s_cb.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691
  1. /*
  2. * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. /*
  10. * callback functions used by s_client, s_server, and s_time,
  11. * as well as other common logic for those apps
  12. */
  13. #include <stdio.h>
  14. #include <stdlib.h>
  15. #include <string.h> /* for memcpy() and strcmp() */
  16. #include "apps.h"
  17. #include <openssl/core_names.h>
  18. #include <openssl/params.h>
  19. #include <openssl/err.h>
  20. #include <openssl/rand.h>
  21. #include <openssl/x509.h>
  22. #include <openssl/ssl.h>
  23. #include <openssl/bn.h>
  24. #ifndef OPENSSL_NO_DH
  25. # include <openssl/dh.h>
  26. #endif
  27. #include "s_apps.h"
  28. #define COOKIE_SECRET_LENGTH 16
  29. VERIFY_CB_ARGS verify_args = { -1, 0, X509_V_OK, 0 };
  30. #ifndef OPENSSL_NO_SOCK
  31. static unsigned char cookie_secret[COOKIE_SECRET_LENGTH];
  32. static int cookie_initialized = 0;
  33. #endif
  34. static BIO *bio_keylog = NULL;
  35. static const char *lookup(int val, const STRINT_PAIR* list, const char* def)
  36. {
  37. for ( ; list->name; ++list)
  38. if (list->retval == val)
  39. return list->name;
  40. return def;
  41. }
  42. int verify_callback(int ok, X509_STORE_CTX *ctx)
  43. {
  44. X509 *err_cert;
  45. int err, depth;
  46. err_cert = X509_STORE_CTX_get_current_cert(ctx);
  47. err = X509_STORE_CTX_get_error(ctx);
  48. depth = X509_STORE_CTX_get_error_depth(ctx);
  49. if (!verify_args.quiet || !ok) {
  50. BIO_printf(bio_err, "depth=%d ", depth);
  51. if (err_cert != NULL) {
  52. X509_NAME_print_ex(bio_err,
  53. X509_get_subject_name(err_cert),
  54. 0, get_nameopt());
  55. BIO_puts(bio_err, "\n");
  56. } else {
  57. BIO_puts(bio_err, "<no cert>\n");
  58. }
  59. }
  60. if (!ok) {
  61. BIO_printf(bio_err, "verify error:num=%d:%s\n", err,
  62. X509_verify_cert_error_string(err));
  63. if (verify_args.depth < 0 || verify_args.depth >= depth) {
  64. if (!verify_args.return_error)
  65. ok = 1;
  66. verify_args.error = err;
  67. } else {
  68. ok = 0;
  69. verify_args.error = X509_V_ERR_CERT_CHAIN_TOO_LONG;
  70. }
  71. }
  72. switch (err) {
  73. case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
  74. if (err_cert != NULL) {
  75. BIO_puts(bio_err, "issuer= ");
  76. X509_NAME_print_ex(bio_err, X509_get_issuer_name(err_cert),
  77. 0, get_nameopt());
  78. BIO_puts(bio_err, "\n");
  79. }
  80. break;
  81. case X509_V_ERR_CERT_NOT_YET_VALID:
  82. case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
  83. if (err_cert != NULL) {
  84. BIO_printf(bio_err, "notBefore=");
  85. ASN1_TIME_print(bio_err, X509_get0_notBefore(err_cert));
  86. BIO_printf(bio_err, "\n");
  87. }
  88. break;
  89. case X509_V_ERR_CERT_HAS_EXPIRED:
  90. case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
  91. if (err_cert != NULL) {
  92. BIO_printf(bio_err, "notAfter=");
  93. ASN1_TIME_print(bio_err, X509_get0_notAfter(err_cert));
  94. BIO_printf(bio_err, "\n");
  95. }
  96. break;
  97. case X509_V_ERR_NO_EXPLICIT_POLICY:
  98. if (!verify_args.quiet)
  99. policies_print(ctx);
  100. break;
  101. }
  102. if (err == X509_V_OK && ok == 2 && !verify_args.quiet)
  103. policies_print(ctx);
  104. if (ok && !verify_args.quiet)
  105. BIO_printf(bio_err, "verify return:%d\n", ok);
  106. return ok;
  107. }
  108. int set_cert_stuff(SSL_CTX *ctx, char *cert_file, char *key_file)
  109. {
  110. if (cert_file != NULL) {
  111. if (SSL_CTX_use_certificate_file(ctx, cert_file,
  112. SSL_FILETYPE_PEM) <= 0) {
  113. BIO_printf(bio_err, "unable to get certificate from '%s'\n",
  114. cert_file);
  115. ERR_print_errors(bio_err);
  116. return 0;
  117. }
  118. if (key_file == NULL)
  119. key_file = cert_file;
  120. if (SSL_CTX_use_PrivateKey_file(ctx, key_file, SSL_FILETYPE_PEM) <= 0) {
  121. BIO_printf(bio_err, "unable to get private key from '%s'\n",
  122. key_file);
  123. ERR_print_errors(bio_err);
  124. return 0;
  125. }
  126. /*
  127. * If we are using DSA, we can copy the parameters from the private
  128. * key
  129. */
  130. /*
  131. * Now we know that a key and cert have been set against the SSL
  132. * context
  133. */
  134. if (!SSL_CTX_check_private_key(ctx)) {
  135. BIO_printf(bio_err,
  136. "Private key does not match the certificate public key\n");
  137. return 0;
  138. }
  139. }
  140. return 1;
  141. }
  142. int set_cert_key_stuff(SSL_CTX *ctx, X509 *cert, EVP_PKEY *key,
  143. STACK_OF(X509) *chain, int build_chain)
  144. {
  145. int chflags = chain ? SSL_BUILD_CHAIN_FLAG_CHECK : 0;
  146. if (cert == NULL)
  147. return 1;
  148. if (SSL_CTX_use_certificate(ctx, cert) <= 0) {
  149. BIO_printf(bio_err, "error setting certificate\n");
  150. ERR_print_errors(bio_err);
  151. return 0;
  152. }
  153. if (SSL_CTX_use_PrivateKey(ctx, key) <= 0) {
  154. BIO_printf(bio_err, "error setting private key\n");
  155. ERR_print_errors(bio_err);
  156. return 0;
  157. }
  158. /*
  159. * Now we know that a key and cert have been set against the SSL context
  160. */
  161. if (!SSL_CTX_check_private_key(ctx)) {
  162. BIO_printf(bio_err,
  163. "Private key does not match the certificate public key\n");
  164. return 0;
  165. }
  166. if (chain && !SSL_CTX_set1_chain(ctx, chain)) {
  167. BIO_printf(bio_err, "error setting certificate chain\n");
  168. ERR_print_errors(bio_err);
  169. return 0;
  170. }
  171. if (build_chain && !SSL_CTX_build_cert_chain(ctx, chflags)) {
  172. BIO_printf(bio_err, "error building certificate chain\n");
  173. ERR_print_errors(bio_err);
  174. return 0;
  175. }
  176. return 1;
  177. }
  178. static STRINT_PAIR cert_type_list[] = {
  179. {"RSA sign", TLS_CT_RSA_SIGN},
  180. {"DSA sign", TLS_CT_DSS_SIGN},
  181. {"RSA fixed DH", TLS_CT_RSA_FIXED_DH},
  182. {"DSS fixed DH", TLS_CT_DSS_FIXED_DH},
  183. {"ECDSA sign", TLS_CT_ECDSA_SIGN},
  184. {"RSA fixed ECDH", TLS_CT_RSA_FIXED_ECDH},
  185. {"ECDSA fixed ECDH", TLS_CT_ECDSA_FIXED_ECDH},
  186. {"GOST01 Sign", TLS_CT_GOST01_SIGN},
  187. {"GOST12 Sign", TLS_CT_GOST12_IANA_SIGN},
  188. {NULL}
  189. };
  190. static void ssl_print_client_cert_types(BIO *bio, SSL *s)
  191. {
  192. const unsigned char *p;
  193. int i;
  194. int cert_type_num = SSL_get0_certificate_types(s, &p);
  195. if (!cert_type_num)
  196. return;
  197. BIO_puts(bio, "Client Certificate Types: ");
  198. for (i = 0; i < cert_type_num; i++) {
  199. unsigned char cert_type = p[i];
  200. const char *cname = lookup((int)cert_type, cert_type_list, NULL);
  201. if (i)
  202. BIO_puts(bio, ", ");
  203. if (cname != NULL)
  204. BIO_puts(bio, cname);
  205. else
  206. BIO_printf(bio, "UNKNOWN (%d),", cert_type);
