bn_local.h 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702
  1. /*
  2. * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the OpenSSL license (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. #ifndef OSSL_CRYPTO_BN_LOCAL_H
  10. # define OSSL_CRYPTO_BN_LOCAL_H
  11. /*
  12. * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or
  13. * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our
  14. * Configure script and needs to support both 32-bit and 64-bit.
  15. */
  16. # include <openssl/opensslconf.h>
  17. # if !defined(OPENSSL_SYS_UEFI)
  18. # include "crypto/bn_conf.h"
  19. # endif
  20. # include "crypto/bn.h"
  21. /*
  22. * These preprocessor symbols control various aspects of the bignum headers
  23. * and library code. They're not defined by any "normal" configuration, as
  24. * they are intended for development and testing purposes. NB: defining all
  25. * three can be useful for debugging application code as well as openssl
  26. * itself. BN_DEBUG - turn on various debugging alterations to the bignum
  27. * code BN_DEBUG_RAND - uses random poisoning of unused words to trip up
  28. * mismanagement of bignum internals. You must also define BN_DEBUG.
  29. */
  30. /* #define BN_DEBUG */
  31. /* #define BN_DEBUG_RAND */
  32. /*
  33. * This should limit the stack usage due to alloca to about 4K.
  34. * BN_SOFT_LIMIT is a soft limit equivalent to 2*OPENSSL_RSA_MAX_MODULUS_BITS.
  35. * Beyond that size bn_mul_mont is no longer used, and the constant time
  36. * assembler code is disabled, due to the blatant alloca and bn_mul_mont usage.
  37. * Note that bn_mul_mont does an alloca that is hidden away in assembly.
  38. * It is not recommended to do computations with numbers exceeding this limit,
  39. * since the result will be highly version dependent:
  40. * While the current OpenSSL version will use non-optimized, but safe code,
  41. * previous versions will use optimized code, that may crash due to unexpected
  42. * stack overflow, and future versions may very well turn this into a hard
  43. * limit.
  44. * Note however, that it is possible to override the size limit using
  45. * "./config -DBN_SOFT_LIMIT=<limit>" if necessary, and the O/S specific
  46. * stack limit is known and taken into consideration.
  47. */
  48. # ifndef BN_SOFT_LIMIT
  49. # define BN_SOFT_LIMIT (4096 / BN_BYTES)
  50. # endif
  51. # ifndef OPENSSL_SMALL_FOOTPRINT
  52. # define BN_MUL_COMBA
  53. # define BN_SQR_COMBA
  54. # define BN_RECURSION
  55. # endif
  56. /*
  57. * This next option uses the C libraries (2 word)/(1 word) function. If it is
  58. * not defined, I use my C version (which is slower). The reason for this
  59. * flag is that when the particular C compiler library routine is used, and
  60. * the library is linked with a different compiler, the library is missing.
  61. * This mostly happens when the library is built with gcc and then linked
  62. * using normal cc. This would be a common occurrence because gcc normally
  63. * produces code that is 2 times faster than system compilers for the big
  64. * number stuff. For machines with only one compiler (or shared libraries),
  65. * this should be on. Again this in only really a problem on machines using
  66. * "long long's", are 32bit, and are not using my assembler code.
