| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211 | /* * Copyright 2008-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License").  You may not use * this file except in compliance with the License.  You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */#include <string.h>#include <openssl/crypto.h>#include "crypto/modes.h"#if defined(__GNUC__) && !defined(STRICT_ALIGNMENT)typedef size_t size_t_aX __attribute((__aligned__(1)));#elsetypedef size_t size_t_aX;#endif/* * The input and output encrypted as though 128bit cfb mode is being used. * The extra state information to record how much of the 128bit block we have * used is contained in *num; */void CRYPTO_cfb128_encrypt(const unsigned char *in, unsigned char *out,                           size_t len, const void *key,                           unsigned char ivec[16], int *num,                           int enc, block128_f block){    unsigned int n;    size_t l = 0;    if (*num < 0) {        /* There is no good way to signal an error return from here */        *num = -1;        return;    }    n = *num;    if (enc) {#if !defined(OPENSSL_SMALL_FOOTPRINT)        if (16 % sizeof(size_t) == 0) { /* always true actually */            do {                while (n && len) {                    *(out++) = ivec[n] ^= *(in++);                    --len;                    n = (n + 1) % 16;                }# if defined(STRICT_ALIGNMENT)                if (((size_t)in | (size_t)out | (size_t)ivec) %                    sizeof(size_t) != 0)                    break;# endif                while (len >= 16) {                    (*block) (ivec, ivec, key);                    for (; n < 16; n += sizeof(size_t)) {                        *(size_t_aX *)(out + n) =                            *(size_t_aX *)(ivec + n)                                ^= *(size_t_aX *)(in + n);                    }                    len -= 16;                    out += 16;                    in += 16;                    n = 0;                }                if (len) {                    (*block) (ivec, ivec, key);                    while (len--) {                        out[n] = ivec[n] ^= in[n];                        ++n;                    }                }                *num = n;                return;            } while (0);        }        /* the rest would be commonly eliminated by x86* compiler */#endif        while (l < len) {            if (n == 0) {                (*block) (ivec, ivec, key);            }            out[l] = ivec[n] ^= in[l];            ++l;            n = (n + 1) % 16;        }        *num = n;    } else {#if !defined(OPENSSL_SMALL_FOOTPRINT)        if (16 % sizeof(size_t) == 0) { /* always true actually */            do {                while (n && len) {                    unsigned char c;                    *(out++) = ivec[n] ^ (c = *(in++));                    ivec[n] = c;                    --len;                    n = (n + 1) % 16;                }# if defined(STRICT_ALIGNMENT)                if (((size_t)in | (size_t)out | (size_t)ivec) %                    sizeof(size_t) != 0)                    break;# endif                while (len >= 16) {                    (*block) (ivec, ivec, key);                    for (; n < 16; n += sizeof(size_t)) {                        size_t t = *(size_t_aX *)(in + n);                        *(size_t_aX *)(out + n)                            = *(size_t_aX *)(ivec + n) ^ t;                        *(size_t_aX *)(ivec + n) = t;                    }                    len -= 16;                    out += 16;                    in += 16;                    n = 0;                }                if (len) {                    (*block) (ivec, ivec, key);                    while (len--) {                        unsigned char c;                        out[n] = ivec[n] ^ (c = in[n]);                        ivec[n] = c;                        ++n;                    }                }                *num = n;                return;            } while (0);        }        /* the rest would be commonly eliminated by x86* compiler */#endif        while (l < len) {            unsigned char c;            if (n == 0) {                (*block) (ivec, ivec, key);            }            out[l] = ivec[n] ^ (c = in[l]);            ivec[n] = c;            ++l;            n = (n + 1) % 16;        }        *num = n;    }}/* * This expects a single block of size nbits for both in and out. Note that * it corrupts any extra bits in the last byte of out */static void cfbr_encrypt_block(const unsigned char *in, unsigned char *out,                               int nbits, const void *key,                               unsigned char ivec[16], int enc,                               block128_f block){    int n, rem, num;    unsigned char ovec[16 * 2 + 1]; /* +1 because we dereference (but don't                                     * use) one byte off the end */    if (nbits <= 0 || nbits > 128)        return;    /* fill in the first half of the new IV with the current IV */    memcpy(ovec, ivec, 16);    /* construct the new IV */    (*block) (ivec, ivec, key);    num = (nbits + 7) / 8;    if (enc)                    /* encrypt the input */        for (n = 0; n < num; ++n)            out[n] = (ovec[16 + n] = in[n] ^ ivec[n]);    else                        /* decrypt the input */        for (n = 0; n < num; ++n)            out[n] = (ovec[16 + n] = in[n]) ^ ivec[n];    /* shift ovec left... */    rem = nbits % 8;    num = nbits / 8;    if (rem == 0)        memcpy(ivec, ovec + num, 16);    else        for (n = 0; n < 16; ++n)            ivec[n] = ovec[n + num] << rem | ovec[n + num + 1] >> (8 - rem);    /* it is not necessary to cleanse ovec, since the IV is not secret */}/* N.B. This expects the input to be packed, MS bit first */void CRYPTO_cfb128_1_encrypt(const unsigned char *in, unsigned char *out,                             size_t bits, const void *key,                             unsigned char ivec[16], int *num,                             int enc, block128_f block){    size_t n;    unsigned char c[1], d[1];    for (n = 0; n < bits; ++n) {        c[0] = (in[n / 8] & (1 << (7 - n % 8))) ? 0x80 : 0;        cfbr_encrypt_block(c, d, 1, key, ivec, enc, block);        out[n / 8] = (out[n / 8] & ~(1 << (unsigned int)(7 - n % 8))) |            ((d[0] & 0x80) >> (unsigned int)(n % 8));    }}void CRYPTO_cfb128_8_encrypt(const unsigned char *in, unsigned char *out,                             size_t length, const void *key,                             unsigned char ivec[16], int *num,                             int enc, block128_f block){    size_t n;    for (n = 0; n < length; ++n)        cfbr_encrypt_block(&in[n], &out[n], 8, key, ivec, enc, block);}
 |