0(x) ({ MD32_REG_T ret; \
  133. asm ("sha256sum0 %0, %1" \
  134. : "=r"(ret) \
  135. : "r"(x)); ret; })
  136. # define Sigma1(x) ({ MD32_REG_T ret; \
  137. asm ("sha256sum1 %0, %1" \
  138. : "=r"(ret) \
  139. : "r"(x)); ret; })
  140. # define sigma0(x) ({ MD32_REG_T ret; \
  141. asm ("sha256sig0 %0, %1" \
  142. : "=r"(ret) \
  143. : "r"(x)); ret; })
  144. # define sigma1(x) ({ MD32_REG_T ret; \
  145. asm ("sha256sig1 %0, %1" \
  146. : "=r"(ret) \
  147. : "r"(x)); ret; })
  148. # endif
  149. # if defined(__riscv_zbt) || defined(__riscv_zpn)
  150. # define Ch(x,y,z) ({ MD32_REG_T ret; \
  151. asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3"\
  152. : "=r"(ret) \
  153. : "r"(x), "r"(y), "r"(z)); ret; })
  154. # define Maj(x,y,z) ({ MD32_REG_T ret; \
  155. asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3"\
  156. : "=r"(ret) \
  157. : "r"(x^z), "r"(y), "r"(x)); ret; })
  158. # endif
  159. # endif
  160. # endif
  161. /*
  162. * FIPS specification refers to right rotations, while our ROTATE macro
  163. * is left one. This is why you might notice that rotation coefficients
  164. * differ from those observed in FIPS document by 32-N...
  165. */
  166. # ifndef Sigma0
  167. # define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
  168. # endif
  169. # ifndef Sigma1
  170. # define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
  171. # endif
  172. # ifndef sigma0
  173. # define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
  174. # endif
  175. # ifndef sigma1
  176. # define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
  177. # endif
  178. # ifndef Ch
  179. # define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
  180. # endif
  181. # ifndef Maj
  182. # define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  183. # endif
  184. # ifdef OPENSSL_SMALL_FOOTPRINT
  185. static void sha256_block_data_order(SHA256_CTX *ctx, const void *in,
  186. size_t num)
  187. {
  188. unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1, T2;
  189. SHA_LONG X[16], l;
  190. int i;
  191. const unsigned char *data = in;
  192. while (num--) {
  193. a = ctx->h[0];
  194. b = ctx->h[1];
  195. c = ctx->h[2];
  196. d = ctx->h[3];
  197. e = ctx->h[4];
  198. f = ctx->h[5];
  199. g = ctx->h[6];
  200. h = ctx->h[7];
  201. for (i = 0; i < 16; i++) {
  202. (void)HOST_c2l(data, l);
  203. T1 = X[i] = l;
  204. T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i];
  205. T2 = Sigma0(a) + Maj(a, b, c);
  206. h = g;
  207. g = f;
  208. f = e;
  209. e = d + T1;
  210. d = c;
  211. c = b;
  212. b = a;
  213. a = T1 + T2;
  214. }
  215. for (; i < 64; i++) {
  216. s0 = X[(i + 1) & 0x0f];
  217. s0 = sigma0(s0);
  218. s1 = X[(i + 14) & 0x0f];
  219. s1 = sigma1(s1);
  220. T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf];
  221. T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i];
  222. T2 = Sigma0(a) + Maj(a, b, c);
  223. h = g;
  224. g = f;
  225. f = e;
  226. e = d + T1;
  227. d = c;
  228. c = b;
  229. b = a;
  230. a = T1 + T2;
  231. }
  232. ctx->h[0] += a;
  233. ctx->h[1] += b;
  234. ctx->h[2] += c;
  235. ctx->h[3] += d;
  236. ctx->h[4] += e;
  237. ctx->h[5] += f;
  238. ctx->h[6] += g;
  239. ctx->h[7] += h;
  240. }
  241. }
  242. # else
  243. # define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
  244. T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \
  245. h = Sigma0(a) + Maj(a,b,c); \
  246. d += T1; h += T1; } while (0)
  247. # define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \
  248. s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
  249. s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
  250. T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
  251. ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
  252. static void sha256_block_data_order(SHA256_CTX *ctx, const void *in,
  253. size_t num)
  254. {
  255. unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1;
  256. SHA_LONG X[16];
  257. int i;
  258. const unsigned char *data = in;
  259. DECLARE_IS_ENDIAN;
  260. while (num--) {
  261. a = ctx->h[0];
  262. b = ctx->h[1];
  263. c = ctx->h[2];
  264. d = ctx->h[3];
  265. e = ctx->h[4];
  266. f = ctx->h[5];