  67. */
  68. # if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \
  69. defined(OPENSSL_SYS_WIN32) || defined(linux)
  70. # define BN_DIV2W
  71. # endif
  72. /*
  73. * 64-bit processor with LP64 ABI
  74. */
  75. # ifdef SIXTY_FOUR_BIT_LONG
  76. # define BN_ULLONG unsigned long long
  77. # define BN_BITS4 32
  78. # define BN_MASK2 (0xffffffffffffffffL)
  79. # define BN_MASK2l (0xffffffffL)
  80. # define BN_MASK2h (0xffffffff00000000L)
  81. # define BN_MASK2h1 (0xffffffff80000000L)
  82. # define BN_DEC_CONV (10000000000000000000UL)
  83. # define BN_DEC_NUM 19
  84. # define BN_DEC_FMT1 "%lu"
  85. # define BN_DEC_FMT2 "%019lu"
  86. # endif
  87. /*
  88. * 64-bit processor other than LP64 ABI
  89. */
  90. # ifdef SIXTY_FOUR_BIT
  91. # undef BN_LLONG
  92. # undef BN_ULLONG
  93. # define BN_BITS4 32
  94. # define BN_MASK2 (0xffffffffffffffffLL)
  95. # define BN_MASK2l (0xffffffffL)
  96. # define BN_MASK2h (0xffffffff00000000LL)
  97. # define BN_MASK2h1 (0xffffffff80000000LL)
  98. # define BN_DEC_CONV (10000000000000000000ULL)
  99. # define BN_DEC_NUM 19
  100. # define BN_DEC_FMT1 "%llu"
  101. # define BN_DEC_FMT2 "%019llu"
  102. # endif
  103. # ifdef THIRTY_TWO_BIT
  104. # ifdef BN_LLONG
  105. # if defined(_WIN32) && !defined(__GNUC__)
  106. # define BN_ULLONG unsigned __int64
  107. # else
  108. # define BN_ULLONG unsigned long long
  109. # endif
  110. # endif
  111. # define BN_BITS4 16
  112. # define BN_MASK2 (0xffffffffL)
  113. # define BN_MASK2l (0xffff)
  114. # define BN_MASK2h1 (0xffff8000L)
  115. # define BN_MASK2h (0xffff0000L)
  116. # define BN_DEC_CONV (1000000000L)
  117. # define BN_DEC_NUM 9
  118. # define BN_DEC_FMT1 "%u"
  119. # define BN_DEC_FMT2 "%09u"
  120. # endif
  121. /*-
  122. * Bignum consistency macros
  123. * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
  124. * bignum data after direct manipulations on the data. There is also an
  125. * "internal" macro, bn_check_top(), for verifying that there are no leading
  126. * zeroes. Unfortunately, some auditing is required due to the fact that
  127. * bn_fix_top() has become an overabused duct-tape because bignum data is
  128. * occasionally passed around in an inconsistent state. So the following
  129. * changes have been made to sort this out;
  130. * - bn_fix_top()s implementation has been moved to bn_correct_top()
  131. * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
  132. * bn_check_top() is as before.
  133. * - if BN_DEBUG *is* defined;
  134. * - bn_check_top() tries to pollute unused words even if the bignum 'top' is
  135. * consistent. (ed: only if BN_DEBUG_RAND is defined)
  136. * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
  137. * The idea is to have debug builds flag up inconsistent bignums when they
  138. * occur. If that occurs in a bn_fix_top(), we examine the code in question; if
  139. * the use of bn_fix_top() was appropriate (ie. it follows directly after code
  140. * that manipulates the bignum) it is converted to bn_correct_top(), and if it
  141. * was not appropriate, we convert it permanently to bn_check_top() and track
  142. * down the cause of the bug. Eventually, no internal code should be using the
  143. * bn_fix_top() macro. External applications and libraries should try this with
  144. * their own code too, both in terms of building against the openssl headers
  145. * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
  146. * defined. This not only improves external code, it provides more test
  147. * coverage for openssl's own code.
  148. */
  149. # ifdef BN_DEBUG
  150. /*
  151. * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with
  152. * bn_correct_top, in other words such vectors are permitted to have zeros
  153. * in most significant limbs. Such vectors are used internally to achieve
  154. * execution time invariance for critical operations with private keys.
  155. * It's BN_DEBUG-only flag, because user application is not supposed to
  156. * observe it anyway. Moreover, optimizing compiler would actually remove
  157. * all operations manipulating the bit in question in non-BN_DEBUG build.