  207. }
  208. BIO_puts(bio, "\n");
  209. }
  210. static const char *get_sigtype(int nid)
  211. {
  212. switch (nid) {
  213. case EVP_PKEY_RSA:
  214. return "RSA";
  215. case EVP_PKEY_RSA_PSS:
  216. return "RSA-PSS";
  217. case EVP_PKEY_DSA:
  218. return "DSA";
  219. case EVP_PKEY_EC:
  220. return "ECDSA";
  221. case NID_ED25519:
  222. return "ed25519";
  223. case NID_ED448:
  224. return "ed448";
  225. case NID_id_GostR3410_2001:
  226. return "gost2001";
  227. case NID_id_GostR3410_2012_256:
  228. return "gost2012_256";
  229. case NID_id_GostR3410_2012_512:
  230. return "gost2012_512";
  231. default:
  232. /* Try to output provider-registered sig alg name */
  233. return OBJ_nid2sn(nid);
  234. }
  235. }
  236. static int do_print_sigalgs(BIO *out, SSL *s, int shared)
  237. {
  238. int i, nsig, client;
  239. client = SSL_is_server(s) ? 0 : 1;
  240. if (shared)
  241. nsig = SSL_get_shared_sigalgs(s, 0, NULL, NULL, NULL, NULL, NULL);
  242. else
  243. nsig = SSL_get_sigalgs(s, -1, NULL, NULL, NULL, NULL, NULL);
  244. if (nsig == 0)
  245. return 1;
  246. if (shared)
  247. BIO_puts(out, "Shared ");
  248. if (client)
  249. BIO_puts(out, "Requested ");
  250. BIO_puts(out, "Signature Algorithms: ");
  251. for (i = 0; i < nsig; i++) {
  252. int hash_nid, sign_nid;
  253. unsigned char rhash, rsign;
  254. const char *sstr = NULL;
  255. if (shared)
  256. SSL_get_shared_sigalgs(s, i, &sign_nid, &hash_nid, NULL,
  257. &rsign, &rhash);
  258. else
  259. SSL_get_sigalgs(s, i, &sign_nid, &hash_nid, NULL, &rsign, &rhash);
  260. if (i)
  261. BIO_puts(out, ":");
  262. switch (rsign | rhash << 8) {
  263. case 0x0809:
  264. BIO_puts(out, "rsa_pss_pss_sha256");
  265. continue;
  266. case 0x080a:
  267. BIO_puts(out, "rsa_pss_pss_sha384");
  268. continue;
  269. case 0x080b:
  270. BIO_puts(out, "rsa_pss_pss_sha512");
  271. continue;
  272. case 0x081a:
  273. BIO_puts(out, "ecdsa_brainpoolP256r1_sha256");
  274. continue;
  275. case 0x081b:
  276. BIO_puts(out, "ecdsa_brainpoolP384r1_sha384");
  277. continue;
  278. case 0x081c:
  279. BIO_puts(out, "ecdsa_brainpoolP512r1_sha512");
  280. continue;
  281. }
  282. sstr = get_sigtype(sign_nid);
  283. if (sstr)
  284. BIO_printf(out, "%s", sstr);
  285. else
  286. BIO_printf(out, "0x%02X", (int)rsign);
  287. if (hash_nid != NID_undef)
  288. BIO_printf(out, "+%s", OBJ_nid2sn(hash_nid));
  289. else if (sstr == NULL)
  290. BIO_printf(out, "+0x%02X", (int)rhash);
  291. }
  292. BIO_puts(out, "\n");
  293. return 1;
  294. }
  295. int ssl_print_sigalgs(BIO *out, SSL *s)
  296. {
  297. const char *name;
  298. int nid;
  299. if (!SSL_is_server(s))
  300. ssl_print_client_cert_types(out, s);
  301. do_print_sigalgs(out, s, 0);
  302. do_print_sigalgs(out, s, 1);
  303. if (SSL_get_peer_signature_nid(s, &nid) && nid != NID_undef)
  304. BIO_printf(out, "Peer signing digest: %s\n", OBJ_nid2sn(nid));
  305. if (SSL_get0_peer_signature_name(s, &name))
  306. BIO_printf(out, "Peer signature type: %s\n", name);
  307. else if (SSL_get_peer_signature_type_nid(s, &nid))
  308. BIO_printf(out, "Peer signature type: %s\n", get_sigtype(nid));
  309. return 1;
  310. }
  311. #ifndef OPENSSL_NO_EC
  312. int ssl_print_point_formats(BIO *out, SSL *s)
  313. {
  314. int i, nformats;
  315. const char *pformats;
  316. nformats = SSL_get0_ec_point_formats(s, &pformats);
  317. if (nformats <= 0)
  318. return 1;
  319. BIO_puts(out, "Supported Elliptic Curve Point Formats: ");
  320. for (i = 0; i < nformats; i++, pformats++) {
  321. if (i)
  322. BIO_puts(out, ":");
  323. switch (*pformats) {
  324. case TLSEXT_ECPOINTFORMAT_uncompressed:
  325. BIO_puts(out, "uncompressed");
  326. break;
  327. case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime:
  328. BIO_puts(out, "ansiX962_compressed_prime");
  329. break;
  330. case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2:
  331. BIO_puts(out, "ansiX962_compressed_char2");
  332. break;
  333. default:
  334. BIO_printf(out, "unknown(%d)", (int)*pformats);
  335. break;
  336. }
  337. }
  338. BIO_puts(out, "\n");
  339. return 1;
  340. }
  341. int ssl_print_groups(BIO *out, SSL *s, int noshared)
  342. {
  343. int i, ngroups, *groups, nid;
  344. ngroups = SSL_get1_groups(s, NULL);
  345. if (ngroups <= 0)
  346. return 1;
  347. groups = app_malloc(ngroups * sizeof(int), "groups to print");
  348. SSL_get1_groups(s, groups);
  349. BIO_puts(out, "Supported groups: ");
  350. for (i = 0; i < ngroups; i++) {
  351. if (i)
  352. BIO_puts(out, ":");
  353. nid = groups[i];
  354. BIO_printf(out, "%s", SSL_group_to_name(s, nid));
  355. }
  356. OPENSSL_free(groups);
  357. if (noshared) {
  358. BIO_puts(out, "\n");
  359. return 1;
  360. }
  361. BIO_puts(out, "\nShared groups: ");
  362. ngroups = SSL_get_shared_group(s, -1);
  363. for (i = 0; i < ngroups; i++) {
  364. if (i)
  365. BIO_puts(out, ":");
  366. nid = SSL_get_shared_group(s, i);
  367. BIO_printf(out, "%s", SSL_group_to_name(s, nid));
  368. }
  369. if (ngroups == 0)
  370. BIO_puts(out, "NONE");
  371. BIO_puts(out, "\n");
  372. return 1;
  373. }
  374. #endif
  375. int ssl_print_tmp_key(BIO *out, SSL *s)
  376. {
  377. const char *keyname;
  378. EVP_PKEY *key;
  379. if (!SSL_get_peer_tmp_key(s, &key)) {
  380. if (SSL_version(s) == TLS1_3_VERSION)
  381. BIO_printf(out, "Negotiated TLS1.3 group: %s\n",
  382. SSL_group_to_name(s, SSL_get_negotiated_group(s)));
  383. return 1;
  384. }
  385. BIO_puts(out, "Peer Temp Key: ");
  386. switch (EVP_PKEY_get_id(key)) {
  387. case EVP_PKEY_RSA:
  388. BIO_printf(out, "RSA, %d bits\n", EVP_PKEY_get_bits(key));
  389. break;
  390. case EVP_PKEY_KEYMGMT:
  391. if ((keyname = EVP_PKEY_get0_type_name(key)) == NULL)
  392. keyname = "?";
  393. BIO_printf(out, "%s\n", keyname);
  394. break;
  395. case EVP_PKEY_DH:
  396. BIO_printf(out, "DH, %d bits\n", EVP_PKEY_get_bits(key));
  397. break;
  398. #ifndef OPENSSL_NO_EC
  399. case EVP_PKEY_EC:
  400. {
  401. char name[80];
  402. size_t name_len;
  403. if (!EVP_PKEY_get_utf8_string_param(key, OSSL_PKEY_PARAM_GROUP_NAME,
  404. name, sizeof(name), &name_len))
  405. strcpy(name, "?");
  406. BIO_printf(out, "ECDH, %s, %d bits\n", name, EVP_PKEY_get_bits(key));
  407. }
  408. break;
  409. #endif
  410. default:
  411. BIO_printf(out, "%s, %d bits\n", OBJ_nid2sn(EVP_PKEY_get_id(key)),
  412. EVP_PKEY_get_bits(key));
  413. }
  414. EVP_PKEY_free(key);
  415. return 1;
  416. }
  417. long bio_dump_callback(BIO *bio, int cmd, const char *argp, size_t len,
  418. int argi, long argl, int ret, size_t *processed)
  419. {
  420. BIO *out;
  421. BIO_MMSG_CB_ARGS *mmsgargs;