  267. g = ctx->h[6];
  268. h = ctx->h[7];
  269. if (!IS_LITTLE_ENDIAN && sizeof(SHA_LONG) == 4
  270. && ((size_t)in % 4) == 0) {
  271. const SHA_LONG *W = (const SHA_LONG *)data;
  272. T1 = X[0] = W[0];
  273. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  274. T1 = X[1] = W[1];
  275. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  276. T1 = X[2] = W[2];
  277. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  278. T1 = X[3] = W[3];
  279. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  280. T1 = X[4] = W[4];
  281. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  282. T1 = X[5] = W[5];
  283. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  284. T1 = X[6] = W[6];
  285. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  286. T1 = X[7] = W[7];
  287. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  288. T1 = X[8] = W[8];
  289. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  290. T1 = X[9] = W[9];
  291. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  292. T1 = X[10] = W[10];
  293. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  294. T1 = X[11] = W[11];
  295. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  296. T1 = X[12] = W[12];
  297. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  298. T1 = X[13] = W[13];
  299. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  300. T1 = X[14] = W[14];
  301. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  302. T1 = X[15] = W[15];
  303. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  304. data += SHA256_CBLOCK;
  305. } else {
  306. SHA_LONG l;
  307. (void)HOST_c2l(data, l);
  308. T1 = X[0] = l;
  309. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  310. (void)HOST_c2l(data, l);
  311. T1 = X[1] = l;
  312. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  313. (void)HOST_c2l(data, l);
  314. T1 = X[2] = l;
  315. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  316. (void)HOST_c2l(data, l);
  317. T1 = X[3] = l;
  318. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  319. (void)HOST_c2l(data, l);
  320. T1 = X[4] = l;
  321. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  322. (void)HOST_c2l(data, l);
  323. T1 = X[5] = l;
  324. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  325. (void)HOST_c2l(data, l);
  326. T1 = X[6] = l;
  327. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  328. (void)HOST_c2l(data, l);
  329. T1 = X[7] = l;
  330. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  331. (void)HOST_c2l(data, l);
  332. T1 = X[8] = l;
  333. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  334. (void)HOST_c2l(data, l);
  335. T1 = X[9] = l;
  336. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  337. (void)HOST_c2l(data, l);
  338. T1 = X[10] = l;
  339. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  340. (void)HOST_c2l(data, l);
  341. T1 = X[11] = l;
  342. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  343. (void)HOST_c2l(data, l);
  344. T1 = X[12] = l;
  345. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  346. (void)HOST_c2l(data, l);
  347. T1 = X[13] = l;
  348. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  349. (void)HOST_c2l(data, l);
  350. T1 = X[14] = l;
  351. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  352. (void)HOST_c2l(data, l);
  353. T1 = X[15] = l;
  354. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  355. }
  356. for (i = 16; i < 64; i += 8) {
  357. ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X);
  358. ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X);
  359. ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X);
  360. ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X);
  361. ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X);
  362. ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X);
  363. ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X);
  364. ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X);
  365. }
  366. ctx->h[0] += a;
  367. ctx->h[1] += b;
  368. ctx->h[2] += c;
  369. ctx->h[3] += d;
  370. ctx->h[4] += e;
  371. ctx->h[5] += f;
  372. ctx->h[6] += g;
  373. ctx->h[7] += h;
  374. }
  375. }
  376. # endif
  377. #endif /* SHA256_ASM */