  158. */
  159. # define BN_FLG_FIXED_TOP 0x10000
  160. # ifdef BN_DEBUG_RAND
  161. # define bn_pollute(a) \
  162. do { \
  163. const BIGNUM *_bnum1 = (a); \
  164. if (_bnum1->top < _bnum1->dmax) { \
  165. unsigned char _tmp_char; \
  166. /* We cast away const without the compiler knowing, any \
  167. * *genuinely* constant variables that aren't mutable \
  168. * wouldn't be constructed with top!=dmax. */ \
  169. BN_ULONG *_not_const; \
  170. memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \
  171. RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\
  172. memset(_not_const + _bnum1->top, _tmp_char, \
  173. sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \
  174. } \
  175. } while(0)
  176. # else
  177. # define bn_pollute(a)
  178. # endif
  179. # define bn_check_top(a) \
  180. do { \
  181. const BIGNUM *_bnum2 = (a); \
  182. if (_bnum2 != NULL) { \
  183. int _top = _bnum2->top; \
  184. (void)ossl_assert((_top == 0 && !_bnum2->neg) || \
  185. (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \
  186. || _bnum2->d[_top - 1] != 0))); \
  187. bn_pollute(_bnum2); \
  188. } \
  189. } while(0)
  190. # define bn_fix_top(a) bn_check_top(a)
  191. # define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
  192. # define bn_wcheck_size(bn, words) \
  193. do { \
  194. const BIGNUM *_bnum2 = (bn); \
  195. assert((words) <= (_bnum2)->dmax && \
  196. (words) >= (_bnum2)->top); \
  197. /* avoid unused variable warning with NDEBUG */ \
  198. (void)(_bnum2); \
  199. } while(0)
  200. # else /* !BN_DEBUG */
  201. # define BN_FLG_FIXED_TOP 0
  202. # define bn_pollute(a)
  203. # define bn_check_top(a)
  204. # define bn_fix_top(a) bn_correct_top(a)
  205. # define bn_check_size(bn, bits)
  206. # define bn_wcheck_size(bn, words)
  207. # endif
  208. BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
  209. BN_ULONG w);
  210. BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
  211. void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
  212. BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
  213. BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
  214. int num);
  215. BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
  216. int num);
  217. struct bignum_st {
  218. BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit
  219. * chunks. */
  220. int top; /* Index of last used d +1. */
  221. /* The next are internal book keeping for bn_expand. */
  222. int dmax; /* Size of the d array. */
  223. int neg; /* one if the number is negative */
  224. int flags;
  225. };
  226. /* Used for montgomery multiplication */
  227. struct bn_mont_ctx_st {
  228. int ri; /* number of bits in R */
  229. BIGNUM RR; /* used to convert to montgomery form,
  230. possibly zero-padded */
  231. BIGNUM N; /* The modulus */
  232. BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 (Ni is only
  233. * stored for bignum algorithm) */
  234. BN_ULONG n0[2]; /* least significant word(s) of Ni; (type
  235. * changed with 0.9.9, was "BN_ULONG n0;"
  236. * before) */
  237. int flags;
  238. };
  239. /*
  240. * Used for reciprocal division/mod functions It cannot be shared between
  241. * threads
  242. */
  243. struct bn_recp_ctx_st {
  244. BIGNUM N; /* the divisor */
  245. BIGNUM Nr; /* the reciprocal */
  246. int num_bits;
  247. int shift;
  248. int flags;
  249. };
  250. /* Used for slow "generation" functions. */
  251. struct bn_gencb_st {
  252. unsigned int ver; /* To handle binary (in)compatibility */
  253. void *arg; /* callback-specific data */
  254. union {
  255. /* if (ver==1) - handles old style callbacks */
  256. void (*cb_1) (int, int, void *);
  257. /* if (ver==2) - new callback style */
  258. int (*cb_2) (int, int, BN_GENCB *);
  259. } cb;
  260. };
  261. struct bn_blinding_st {
  262. BIGNUM *A;
  263. BIGNUM *Ai;
  264. BIGNUM *e;
  265. BIGNUM *mod; /* just a reference */
  266. CRYPTO_THREAD_ID tid;
  267. int counter;
  268. unsigned long flags;
  269. BN_MONT_CTX *m_ctx;
  270. int (*bn_mod_exp) (BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
  271. const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
  272. CRYPTO_RWLOCK *lock;
  273. };
  274. /*-
  275. * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
  276. *
  277. *
  278. * For window size 'w' (w >= 2) and a random 'b' bits exponent,
  279. * the number of multiplications is a constant plus on average
  280. *
  281. * 2^(w-1) + (b-w)/(w+1);
  282. *
  283. * here 2^(w-1) is for precomputing the table (we actually need
  284. * entries only for windows that have the lowest bit set), and
  285. * (b-w)/(w+1) is an approximation for the expected number of
  286. * w-bit windows, not counting the first one.
  287. *
  288. * Thus we should use
  289. *
  290. * w >= 6 if b > 671
  291. * w = 5 if 671 > b > 239
  292. * w = 4 if 239 > b > 79
  293. * w = 3 if 79 > b > 23
  294. * w <= 2 if 23 > b
  295. *
  296. * (with draws in between). Very small exponents are often selected
  297. * with low Hamming weight, so we use w = 1 for b <= 23.
  298. */
  299. # define BN_window_bits_for_exponent_size(b) \
  300. ((b) > 671 ? 6 : \
  301. (b) > 239 ? 5 : \
  302. (b) > 79 ? 4 : \
  303. (b) > 23 ? 3 : 1)
  304. /*
  305. * BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache
  306. * line width of the target processor is at least the following value.