  422. size_t i;
  423. out = (BIO *)BIO_get_callback_arg(bio);
  424. if (out == NULL)
  425. return ret;
  426. switch (cmd) {
  427. case (BIO_CB_READ | BIO_CB_RETURN):
  428. if (ret > 0 && processed != NULL) {
  429. BIO_printf(out, "read from %p [%p] (%zu bytes => %zu (0x%zX))\n",
  430. (void *)bio, (void *)argp, len, *processed, *processed);
  431. BIO_dump(out, argp, (int)*processed);
  432. } else {
  433. BIO_printf(out, "read from %p [%p] (%zu bytes => %d)\n",
  434. (void *)bio, (void *)argp, len, ret);
  435. }
  436. break;
  437. case (BIO_CB_WRITE | BIO_CB_RETURN):
  438. if (ret > 0 && processed != NULL) {
  439. BIO_printf(out, "write to %p [%p] (%zu bytes => %zu (0x%zX))\n",
  440. (void *)bio, (void *)argp, len, *processed, *processed);
  441. BIO_dump(out, argp, (int)*processed);
  442. } else {
  443. BIO_printf(out, "write to %p [%p] (%zu bytes => %d)\n",
  444. (void *)bio, (void *)argp, len, ret);
  445. }
  446. break;
  447. case (BIO_CB_RECVMMSG | BIO_CB_RETURN):
  448. mmsgargs = (BIO_MMSG_CB_ARGS *)argp;
  449. if (ret > 0) {
  450. for (i = 0; i < *(mmsgargs->msgs_processed); i++) {
  451. BIO_MSG *msg = (BIO_MSG *)((char *)mmsgargs->msg
  452. + (i * mmsgargs->stride));
  453. BIO_printf(out, "read from %p [%p] (%zu bytes => %zu (0x%zX))\n",
  454. (void *)bio, (void *)msg->data, msg->data_len,
  455. msg->data_len, msg->data_len);
  456. BIO_dump(out, msg->data, msg->data_len);
  457. }
  458. } else if (mmsgargs->num_msg > 0) {
  459. BIO_MSG *msg = mmsgargs->msg;
  460. BIO_printf(out, "read from %p [%p] (%zu bytes => %d)\n",
  461. (void *)bio, (void *)msg->data, msg->data_len, ret);
  462. }
  463. break;
  464. case (BIO_CB_SENDMMSG | BIO_CB_RETURN):
  465. mmsgargs = (BIO_MMSG_CB_ARGS *)argp;
  466. if (ret > 0) {
  467. for (i = 0; i < *(mmsgargs->msgs_processed); i++) {
  468. BIO_MSG *msg = (BIO_MSG *)((char *)mmsgargs->msg
  469. + (i * mmsgargs->stride));
  470. BIO_printf(out, "write to %p [%p] (%zu bytes => %zu (0x%zX))\n",
  471. (void *)bio, (void *)msg->data, msg->data_len,
  472. msg->data_len, msg->data_len);
  473. BIO_dump(out, msg->data, msg->data_len);
  474. }
  475. } else if (mmsgargs->num_msg > 0) {
  476. BIO_MSG *msg = mmsgargs->msg;
  477. BIO_printf(out, "write to %p [%p] (%zu bytes => %d)\n",
  478. (void *)bio, (void *)msg->data, msg->data_len, ret);
  479. }
  480. break;
  481. default:
  482. /* do nothing */
  483. break;
  484. }
  485. return ret;
  486. }
  487. void apps_ssl_info_callback(const SSL *s, int where, int ret)
  488. {
  489. const char *str;
  490. int w;
  491. w = where & ~SSL_ST_MASK;
  492. if (w & SSL_ST_CONNECT)
  493. str = "SSL_connect";
  494. else if (w & SSL_ST_ACCEPT)
  495. str = "SSL_accept";
  496. else
  497. str = "undefined";
  498. if (where & SSL_CB_LOOP) {
  499. BIO_printf(bio_err, "%s:%s\n", str, SSL_state_string_long(s));
  500. } else if (where & SSL_CB_ALERT) {
  501. str = (where & SSL_CB_READ) ? "read" : "write";
  502. BIO_printf(bio_err, "SSL3 alert %s:%s:%s\n",
  503. str,
  504. SSL_alert_type_string_long(ret),
  505. SSL_alert_desc_string_long(ret));
  506. } else if (where & SSL_CB_EXIT) {
  507. if (ret == 0)
  508. BIO_printf(bio_err, "%s:failed in %s\n",
  509. str, SSL_state_string_long(s));
  510. else if (ret < 0)
  511. BIO_printf(bio_err, "%s:error in %s\n",
  512. str, SSL_state_string_long(s));
  513. }
  514. }
  515. static STRINT_PAIR ssl_versions[] = {
  516. {"SSL 3.0", SSL3_VERSION},
  517. {"TLS 1.0", TLS1_VERSION},
  518. {"TLS 1.1", TLS1_1_VERSION},
  519. {"TLS 1.2", TLS1_2_VERSION},
  520. {"TLS 1.3", TLS1_3_VERSION},
  521. {"DTLS 1.0", DTLS1_VERSION},
  522. {"DTLS 1.0 (bad)", DTLS1_BAD_VER},
  523. {NULL}
  524. };
  525. static STRINT_PAIR alert_types[] = {
  526. {" close_notify", 0},
  527. {" end_of_early_data", 1},
  528. {" unexpected_message", 10},
  529. {" bad_record_mac", 20},
  530. {" decryption_failed", 21},
  531. {" record_overflow", 22},
  532. {" decompression_failure", 30},
  533. {" handshake_failure", 40},
  534. {" bad_certificate", 42},
  535. {" unsupported_certificate", 43},
  536. {" certificate_revoked", 44},
  537. {" certificate_expired", 45},
  538. {" certificate_unknown", 46},
  539. {" illegal_parameter", 47},
  540. {" unknown_ca", 48},
  541. {" access_denied", 49},
  542. {" decode_error", 50},
  543. {" decrypt_error", 51},
  544. {" export_restriction", 60},
  545. {" protocol_version", 70},
  546. {" insufficient_security", 71},
  547. {" internal_error", 80},
  548. {" inappropriate_fallback", 86},
  549. {" user_canceled", 90},
  550. {" no_renegotiation", 100},
  551. {" missing_extension", 109},
  552. {" unsupported_extension", 110},
  553. {" certificate_unobtainable", 111},
  554. {" unrecognized_name", 112},
  555. {" bad_certificate_status_response", 113},
  556. {" bad_certificate_hash_value", 114},
  557. {" unknown_psk_identity", 115},
  558. {" certificate_required", 116},
  559. {NULL}
  560. };
  561. static STRINT_PAIR handshakes[] = {
  562. {", HelloRequest", SSL3_MT_HELLO_REQUEST},
  563. {", ClientHello", SSL3_MT_CLIENT_HELLO},
  564. {", ServerHello", SSL3_MT_SERVER_HELLO},
  565. {", HelloVerifyRequest", DTLS1_MT_HELLO_VERIFY_REQUEST},
  566. {", NewSessionTicket", SSL3_MT_NEWSESSION_TICKET},
  567. {", EndOfEarlyData", SSL3_MT_END_OF_EARLY_DATA},
  568. {", EncryptedExtensions", SSL3_MT_ENCRYPTED_EXTENSIONS},
  569. {", Certificate", SSL3_MT_CERTIFICATE},
  570. {", ServerKeyExchange", SSL3_MT_SERVER_KEY_EXCHANGE},
  571. {", CertificateRequest", SSL3_MT_CERTIFICATE_REQUEST},
  572. {", ServerHelloDone", SSL3_MT_SERVER_DONE},
  573. {", CertificateVerify", SSL3_MT_CERTIFICATE_VERIFY},
  574. {", ClientKeyExchange", SSL3_MT_CLIENT_KEY_EXCHANGE},
  575. {", Finished", SSL3_MT_FINISHED},
  576. {", CertificateUrl", SSL3_MT_CERTIFICATE_URL},
  577. {", CertificateStatus", SSL3_MT_CERTIFICATE_STATUS},
  578. {", SupplementalData", SSL3_MT_SUPPLEMENTAL_DATA},
  579. {", KeyUpdate", SSL3_MT_KEY_UPDATE},
  580. {", CompressedCertificate", SSL3_MT_COMPRESSED_CERTIFICATE},
  581. #ifndef OPENSSL_NO_NEXTPROTONEG
  582. {", NextProto", SSL3_MT_NEXT_PROTO},
  583. #endif
  584. {", MessageHash", SSL3_MT_MESSAGE_HASH},
  585. {NULL}
  586. };
  587. void msg_cb(int write_p, int version, int content_type, const void *buf,
  588. size_t len, SSL *ssl, void *arg)
  589. {
  590. BIO *bio = arg;
  591. const char *str_write_p = write_p ? ">>>" : "<<<";
  592. char tmpbuf[128];
  593. const char *str_version, *str_content_type = "", *str_details1 = "", *str_details2 = "";
  594. const unsigned char* bp = buf;
  595. if (version == SSL3_VERSION ||
  596. version == TLS1_VERSION ||
  597. version == TLS1_1_VERSION ||