  307. */
  308. # define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 )
  309. # define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
  310. /*
  311. * Window sizes optimized for fixed window size modular exponentiation
  312. * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
  313. * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
  314. * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
  315. * defined for cache line sizes of 32 and 64, cache line sizes where
  316. * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
  317. * used on processors that have a 128 byte or greater cache line size.
  318. */
  319. # if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
  320. # define BN_window_bits_for_ctime_exponent_size(b) \
  321. ((b) > 937 ? 6 : \
  322. (b) > 306 ? 5 : \
  323. (b) > 89 ? 4 : \
  324. (b) > 22 ? 3 : 1)
  325. # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
  326. # elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
  327. # define BN_window_bits_for_ctime_exponent_size(b) \
  328. ((b) > 306 ? 5 : \
  329. (b) > 89 ? 4 : \
  330. (b) > 22 ? 3 : 1)
  331. # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
  332. # endif
  333. /* Pentium pro 16,16,16,32,64 */
  334. /* Alpha 16,16,16,16.64 */
  335. # define BN_MULL_SIZE_NORMAL (16)/* 32 */
  336. # define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */
  337. # define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */
  338. # define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */
  339. # define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */
  340. /*
  341. * 2011-02-22 SMS. In various places, a size_t variable or a type cast to
  342. * size_t was used to perform integer-only operations on pointers. This
  343. * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t
  344. * is still only 32 bits. What's needed in these cases is an integer type
  345. * with the same size as a pointer, which size_t is not certain to be. The
  346. * only fix here is VMS-specific.
  347. */
  348. # if defined(OPENSSL_SYS_VMS)
  349. # if __INITIAL_POINTER_SIZE == 64
  350. # define PTR_SIZE_INT long long
  351. # else /* __INITIAL_POINTER_SIZE == 64 */
  352. # define PTR_SIZE_INT int
  353. # endif /* __INITIAL_POINTER_SIZE == 64 [else] */
  354. # elif !defined(PTR_SIZE_INT) /* defined(OPENSSL_SYS_VMS) */
  355. # define PTR_SIZE_INT size_t
  356. # endif /* defined(OPENSSL_SYS_VMS) [else] */
  357. # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
  358. /*
  359. * BN_UMULT_HIGH section.
  360. * If the compiler doesn't support 2*N integer type, then you have to
  361. * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some
  362. * shifts and additions which unavoidably results in severe performance
  363. * penalties. Of course provided that the hardware is capable of producing
  364. * 2*N result... That's when you normally start considering assembler
  365. * implementation. However! It should be pointed out that some CPUs (e.g.,
  366. * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating
  367. * the upper half of the product placing the result into a general
  368. * purpose register. Now *if* the compiler supports inline assembler,
  369. * then it's not impossible to implement the "bignum" routines (and have
  370. * the compiler optimize 'em) exhibiting "native" performance in C. That's
  371. * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do
  372. * support 2*64 integer type, which is also used here.