  598. version == TLS1_2_VERSION ||
  599. version == TLS1_3_VERSION ||
  600. version == DTLS1_VERSION || version == DTLS1_BAD_VER) {
  601. str_version = lookup(version, ssl_versions, "???");
  602. switch (content_type) {
  603. case SSL3_RT_CHANGE_CIPHER_SPEC:
  604. /* type 20 */
  605. str_content_type = ", ChangeCipherSpec";
  606. break;
  607. case SSL3_RT_ALERT:
  608. /* type 21 */
  609. str_content_type = ", Alert";
  610. str_details1 = ", ???";
  611. if (len == 2) {
  612. switch (bp[0]) {
  613. case 1:
  614. str_details1 = ", warning";
  615. break;
  616. case 2:
  617. str_details1 = ", fatal";
  618. break;
  619. }
  620. str_details2 = lookup((int)bp[1], alert_types, " ???");
  621. }
  622. break;
  623. case SSL3_RT_HANDSHAKE:
  624. /* type 22 */
  625. str_content_type = ", Handshake";
  626. str_details1 = "???";
  627. if (len > 0)
  628. str_details1 = lookup((int)bp[0], handshakes, "???");
  629. break;
  630. case SSL3_RT_APPLICATION_DATA:
  631. /* type 23 */
  632. str_content_type = ", ApplicationData";
  633. break;
  634. case SSL3_RT_HEADER:
  635. /* type 256 */
  636. str_content_type = ", RecordHeader";
  637. break;
  638. case SSL3_RT_INNER_CONTENT_TYPE:
  639. /* type 257 */
  640. str_content_type = ", InnerContent";
  641. break;
  642. default:
  643. BIO_snprintf(tmpbuf, sizeof(tmpbuf)-1, ", Unknown (content_type=%d)", content_type);
  644. str_content_type = tmpbuf;
  645. }
  646. } else {
  647. BIO_snprintf(tmpbuf, sizeof(tmpbuf)-1, "Not TLS data or unknown version (version=%d, content_type=%d)", version, content_type);
  648. str_version = tmpbuf;
  649. }
  650. BIO_printf(bio, "%s %s%s [length %04lx]%s%s\n", str_write_p, str_version,
  651. str_content_type, (unsigned long)len, str_details1,
  652. str_details2);
  653. if (len > 0) {
  654. size_t num, i;
  655. BIO_printf(bio, " ");
  656. num = len;
  657. for (i = 0; i < num; i++) {
  658. if (i % 16 == 0 && i > 0)
  659. BIO_printf(bio, "\n ");
  660. BIO_printf(bio, " %02x", ((const unsigned char *)buf)[i]);
  661. }
  662. if (i < len)
  663. BIO_printf(bio, " ...");
  664. BIO_printf(bio, "\n");
  665. }
  666. (void)BIO_flush(bio);
  667. }
  668. static const STRINT_PAIR tlsext_types[] = {
  669. {"server name", TLSEXT_TYPE_server_name},
  670. {"max fragment length", TLSEXT_TYPE_max_fragment_length},
  671. {"client certificate URL", TLSEXT_TYPE_client_certificate_url},
  672. {"trusted CA keys", TLSEXT_TYPE_trusted_ca_keys},
  673. {"truncated HMAC", TLSEXT_TYPE_truncated_hmac},
  674. {"status request", TLSEXT_TYPE_status_request},
  675. {"user mapping", TLSEXT_TYPE_user_mapping},
  676. {"client authz", TLSEXT_TYPE_client_authz},
  677. {"server authz", TLSEXT_TYPE_server_authz},
  678. {"cert type", TLSEXT_TYPE_cert_type},
  679. {"supported_groups", TLSEXT_TYPE_supported_groups},
  680. {"EC point formats", TLSEXT_TYPE_ec_point_formats},
  681. {"SRP", TLSEXT_TYPE_srp},
  682. {"signature algorithms", TLSEXT_TYPE_signature_algorithms},
  683. {"use SRTP", TLSEXT_TYPE_use_srtp},
  684. {"session ticket", TLSEXT_TYPE_session_ticket},
  685. {"renegotiation info", TLSEXT_TYPE_renegotiate},
  686. {"signed certificate timestamps", TLSEXT_TYPE_signed_certificate_timestamp},
  687. {"client cert type", TLSEXT_TYPE_client_cert_type},
  688. {"server cert type", TLSEXT_TYPE_server_cert_type},
  689. {"TLS padding", TLSEXT_TYPE_padding},
  690. #ifdef TLSEXT_TYPE_next_proto_neg
  691. {"next protocol", TLSEXT_TYPE_next_proto_neg},
  692. #endif
  693. #ifdef TLSEXT_TYPE_encrypt_then_mac
  694. {"encrypt-then-mac", TLSEXT_TYPE_encrypt_then_mac},
  695. #endif
  696. #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
  697. {"application layer protocol negotiation",
  698. TLSEXT_TYPE_application_layer_protocol_negotiation},
  699. #endif
  700. #ifdef TLSEXT_TYPE_extended_master_secret
  701. {"extended master secret", TLSEXT_TYPE_extended_master_secret},
  702. #endif
  703. {"compress certificate", TLSEXT_TYPE_compress_certificate},
  704. {"key share", TLSEXT_TYPE_key_share},
  705. {"supported versions", TLSEXT_TYPE_supported_versions},
  706. {"psk", TLSEXT_TYPE_psk},
  707. {"psk kex modes", TLSEXT_TYPE_psk_kex_modes},
  708. {"certificate authorities", TLSEXT_TYPE_certificate_authorities},
  709. {"post handshake auth", TLSEXT_TYPE_post_handshake_auth},
  710. {"early_data", TLSEXT_TYPE_early_data},
  711. {NULL}
  712. };
  713. /* from rfc8446 4.2.3. + gost (https://tools.ietf.org/id/draft-smyshlyaev-tls12-gost-suites-04.html) */
  714. static STRINT_PAIR signature_tls13_scheme_list[] = {
  715. {"rsa_pkcs1_sha1", 0x0201 /* TLSEXT_SIGALG_rsa_pkcs1_sha1 */},
  716. {"ecdsa_sha1", 0x0203 /* TLSEXT_SIGALG_ecdsa_sha1 */},
  717. /* {"rsa_pkcs1_sha224", 0x0301 TLSEXT_SIGALG_rsa_pkcs1_sha224}, not in rfc8446 */
  718. /* {"ecdsa_sha224", 0x0303 TLSEXT_SIGALG_ecdsa_sha224} not in rfc8446 */
  719. {"rsa_pkcs1_sha256", 0x0401 /* TLSEXT_SIGALG_rsa_pkcs1_sha256 */},
  720. {"ecdsa_secp256r1_sha256", 0x0403 /* TLSEXT_SIGALG_ecdsa_secp256r1_sha256 */},
  721. {"rsa_pkcs1_sha384", 0x0501 /* TLSEXT_SIGALG_rsa_pkcs1_sha384 */},
  722. {"ecdsa_secp384r1_sha384", 0x0503 /* TLSEXT_SIGALG_ecdsa_secp384r1_sha384 */},
  723. {"rsa_pkcs1_sha512", 0x0601 /* TLSEXT_SIGALG_rsa_pkcs1_sha512 */},
  724. {"ecdsa_secp521r1_sha512", 0x0603 /* TLSEXT_SIGALG_ecdsa_secp521r1_sha512 */},
  725. {"rsa_pss_rsae_sha256", 0x0804 /* TLSEXT_SIGALG_rsa_pss_rsae_sha256 */},
  726. {"rsa_pss_rsae_sha384", 0x0805 /* TLSEXT_SIGALG_rsa_pss_rsae_sha384 */},
  727. {"rsa_pss_rsae_sha512", 0x0806 /* TLSEXT_SIGALG_rsa_pss_rsae_sha512 */},
  728. {"ed25519", 0x0807 /* TLSEXT_SIGALG_ed25519 */},
  729. {"ed448", 0x0808 /* TLSEXT_SIGALG_ed448 */},
  730. {"rsa_pss_pss_sha256", 0x0809 /* TLSEXT_SIGALG_rsa_pss_pss_sha256 */},
  731. {"rsa_pss_pss_sha384", 0x080a /* TLSEXT_SIGALG_rsa_pss_pss_sha384 */},
  732. {"rsa_pss_pss_sha512", 0x080b /* TLSEXT_SIGALG_rsa_pss_pss_sha512 */},
  733. {"gostr34102001", 0xeded /* TLSEXT_SIGALG_gostr34102001_gostr3411 */},
  734. {"gostr34102012_256", 0xeeee /* TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256 */},
  735. {"gostr34102012_512", 0xefef /* TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512 */},
  736. {NULL}
  737. };
  738. /* from rfc5246 7.4.1.4.1. */
  739. static STRINT_PAIR signature_tls12_alg_list[] = {
  740. {"anonymous", TLSEXT_signature_anonymous /* 0 */},
  741. {"RSA", TLSEXT_signature_rsa /* 1 */},
  742. {"DSA", TLSEXT_signature_dsa /* 2 */},
  743. {"ECDSA", TLSEXT_signature_ecdsa /* 3 */},
  744. {NULL}
  745. };
  746. /* from rfc5246 7.4.1.4.1. */
  747. static STRINT_PAIR signature_tls12_hash_list[] = {
  748. {"none", TLSEXT_hash_none /* 0 */},