  373. */
  374. # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \
  375. (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
  376. # define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64)
  377. # define BN_UMULT_LOHI(low,high,a,b) ({ \
  378. __uint128_t ret=(__uint128_t)(a)*(b); \
  379. (high)=ret>>64; (low)=ret; })
  380. # elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
  381. # if defined(__DECC)
  382. # include <c_asm.h>
  383. # define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
  384. # elif defined(__GNUC__) && __GNUC__>=2
  385. # define BN_UMULT_HIGH(a,b) ({ \
  386. register BN_ULONG ret; \
  387. asm ("umulh %1,%2,%0" \
  388. : "=r"(ret) \
  389. : "r"(a), "r"(b)); \
  390. ret; })
  391. # endif /* compiler */
  392. # elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG)
  393. # if defined(__GNUC__) && __GNUC__>=2
  394. # define BN_UMULT_HIGH(a,b) ({ \
  395. register BN_ULONG ret; \
  396. asm ("mulhdu %0,%1,%2" \
  397. : "=r"(ret) \
  398. : "r"(a), "r"(b)); \
  399. ret; })
  400. # endif /* compiler */
  401. # elif (defined(__x86_64) || defined(__x86_64__)) && \
  402. (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
  403. # if defined(__GNUC__) && __GNUC__>=2
  404. # define BN_UMULT_HIGH(a,b) ({ \
  405. register BN_ULONG ret,discard; \
  406. asm ("mulq %3" \
  407. : "=a"(discard),"=d"(ret) \
  408. : "a"(a), "g"(b) \
  409. : "cc"); \
  410. ret; })
  411. # define BN_UMULT_LOHI(low,high,a,b) \
  412. asm ("mulq %3" \
  413. : "=a"(low),"=d"(high) \
  414. : "a"(a),"g"(b) \
  415. : "cc");
  416. # endif
  417. # elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
  418. # if defined(_MSC_VER) && _MSC_VER>=1400
  419. unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
  420. unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
  421. unsigned __int64 *h);
  422. # pragma intrinsic(__umulh,_umul128)
  423. # define BN_UMULT_HIGH(a,b) __umulh((a),(b))
  424. # define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high)))
  425. # endif
  426. # elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
  427. # if defined(__GNUC__) && __GNUC__>=2
  428. # define BN_UMULT_HIGH(a,b) ({ \
  429. register BN_ULONG ret; \
  430. asm ("dmultu %1,%2" \
  431. : "=h"(ret) \
  432. : "r"(a), "r"(b) : "l"); \
  433. ret; })
  434. # define BN_UMULT_LOHI(low,high,a,b) \
  435. asm ("dmultu %2,%3" \
  436. : "=l"(low),"=h"(high) \
  437. : "r"(a), "r"(b));
  438. # endif
  439. # elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
  440. # if defined(__GNUC__) && __GNUC__>=2
  441. # define BN_UMULT_HIGH(a,b) ({ \
  442. register BN_ULONG ret; \
  443. asm ("umulh %0,%1,%2" \
  444. : "=r"(ret) \
  445. : "r"(a), "r"(b)); \
  446. ret; })
  447. # endif
  448. # endif /* cpu */
  449. # endif /* OPENSSL_NO_ASM */
  450. # ifdef BN_DEBUG_RAND
  451. # define bn_clear_top2max(a) \
  452. { \
  453. int ind = (a)->dmax - (a)->top; \
  454. BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
  455. for (; ind != 0; ind--) \
  456. *(++ftl) = 0x0; \
  457. }
  458. # else
  459. # define bn_clear_top2max(a)
  460. # endif
  461. # ifdef BN_LLONG
  462. /*******************************************************************
  463. * Using the long long type, has to be twice as wide as BN_ULONG...
  464. */
  465. # define Lw(t) (((BN_ULONG)(t))&BN_MASK2)
  466. # define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
  467. # define mul_add(r,a,w,c) { \
  468. BN_ULLONG t; \
  469. t=(BN_ULLONG)w * (a) + (r) + (c); \
  470. (r)= Lw(t); \
  471. (c)= Hw(t); \
  472. }
  473. # define mul(r,a,w,c) { \
  474. BN_ULLONG t; \
  475. t=(BN_ULLONG)w * (a) + (c); \
  476. (r)= Lw(t); \
  477. (c)= Hw(t); \
  478. }
  479. # define sqr(r0,r1,a) { \
  480. BN_ULLONG t; \
  481. t=(BN_ULLONG)(a)*(a); \
  482. (r0)=Lw(t); \
  483. (r1)=Hw(t); \
  484. }
  485. # elif defined(BN_UMULT_LOHI)
  486. # define mul_add(r,a,w,c) { \
  487. BN_ULONG high,low,ret,tmp=(a); \
  488. ret = (r); \
  489. BN_UMULT_LOHI(low,high,w,tmp); \
  490. ret += (c); \
  491. (c) = (ret<(c))?1:0; \
  492. (c) += high; \
  493. ret += low; \
  494. (c) += (ret<low)?1:0; \
  495. (r) = ret; \
  496. }
  497. # define mul(r,a,w,c) { \
  498. BN_ULONG high,low,ret,ta=(a); \
  499. BN_UMULT_LOHI(low,high,w,ta); \
  500. ret = low + (c); \
  501. (c) = high; \
  502. (c) += (ret<low)?1:0; \
  503. (r) = ret; \
  504. }
  505. # define sqr(r0,r1,a) { \
  506. BN_ULONG tmp=(a); \