  749. {"MD5", TLSEXT_hash_md5 /* 1 */},
  750. {"SHA1", TLSEXT_hash_sha1 /* 2 */},
  751. {"SHA224", TLSEXT_hash_sha224 /* 3 */},
  752. {"SHA256", TLSEXT_hash_sha256 /* 4 */},
  753. {"SHA384", TLSEXT_hash_sha384 /* 5 */},
  754. {"SHA512", TLSEXT_hash_sha512 /* 6 */},
  755. {NULL}
  756. };
  757. void tlsext_cb(SSL *s, int client_server, int type,
  758. const unsigned char *data, int len, void *arg)
  759. {
  760. BIO *bio = arg;
  761. const char *extname = lookup(type, tlsext_types, "unknown");
  762. BIO_printf(bio, "TLS %s extension \"%s\" (id=%d), len=%d\n",
  763. client_server ? "server" : "client", extname, type, len);
  764. BIO_dump(bio, (const char *)data, len);
  765. (void)BIO_flush(bio);
  766. }
  767. #ifndef OPENSSL_NO_SOCK
  768. int generate_stateless_cookie_callback(SSL *ssl, unsigned char *cookie,
  769. size_t *cookie_len)
  770. {
  771. unsigned char *buffer = NULL;
  772. size_t length = 0;
  773. unsigned short port;
  774. BIO_ADDR *lpeer = NULL, *peer = NULL;
  775. int res = 0;
  776. /* Initialize a random secret */
  777. if (!cookie_initialized) {
  778. if (RAND_bytes(cookie_secret, COOKIE_SECRET_LENGTH) <= 0) {
  779. BIO_printf(bio_err, "error setting random cookie secret\n");
  780. return 0;
  781. }
  782. cookie_initialized = 1;
  783. }
  784. if (SSL_is_dtls(ssl)) {
  785. lpeer = peer = BIO_ADDR_new();
  786. if (peer == NULL) {
  787. BIO_printf(bio_err, "memory full\n");
  788. return 0;
  789. }
  790. /* Read peer information */
  791. (void)BIO_dgram_get_peer(SSL_get_rbio(ssl), peer);
  792. } else {
  793. peer = ourpeer;
  794. }
  795. /* Create buffer with peer's address and port */
  796. if (!BIO_ADDR_rawaddress(peer, NULL, &length)) {
  797. BIO_printf(bio_err, "Failed getting peer address\n");
  798. BIO_ADDR_free(lpeer);
  799. return 0;
  800. }
  801. OPENSSL_assert(length != 0);
  802. port = BIO_ADDR_rawport(peer);
  803. length += sizeof(port);
  804. buffer = app_malloc(length, "cookie generate buffer");
  805. memcpy(buffer, &port, sizeof(port));
  806. BIO_ADDR_rawaddress(peer, buffer + sizeof(port), NULL);
  807. if (EVP_Q_mac(NULL, "HMAC", NULL, "SHA1", NULL,
  808. cookie_secret, COOKIE_SECRET_LENGTH, buffer, length,
  809. cookie, DTLS1_COOKIE_LENGTH, cookie_len) == NULL) {
  810. BIO_printf(bio_err,
  811. "Error calculating HMAC-SHA1 of buffer with secret\n");
  812. goto end;
  813. }
  814. res = 1;
  815. end:
  816. OPENSSL_free(buffer);
  817. BIO_ADDR_free(lpeer);
  818. return res;
  819. }
  820. int verify_stateless_cookie_callback(SSL *ssl, const unsigned char *cookie,
  821. size_t cookie_len)
  822. {
  823. unsigned char result[EVP_MAX_MD_SIZE];
  824. size_t resultlength;
  825. /* Note: we check cookie_initialized because if it's not,
  826. * it cannot be valid */
  827. if (cookie_initialized
  828. && generate_stateless_cookie_callback(ssl, result, &resultlength)
  829. && cookie_len == resultlength
  830. && memcmp(result, cookie, resultlength) == 0)
  831. return 1;
  832. return 0;
  833. }
  834. int generate_cookie_callback(SSL *ssl, unsigned char *cookie,
  835. unsigned int *cookie_len)
  836. {
  837. size_t temp = 0;
  838. int res = generate_stateless_cookie_callback(ssl, cookie, &temp);
  839. if (res != 0)
  840. *cookie_len = (unsigned int)temp;
  841. return res;
  842. }
  843. int verify_cookie_callback(SSL *ssl, const unsigned char *cookie,
  844. unsigned int cookie_len)
  845. {
  846. return verify_stateless_cookie_callback(ssl, cookie, cookie_len);
  847. }
  848. #endif
  849. /*
  850. * Example of extended certificate handling. Where the standard support of
  851. * one certificate per algorithm is not sufficient an application can decide
  852. * which certificate(s) to use at runtime based on whatever criteria it deems
  853. * appropriate.
  854. */
  855. /* Linked list of certificates, keys and chains */
  856. struct ssl_excert_st {
  857. int certform;
  858. const char *certfile;
  859. int keyform;
  860. const char *keyfile;
  861. const char *chainfile;
  862. X509 *cert;
  863. EVP_PKEY *key;
  864. STACK_OF(X509) *chain;
  865. int build_chain;
  866. struct ssl_excert_st *next, *prev;
  867. };
  868. static STRINT_PAIR chain_flags[] = {
  869. {"Overall Validity", CERT_PKEY_VALID},
  870. {"Sign with EE key", CERT_PKEY_SIGN},
  871. {"EE signature", CERT_PKEY_EE_SIGNATURE},
  872. {"CA signature", CERT_PKEY_CA_SIGNATURE},
  873. {"EE key parameters", CERT_PKEY_EE_PARAM},
  874. {"CA key parameters", CERT_PKEY_CA_PARAM},
  875. {"Explicitly sign with EE key", CERT_PKEY_EXPLICIT_SIGN},
  876. {"Issuer Name", CERT_PKEY_ISSUER_NAME},
  877. {"Certificate Type", CERT_PKEY_CERT_TYPE},
  878. {NULL}
  879. };
  880. static void print_chain_flags(SSL *s, int flags)
  881. {
  882. STRINT_PAIR *pp;
  883. for (pp = chain_flags; pp->name; ++pp)
  884. BIO_printf(bio_err, "\t%s: %s\n",
  885. pp->name,
  886. (flags & pp->retval) ? "OK" : "NOT OK");
  887. BIO_printf(bio_err, "\tSuite B: ");
  888. if (SSL_set_cert_flags(s, 0) & SSL_CERT_FLAG_SUITEB_128_LOS)
  889. BIO_puts(bio_err, flags & CERT_PKEY_SUITEB ? "OK\n" : "NOT OK\n");
  890. else
  891. BIO_printf(bio_err, "not tested\n");
  892. }
  893. /*
  894. * Very basic selection callback: just use any certificate chain reported as
  895. * valid. More sophisticated could prioritise according to local policy.
  896. */
  897. static int set_cert_cb(SSL *ssl, void *arg)
  898. {
  899. int i, rv;
  900. SSL_EXCERT *exc = arg;
  901. #ifdef CERT_CB_TEST_RETRY
  902. static int retry_cnt;
  903. if (retry_cnt < 5) {
  904. retry_cnt++;
  905. BIO_printf(bio_err,
  906. "Certificate callback retry test: count %d\n",
  907. retry_cnt);
  908. return -1;
  909. }
  910. #endif
  911. SSL_certs_clear(ssl);
  912. if (exc == NULL)
  913. return 1;
  914. /*
  915. * Go to end of list and traverse backwards since we prepend newer
  916. * entries this retains the original order.
  917. */
  918. while (exc->next != NULL)
  919. exc = exc->next;
  920. i = 0;
  921. while (exc != NULL) {
  922. i++;
  923. rv = SSL_check_chain(ssl, exc->cert, exc->key, exc->chain);
  924. BIO_printf(bio_err, "Checking cert chain %d:\nSubject: ", i);
  925. X509_NAME_print_ex(bio_err, X509_get_subject_name(exc->cert), 0,
  926. get_nameopt());
  927. BIO_puts(bio_err, "\n");
  928. print_chain_flags(ssl, rv);
  929. if (rv & CERT_PKEY_VALID) {
  930. if (!SSL_use_certificate(ssl, exc->cert)
  931. || !SSL_use_PrivateKey(ssl, exc->key)) {
  932. return 0;
  933. }
  934. /*
  935. * NB: we wouldn't normally do this as it is not efficient
  936. * building chains on each connection better to cache the chain
  937. * in advance.
  938. */
  939. if (exc->build_chain) {
  940. if (!SSL_build_cert_chain(ssl, 0))
  941. return 0;
  942. } else if (exc->chain != NULL) {
  943. if (!SSL_set1_chain(ssl, exc->chain))
  944. return 0;
  945. }
  946. }
  947. exc = exc->prev;
  948. }
  949. return 1;
  950. }
  951. void ssl_ctx_set_excert(SSL_CTX *ctx, SSL_EXCERT *exc)
  952. {
  953. SSL_CTX_set_cert_cb(ctx, set_cert_cb, exc);
  954. }
  955. static int ssl_excert_prepend(SSL_EXCERT **pexc)
  956. {
  957. SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert");
  958. memset(exc, 0, sizeof(*exc));
  959. exc->next = *pexc;
  960. *pexc = exc;
  961. if (exc->next) {
  962. exc->certform = exc->next->certform;
  963. exc->keyform = exc->next->keyform;
  964. exc->next->prev = exc;
  965. } else {
  966. exc->certform = FORMAT_PEM;
  967. exc->keyform = FORMAT_PEM;
  968. }
  969. return 1;
  970. }
  971. void ssl_excert_free(SSL_EXCERT *exc)
  972. {
  973. SSL_EXCERT *curr;
  974. if (exc == NULL)
  975. return;
  976. while (exc) {
  977. X509_free(exc->cert);
  978. EVP_PKEY_free(exc->key);
  979. OSSL_STACK_OF_X509_free(exc->chain);
  980. curr = exc;
  981. exc = exc->next;
  982. OPENSSL_free(curr);
  983. }
  984. }
  985. int load_excert(SSL_EXCERT **pexc)
  986. {
  987. SSL_EXCERT *exc = *pexc;
  988. if (exc == NULL)
  989. return 1;
  990. /* If nothing in list, free and set to NULL */
  991. if (exc->certfile == NULL && exc->next == NULL) {
  992. ssl_excert_free(exc);
  993. *pexc = NULL;
  994. return 1;
  995. }
  996. for (; exc; exc = exc->next) {
  997. if (exc->certfile == NULL) {
  998. BIO_printf(bio_err, "Missing filename\n");
  999. return 0;
  1000. }
  1001. exc->cert = load_cert(exc->certfile, exc->certform,
  1002. "Server Certificate");
  1003. if (exc->cert == NULL)
  1004. return 0;
  1005. if (exc->keyfile != NULL) {
  1006. exc->key = load_key(exc->keyfile, exc->keyform,
  1007. 0, NULL, NULL, "server key");
  1008. } else {
  1009. exc->key = load_key(exc->certfile, exc->certform,
  1010. 0, NULL, NULL, "server key");
  1011. }
  1012. if (exc->key == NULL)
  1013. return 0;
  1014. if (exc->chainfile != NULL) {
  1015. if (!load_certs(exc->chainfile, 0, &exc->chain, NULL, "server chain"))
  1016. return 0;
  1017. }
  1018. }
  1019. return 1;
  1020. }
  1021. enum range { OPT_X_ENUM };
  1022. int args_excert(int opt, SSL_EXCERT **pexc)
  1023. {
  1024. SSL_EXCERT *exc = *pexc;
  1025. assert(opt > OPT_X__FIRST);
  1026. assert(opt < OPT_X__LAST);
  1027. if (exc == NULL) {
  1028. if (!ssl_excert_prepend(&exc)) {
  1029. BIO_printf(bio_err, " %s: Error initialising xcert\n",
  1030. opt_getprog());
  1031. goto err;
  1032. }
  1033. *pexc = exc;
  1034. }
  1035. switch ((enum range)opt) {
  1036. case OPT_X__FIRST:
  1037. case OPT_X__LAST:
  1038. return 0;
  1039. case OPT_X_CERT:
  1040. if (exc->certfile != NULL && !ssl_excert_prepend(&exc)) {
  1041. BIO_printf(bio_err, "%s: Error adding xcert\n", opt_getprog());
  1042. goto err;
  1043. }
  1044. *pexc = exc;
  1045. exc->certfile = opt_arg();
  1046. break;
  1047. case OPT_X_KEY:
  1048. if (exc->keyfile != NULL) {
  1049. BIO_printf(bio_err, "%s: Key already specified\n", opt_getprog());
  1050. goto err;
  1051. }
  1052. exc->keyfile = opt_arg();
  1053. break;
  1054. case OPT_X_CHAIN:
  1055. if (exc->chainfile != NULL) {
  1056. BIO_printf(bio_err, "%s: Chain already specified\n",
  1057. opt_getprog());
  1058. goto err;
  1059. }
  1060. exc->chainfile = opt_arg();
  1061. break;
  1062. case OPT_X_CHAIN_BUILD:
  1063. exc->build_chain = 1;
  1064. break;
  1065. case OPT_X_CERTFORM:
  1066. if (!opt_format(opt_arg(), OPT_FMT_ANY, &exc->certform))
  1067. return 0;
  1068. break;
  1069. case OPT_X_KEYFORM:
  1070. if (!opt_format(opt_arg(), OPT_FMT_ANY, &exc->keyform))
  1071. return 0;
  1072. break;
  1073. }
  1074. return 1;
  1075. err:
  1076. ERR_print_errors(bio_err);
  1077. ssl_excert_free(exc);
  1078. *pexc = NULL;
  1079. return 0;
  1080. }
  1081. static void print_raw_cipherlist(SSL *s)
  1082. {
  1083. const unsigned char *rlist;
  1084. static const unsigned char scsv_id[] = { 0, 0xFF };
  1085. size_t i, rlistlen, num;
  1086. if (!SSL_is_server(s))
  1087. return;
  1088. num = SSL_get0_raw_cipherlist(s, NULL);
  1089. OPENSSL_assert(num == 2);
  1090. rlistlen = SSL_get0_raw_cipherlist(s, &rlist);
  1091. BIO_puts(bio_err, "Client cipher list: ");
  1092. for (i = 0; i < rlistlen; i += num, rlist += num) {
  1093. const SSL_CIPHER *c = SSL_CIPHER_find(s, rlist);
  1094. if (i)
  1095. BIO_puts(bio_err, ":");
  1096. if (c != NULL) {
  1097. BIO_puts(bio_err, SSL_CIPHER_get_name(c));
  1098. } else if (memcmp(rlist, scsv_id, num) == 0) {
  1099. BIO_puts(bio_err, "SCSV");
  1100. } else {
  1101. size_t j;
  1102. BIO_puts(bio_err, "0x");
  1103. for (j = 0; j < num; j++)
  1104. BIO_printf(bio_err, "%02X", rlist[j]);
  1105. }
  1106. }
  1107. BIO_puts(bio_err, "\n");
  1108. }
  1109. /*
  1110. * Hex encoder for TLSA RRdata, not ':' delimited.
  1111. */
  1112. static char *hexencode(const unsigned char *data, size_t len)
  1113. {
  1114. static const char *hex = "0123456789abcdef";
  1115. char *out;
  1116. char *cp;
  1117. size_t outlen = 2 * len + 1;
  1118. int ilen = (int) outlen;
  1119. if (outlen < len || ilen < 0 || outlen != (size_t)ilen) {
  1120. BIO_printf(bio_err, "%s: %zu-byte buffer too large to hexencode\n",
  1121. opt_getprog(), len);
  1122. exit(1);
  1123. }
  1124. cp = out = app_malloc(ilen, "TLSA hex data buffer");
  1125. while (len-- > 0) {
  1126. *cp++ = hex[(*data >> 4) & 0x0f];
  1127. *cp++ = hex[*data++ & 0x0f];
  1128. }
  1129. *cp = '\0';
  1130. return out;
  1131. }
  1132. void print_verify_detail(SSL *s, BIO *bio)
  1133. {
  1134. int mdpth;
  1135. EVP_PKEY *mspki = NULL;
  1136. long verify_err = SSL_get_verify_result(s);
  1137. if (verify_err == X509_V_OK) {
  1138. const char *peername = SSL_get0_peername(s);
  1139. BIO_printf(bio, "Verification: OK\n");
  1140. if (peername != NULL)
  1141. BIO_printf(bio, "Verified peername: %s\n", peername);
  1142. } else {
  1143. const char *reason = X509_verify_cert_error_string(verify_err);
  1144. BIO_printf(bio, "Verification error: %s\n", reason);
  1145. }
  1146. if ((mdpth = SSL_get0_dane_authority(s, NULL, &mspki)) >= 0) {
  1147. uint8_t usage, selector, mtype;
  1148. const unsigned char *data = NULL;
  1149. size_t dlen = 0;
  1150. char *hexdata;
  1151. mdpth = SSL_get0_dane_tlsa(s, &usage, &selector, &mtype, &data, &dlen);
  1152. /*
  1153. * The TLSA data field can be quite long when it is a certificate,
  1154. * public key or even a SHA2-512 digest. Because the initial octets of
  1155. * ASN.1 certificates and public keys contain mostly boilerplate OIDs
  1156. * and lengths, we show the last 12 bytes of the data instead, as these
  1157. * are more likely to distinguish distinct TLSA records.