  507. BN_UMULT_LOHI(r0,r1,tmp,tmp); \
  508. }
  509. # elif defined(BN_UMULT_HIGH)
  510. # define mul_add(r,a,w,c) { \
  511. BN_ULONG high,low,ret,tmp=(a); \
  512. ret = (r); \
  513. high= BN_UMULT_HIGH(w,tmp); \
  514. ret += (c); \
  515. low = (w) * tmp; \
  516. (c) = (ret<(c))?1:0; \
  517. (c) += high; \
  518. ret += low; \
  519. (c) += (ret<low)?1:0; \
  520. (r) = ret; \
  521. }
  522. # define mul(r,a,w,c) { \
  523. BN_ULONG high,low,ret,ta=(a); \
  524. low = (w) * ta; \
  525. high= BN_UMULT_HIGH(w,ta); \
  526. ret = low + (c); \
  527. (c) = high; \
  528. (c) += (ret<low)?1:0; \
  529. (r) = ret; \
  530. }
  531. # define sqr(r0,r1,a) { \
  532. BN_ULONG tmp=(a); \
  533. (r0) = tmp * tmp; \
  534. (r1) = BN_UMULT_HIGH(tmp,tmp); \
  535. }
  536. # else
  537. /*************************************************************
  538. * No long long type
  539. */
  540. # define LBITS(a) ((a)&BN_MASK2l)
  541. # define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l)
  542. # define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2)
  543. # define LLBITS(a) ((a)&BN_MASKl)
  544. # define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl)
  545. # define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
  546. # define mul64(l,h,bl,bh) \
  547. { \
  548. BN_ULONG m,m1,lt,ht; \
  549. \
  550. lt=l; \
  551. ht=h; \
  552. m =(bh)*(lt); \
  553. lt=(bl)*(lt); \
  554. m1=(bl)*(ht); \
  555. ht =(bh)*(ht); \
  556. m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
  557. ht+=HBITS(m); \
  558. m1=L2HBITS(m); \
  559. lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
  560. (l)=lt; \
  561. (h)=ht; \
  562. }
  563. # define sqr64(lo,ho,in) \
  564. { \
  565. BN_ULONG l,h,m; \
  566. \
  567. h=(in); \
  568. l=LBITS(h); \
  569. h=HBITS(h); \
  570. m =(l)*(h); \
  571. l*=l; \
  572. h*=h; \
  573. h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
  574. m =(m&BN_MASK2l)<<(BN_BITS4+1); \
  575. l=(l+m)&BN_MASK2; if (l < m) h++; \
  576. (lo)=l; \
  577. (ho)=h; \
  578. }
  579. # define mul_add(r,a,bl,bh,c) { \
  580. BN_ULONG l,h; \
  581. \
  582. h= (a); \
  583. l=LBITS(h); \
  584. h=HBITS(h); \
  585. mul64(l,h,(bl),(bh)); \
  586. \
  587. /* non-multiply part */ \
  588. l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
  589. (c)=(r); \
  590. l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
  591. (c)=h&BN_MASK2; \
  592. (r)=l; \
  593. }
  594. # define mul(r,a,bl,bh,c) { \
  595. BN_ULONG l,h; \
  596. \
  597. h= (a); \
  598. l=LBITS(h); \
  599. h=HBITS(h); \
  600. mul64(l,h,(bl),(bh)); \
  601. \
  602. /* non-multiply part */ \
  603. l+=(c); if ((l&BN_MASK2) < (c)) h++; \
  604. (c)=h&BN_MASK2; \
  605. (r)=l&BN_MASK2; \
  606. }
  607. # endif /* !BN_LLONG */
  608. void BN_RECP_CTX_init(BN_RECP_CTX *recp);
  609. void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
  610. void bn_init(BIGNUM *a);
  611. void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
  612. void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
  613. void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
  614. void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
  615. void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
  616. void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
  617. int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
  618. int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
  619. void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
  620. int dna, int dnb, BN_ULONG *t);
  621. void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
  622. int n, int tna, int tnb, BN_ULONG *t);
  623. void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
  624. void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
  625. void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
  626. BN_ULONG *t);
  627. BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
  628. int cl, int dl);
  629. int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
  630. const BN_ULONG *np, const BN_ULONG *n0, int num);
  631. BIGNUM *int_bn_mod_inverse(BIGNUM *in,
  632. const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
  633. int *noinv);
  634. static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)
  635. {
  636. if (bits > (INT_MAX - BN_BITS2 + 1))
  637. return NULL;
  638. if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
  639. return a;
  640. return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
  641. }
  642. #endif