  1158. */
  1159. #define TLSA_TAIL_SIZE 12
  1160. if (dlen > TLSA_TAIL_SIZE)
  1161. hexdata = hexencode(data + dlen - TLSA_TAIL_SIZE, TLSA_TAIL_SIZE);
  1162. else
  1163. hexdata = hexencode(data, dlen);
  1164. BIO_printf(bio, "DANE TLSA %d %d %d %s%s ",
  1165. usage, selector, mtype,
  1166. (dlen > TLSA_TAIL_SIZE) ? "..." : "", hexdata);
  1167. if (SSL_get0_peer_rpk(s) == NULL)
  1168. BIO_printf(bio, "%s certificate at depth %d\n",
  1169. (mspki != NULL) ? "signed the peer" :
  1170. mdpth ? "matched the TA" : "matched the EE", mdpth);
  1171. else
  1172. BIO_printf(bio, "matched the peer raw public key\n");
  1173. OPENSSL_free(hexdata);
  1174. }
  1175. }
  1176. void print_ssl_summary(SSL *s)
  1177. {
  1178. const char *sigalg;
  1179. const SSL_CIPHER *c;
  1180. X509 *peer = SSL_get0_peer_certificate(s);
  1181. EVP_PKEY *peer_rpk = SSL_get0_peer_rpk(s);
  1182. int nid;
  1183. BIO_printf(bio_err, "Protocol version: %s\n", SSL_get_version(s));
  1184. print_raw_cipherlist(s);
  1185. c = SSL_get_current_cipher(s);
  1186. BIO_printf(bio_err, "Ciphersuite: %s\n", SSL_CIPHER_get_name(c));
  1187. do_print_sigalgs(bio_err, s, 0);
  1188. if (peer != NULL) {
  1189. BIO_puts(bio_err, "Peer certificate: ");
  1190. X509_NAME_print_ex(bio_err, X509_get_subject_name(peer),
  1191. 0, get_nameopt());
  1192. BIO_puts(bio_err, "\n");
  1193. if (SSL_get_peer_signature_nid(s, &nid))
  1194. BIO_printf(bio_err, "Hash used: %s\n", OBJ_nid2sn(nid));
  1195. if (SSL_get0_peer_signature_name(s, &sigalg))
  1196. BIO_printf(bio_err, "Signature type: %s\n", sigalg);
  1197. print_verify_detail(s, bio_err);
  1198. } else if (peer_rpk != NULL) {
  1199. BIO_printf(bio_err, "Peer used raw public key\n");
  1200. if (SSL_get0_peer_signature_name(s, &sigalg))
  1201. BIO_printf(bio_err, "Signature type: %s\n", sigalg);
  1202. print_verify_detail(s, bio_err);
  1203. } else {
  1204. BIO_puts(bio_err, "No peer certificate or raw public key\n");
  1205. }
  1206. #ifndef OPENSSL_NO_EC
  1207. ssl_print_point_formats(bio_err, s);
  1208. if (SSL_is_server(s))
  1209. ssl_print_groups(bio_err, s, 1);
  1210. #endif
  1211. ssl_print_tmp_key(bio_err, s);
  1212. }
  1213. int config_ctx(SSL_CONF_CTX *cctx, STACK_OF(OPENSSL_STRING) *str,
  1214. SSL_CTX *ctx)
  1215. {
  1216. int i;
  1217. SSL_CONF_CTX_set_ssl_ctx(cctx, ctx);
  1218. for (i = 0; i < sk_OPENSSL_STRING_num(str); i += 2) {
  1219. const char *flag = sk_OPENSSL_STRING_value(str, i);
  1220. const char *arg = sk_OPENSSL_STRING_value(str, i + 1);
  1221. if (SSL_CONF_cmd(cctx, flag, arg) <= 0) {
  1222. BIO_printf(bio_err, "Call to SSL_CONF_cmd(%s, %s) failed\n",
  1223. flag, arg == NULL ? "<NULL>" : arg);
  1224. ERR_print_errors(bio_err);
  1225. return 0;
  1226. }
  1227. }
  1228. if (!SSL_CONF_CTX_finish(cctx)) {
  1229. BIO_puts(bio_err, "Error finishing context\n");
  1230. ERR_print_errors(bio_err);
  1231. return 0;
  1232. }
  1233. return 1;
  1234. }
  1235. static int add_crls_store(X509_STORE *st, STACK_OF(X509_CRL) *crls)
  1236. {
  1237. X509_CRL *crl;
  1238. int i, ret = 1;
  1239. for (i = 0; i < sk_X509_CRL_num(crls); i++) {
  1240. crl = sk_X509_CRL_value(crls, i);
  1241. if (!X509_STORE_add_crl(st, crl))
  1242. ret = 0;
  1243. }
  1244. return ret;
  1245. }
  1246. int ssl_ctx_add_crls(SSL_CTX *ctx, STACK_OF(X509_CRL) *crls, int crl_download)
  1247. {
  1248. X509_STORE *st;
  1249. st = SSL_CTX_get_cert_store(ctx);
  1250. add_crls_store(st, crls);
  1251. if (crl_download)
  1252. store_setup_crl_download(st);
  1253. return 1;
  1254. }
  1255. int ssl_load_stores(SSL_CTX *ctx,
  1256. const char *vfyCApath, const char *vfyCAfile,
  1257. const char *vfyCAstore,
  1258. const char *chCApath, const char *chCAfile,
  1259. const char *chCAstore,
  1260. STACK_OF(X509_CRL) *crls, int crl_download)
  1261. {
  1262. X509_STORE *vfy = NULL, *ch = NULL;
  1263. int rv = 0;
  1264. if (vfyCApath != NULL || vfyCAfile != NULL || vfyCAstore != NULL) {
  1265. vfy = X509_STORE_new();
  1266. if (vfy == NULL)
  1267. goto err;
  1268. if (vfyCAfile != NULL && !X509_STORE_load_file(vfy, vfyCAfile))
  1269. goto err;
  1270. if (vfyCApath != NULL && !X509_STORE_load_path(vfy, vfyCApath))
  1271. goto err;
  1272. if (vfyCAstore != NULL && !X509_STORE_load_store(vfy, vfyCAstore))
  1273. goto err;
  1274. add_crls_store(vfy, crls);
  1275. if (SSL_CTX_set1_verify_cert_store(ctx, vfy) == 0)
  1276. goto err;
  1277. if (crl_download)
  1278. store_setup_crl_download(vfy);
  1279. }
  1280. if (chCApath != NULL || chCAfile != NULL || chCAstore != NULL) {
  1281. ch = X509_STORE_new();
  1282. if (ch == NULL)
  1283. goto err;
  1284. if (chCAfile != NULL && !X509_STORE_load_file(ch, chCAfile))
  1285. goto err;
  1286. if (chCApath != NULL && !X509_STORE_load_path(ch, chCApath))
  1287. goto err;
  1288. if (chCAstore != NULL && !X509_STORE_load_store(ch, chCAstore))
  1289. goto err;
  1290. if (SSL_CTX_set1_chain_cert_store(ctx, ch) == 0)
  1291. goto err;
  1292. }
  1293. rv = 1;
  1294. err:
  1295. X509_STORE_free(vfy);
  1296. X509_STORE_free(ch);
  1297. return rv;
  1298. }
  1299. /* Verbose print out of security callback */
  1300. typedef struct {
  1301. BIO *out;
  1302. int verbose;
  1303. int (*old_cb) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid,
  1304. void *other, void *ex);
  1305. } security_debug_ex;
  1306. static STRINT_PAIR callback_types[] = {
  1307. {"Supported Ciphersuite", SSL_SECOP_CIPHER_SUPPORTED},
  1308. {"Shared Ciphersuite", SSL_SECOP_CIPHER_SHARED},
  1309. {"Check Ciphersuite", SSL_SECOP_CIPHER_CHECK},
  1310. #ifndef OPENSSL_NO_DH
  1311. {"Temp DH key bits", SSL_SECOP_TMP_DH},
  1312. #endif
  1313. {"Supported Curve", SSL_SECOP_CURVE_SUPPORTED},
  1314. {"Shared Curve", SSL_SECOP_CURVE_SHARED},
  1315. {"Check Curve", SSL_SECOP_CURVE_CHECK},
  1316. {"Supported Signature Algorithm", SSL_SECOP_SIGALG_SUPPORTED},
  1317. {"Shared Signature Algorithm", SSL_SECOP_SIGALG_SHARED},
  1318. {"Check Signature Algorithm", SSL_SECOP_SIGALG_CHECK},
  1319. {"Signature Algorithm mask", SSL_SECOP_SIGALG_MASK},
  1320. {"Certificate chain EE key", SSL_SECOP_EE_KEY},
  1321. {"Certificate chain CA key", SSL_SECOP_CA_KEY},
  1322. {"Peer Chain EE key", SSL_SECOP_PEER_EE_KEY},
  1323. {"Peer Chain CA key", SSL_SECOP_PEER_CA_KEY},
  1324. {"Certificate chain CA digest", SSL_SECOP_CA_MD},
  1325. {"Peer chain CA digest", SSL_SECOP_PEER_CA_MD},
  1326. {"SSL compression", SSL_SECOP_COMPRESSION},
  1327. {"Session ticket", SSL_SECOP_TICKET},
  1328. {NULL}
  1329. };
  1330. static int security_callback_debug(const SSL *s, const SSL_CTX *ctx,
  1331. int op, int bits, int nid,
  1332. void *other, void *ex)
  1333. {
  1334. security_debug_ex *sdb = ex;
  1335. int rv, show_bits = 1, cert_md = 0;
  1336. const char *nm;
  1337. int show_nm;
  1338. rv = sdb->old_cb(s, ctx, op, bits, nid, other, ex);
  1339. if (rv == 1 && sdb->verbose < 2)
  1340. return 1;
  1341. BIO_puts(sdb->out, "Security callback: ");
  1342. nm = lookup(op, callback_types, NULL);
  1343. show_nm = nm != NULL;
  1344. switch (op) {
  1345. case SSL_SECOP_TICKET:
  1346. case SSL_SECOP_COMPRESSION:
  1347. show_bits = 0;
  1348. show_nm = 0;
  1349. break;
  1350. case SSL_SECOP_VERSION:
  1351. BIO_printf(sdb->out, "Version=%s", lookup(nid, ssl_versions, "???"));
  1352. show_bits = 0;
  1353. show_nm = 0;
  1354. break;
  1355. case SSL_SECOP_CA_MD:
  1356. case SSL_SECOP_PEER_CA_MD:
  1357. cert_md = 1;
  1358. break;
  1359. case SSL_SECOP_SIGALG_SUPPORTED:
  1360. case SSL_SECOP_SIGALG_SHARED:
  1361. case SSL_SECOP_SIGALG_CHECK:
  1362. case SSL_SECOP_SIGALG_MASK:
  1363. show_nm = 0;
  1364. break;
  1365. }
  1366. if (show_nm)
  1367. BIO_printf(sdb->out, "%s=", nm);
  1368. switch (op & SSL_SECOP_OTHER_TYPE) {
  1369. case SSL_SECOP_OTHER_CIPHER:
  1370. BIO_puts(sdb->out, SSL_CIPHER_get_name(other));
  1371. break;
  1372. #ifndef OPENSSL_NO_EC
  1373. case SSL_SECOP_OTHER_CURVE:
  1374. {
  1375. const char *cname;
  1376. cname = EC_curve_nid2nist(nid);
  1377. if (cname == NULL)
  1378. cname = OBJ_nid2sn(nid);
  1379. BIO_puts(sdb->out, cname);
  1380. }
  1381. break;
  1382. #endif
  1383. case SSL_SECOP_OTHER_CERT:
  1384. {
  1385. if (cert_md) {
  1386. int sig_nid = X509_get_signature_nid(other);
  1387. BIO_puts(sdb->out, OBJ_nid2sn(sig_nid));
  1388. } else {
  1389. EVP_PKEY *pkey = X509_get0_pubkey(other);
  1390. if (pkey == NULL) {
  1391. BIO_printf(sdb->out, "Public key missing");
  1392. } else {
  1393. const char *algname = "";
  1394. EVP_PKEY_asn1_get0_info(NULL, NULL, NULL, NULL,
  1395. &algname, EVP_PKEY_get0_asn1(pkey));
  1396. BIO_printf(sdb->out, "%s, bits=%d",
  1397. algname, EVP_PKEY_get_bits(pkey));
  1398. }
  1399. }
  1400. break;
  1401. }
  1402. case SSL_SECOP_OTHER_SIGALG:
  1403. {
  1404. const unsigned char *salg = other;
  1405. const char *sname = NULL;
  1406. int raw_sig_code = (salg[0] << 8) + salg[1]; /* always big endian (msb, lsb) */
  1407. /* raw_sig_code: signature_scheme from tls1.3, or signature_and_hash from tls1.2 */
  1408. if (nm != NULL)
  1409. BIO_printf(sdb->out, "%s", nm);
  1410. else
  1411. BIO_printf(sdb->out, "s_cb.c:security_callback_debug op=0x%x", op);
  1412. sname = lookup(raw_sig_code, signature_tls13_scheme_list, NULL);
  1413. if (sname != NULL) {
  1414. BIO_printf(sdb->out, " scheme=%s", sname);
  1415. } else {
  1416. int alg_code = salg[1];
  1417. int hash_code = salg[0];
  1418. const char *alg_str = lookup(alg_code, signature_tls12_alg_list, NULL);
  1419. const char *hash_str = lookup(hash_code, signature_tls12_hash_list, NULL);
  1420. if (alg_str != NULL && hash_str != NULL)
  1421. BIO_printf(sdb->out, " digest=%s, algorithm=%s", hash_str, alg_str);
  1422. else
  1423. BIO_printf(sdb->out, " scheme=unknown(0x%04x)", raw_sig_code);
  1424. }
  1425. }
  1426. }
  1427. if (show_bits)
  1428. BIO_printf(sdb->out, ", security bits=%d", bits);
  1429. BIO_printf(sdb->out, ": %s\n", rv ? "yes" : "no");
  1430. return rv;
  1431. }
  1432. void ssl_ctx_security_debug(SSL_CTX *ctx, int verbose)
  1433. {
  1434. static security_debug_ex sdb;
  1435. sdb.out = bio_err;
  1436. sdb.verbose = verbose;
  1437. sdb.old_cb = SSL_CTX_get_security_callback(ctx);
  1438. SSL_CTX_set_security_callback(ctx, security_callback_debug);
  1439. SSL_CTX_set0_security_ex_data(ctx, &sdb);
  1440. }
  1441. static void keylog_callback(const SSL *ssl, const char *line)
  1442. {
  1443. if (bio_keylog == NULL) {
  1444. BIO_printf(bio_err, "Keylog callback is invoked without valid file!\n");
  1445. return;
  1446. }
  1447. /*
  1448. * There might be concurrent writers to the keylog file, so we must ensure
  1449. * that the given line is written at once.
  1450. */
  1451. BIO_printf(bio_keylog, "%s\n", line);
  1452. (void)BIO_flush(bio_keylog);
  1453. }
  1454. int set_keylog_file(SSL_CTX *ctx, const char *keylog_file)
  1455. {
  1456. /* Close any open files */
  1457. BIO_free_all(bio_keylog);
  1458. bio_keylog = NULL;
  1459. if (ctx == NULL || keylog_file == NULL) {
  1460. /* Keylogging is disabled, OK. */
  1461. return 0;
  1462. }
  1463. /*
  1464. * Append rather than write in order to allow concurrent modification.
  1465. * Furthermore, this preserves existing keylog files which is useful when
  1466. * the tool is run multiple times.
  1467. */
  1468. bio_keylog = BIO_new_file(keylog_file, "a");
  1469. if (bio_keylog == NULL) {
  1470. BIO_printf(bio_err, "Error writing keylog file %s\n", keylog_file);
  1471. return 1;
  1472. }
  1473. /* Write a header for seekable, empty files (this excludes pipes). */
  1474. if (BIO_tell(bio_keylog) == 0) {
  1475. BIO_puts(bio_keylog,
  1476. "# SSL/TLS secrets log file, generated by OpenSSL\n");
  1477. (void)BIO_flush(bio_keylog);
  1478. }
  1479. SSL_CTX_set_keylog_callback(ctx, keylog_callback);
  1480. return 0;
  1481. }
  1482. void print_ca_names(BIO *bio, SSL *s)
  1483. {
  1484. const char *cs = SSL_is_server(s) ? "server" : "client";
  1485. const STACK_OF(X509_NAME) *sk = SSL_get0_peer_CA_list(s);
  1486. int i;
  1487. if (sk == NULL || sk_X509_NAME_num(sk) == 0) {
  1488. if (!SSL_is_server(s))
  1489. BIO_printf(bio, "---\nNo %s certificate CA names sent\n", cs);
  1490. return;
  1491. }
  1492. BIO_printf(bio, "---\nAcceptable %s certificate CA names\n", cs);
  1493. for (i = 0; i < sk_X509_NAME_num(sk); i++) {
  1494. X509_NAME_print_ex(bio, sk_X509_NAME_value(sk, i), 0, get_nameopt());
  1495. BIO_write(bio, "\n", 1);
  1496. }
  1497. }
  1498. void ssl_print_secure_renegotiation_notes(BIO *bio, SSL *s)
  1499. {
  1500. if (SSL_VERSION_ALLOWS_RENEGOTIATION(s)) {
  1501. BIO_printf(bio, "Secure Renegotiation IS%s supported\n",
  1502. SSL_get_secure_renegotiation_support(s) ? "" : " NOT");
  1503. } else {
  1504. BIO_printf(bio, "This TLS version forbids renegotiation.\n");
  1505. }
  1506. }
  1507. int progress_cb(EVP_PKEY_CTX *ctx)
  1508. {
  1509. BIO *b = EVP_PKEY_CTX_get_app_data(ctx);
  1510. int p = EVP_PKEY_CTX_get_keygen_info(ctx, 0);
  1511. static const char symbols[] = ".+*\n";
  1512. char c = (p >= 0 && (size_t)p <= sizeof(symbols) - 1) ? symbols[p] : '?';
  1513. BIO_write(b, &c, 1);
  1514. (void)BIO_flush(b);
  1515. return 1;
  1516. }