| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625 | /* * Copyright 2010-2024 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License").  You may not use * this file except in compliance with the License.  You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */#include <string.h>#include <openssl/crypto.h>#include "internal/cryptlib.h"#include "internal/endian.h"#include "crypto/modes.h"#if defined(__GNUC__) && !defined(STRICT_ALIGNMENT)typedef size_t size_t_aX __attribute((__aligned__(1)));#elsetypedef size_t size_t_aX;#endif#if defined(BSWAP4) && defined(STRICT_ALIGNMENT)/* redefine, because alignment is ensured */# undef  GETU32# define GETU32(p)       BSWAP4(*(const u32 *)(p))# undef  PUTU32# define PUTU32(p,v)     *(u32 *)(p) = BSWAP4(v)#endif/* RISC-V uses C implementation as a fallback. */#if defined(__riscv)# define INCLUDE_C_GMULT_4BIT# define INCLUDE_C_GHASH_4BIT#endif#define PACK(s)         ((size_t)(s)<<(sizeof(size_t)*8-16))#define REDUCE1BIT(V)   do { \        if (sizeof(size_t)==8) { \                u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \                V.lo  = (V.hi<<63)|(V.lo>>1); \                V.hi  = (V.hi>>1 )^T; \        } \        else { \                u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \                V.lo  = (V.hi<<63)|(V.lo>>1); \                V.hi  = (V.hi>>1 )^((u64)T<<32); \        } \} while(0)/*- * * NOTE: TABLE_BITS and all non-4bit implementations have been removed in 3.1. * * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should * never be set to 8. 8 is effectively reserved for testing purposes. * TABLE_BITS>1 are lookup-table-driven implementations referred to as * "Shoup's" in GCM specification. In other words OpenSSL does not cover * whole spectrum of possible table driven implementations. Why? In * non-"Shoup's" case memory access pattern is segmented in such manner, * that it's trivial to see that cache timing information can reveal * fair portion of intermediate hash value. Given that ciphertext is * always available to attacker, it's possible for him to attempt to * deduce secret parameter H and if successful, tamper with messages * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's * not as trivial, but there is no reason to believe that it's resistant * to cache-timing attack. And the thing about "8-bit" implementation is * that it consumes 16 (sixteen) times more memory, 4KB per individual * key + 1KB shared. Well, on pros side it should be twice as fast as * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version * was observed to run ~75% faster, closer to 100% for commercial * compilers... Yet "4-bit" procedure is preferred, because it's * believed to provide better security-performance balance and adequate * all-round performance. "All-round" refers to things like: * * - shorter setup time effectively improves overall timing for *   handling short messages; * - larger table allocation can become unbearable because of VM *   subsystem penalties (for example on Windows large enough free *   results in VM working set trimming, meaning that consequent *   malloc would immediately incur working set expansion); * - larger table has larger cache footprint, which can affect *   performance of other code paths (not necessarily even from same *   thread in Hyper-Threading world); * * Value of 1 is not appropriate for performance reasons. */static void gcm_init_4bit(u128 Htable[16], const u64 H[2]){    u128 V;# if defined(OPENSSL_SMALL_FOOTPRINT)    int i;# endif    Htable[0].hi = 0;    Htable[0].lo = 0;    V.hi = H[0];    V.lo = H[1];# if defined(OPENSSL_SMALL_FOOTPRINT)    for (Htable[8] = V, i = 4; i > 0; i >>= 1) {        REDUCE1BIT(V);        Htable[i] = V;    }    for (i = 2; i < 16; i <<= 1) {        u128 *Hi = Htable + i;        int j;        for (V = *Hi, j = 1; j < i; ++j) {            Hi[j].hi = V.hi ^ Htable[j].hi;            Hi[j].lo = V.lo ^ Htable[j].lo;        }    }# else    Htable[8] = V;    REDUCE1BIT(V);    Htable[4] = V;    REDUCE1BIT(V);    Htable[2] = V;    REDUCE1BIT(V);    Htable[1] = V;    Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo;    V = Htable[4];    Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo;    Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo;    Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo;    V = Htable[8];    Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo;    Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo;    Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo;    Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo;    Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo;    Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo;    Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo;# endif# if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm))    /*     * ARM assembler expects specific dword order in Htable.     */    {        int j;        DECLARE_IS_ENDIAN;        if (IS_LITTLE_ENDIAN)            for (j = 0; j < 16; ++j) {                V = Htable[j];                Htable[j].hi = V.lo;                Htable[j].lo = V.hi;        } else            for (j = 0; j < 16; ++j) {                V = Htable[j];                Htable[j].hi = V.lo << 32 | V.lo >> 32;                Htable[j].lo = V.hi << 32 | V.hi >> 32;            }    }# endif}# if !defined(GHASH_ASM) || defined(INCLUDE_C_GMULT_4BIT)static const size_t rem_4bit[16] = {    PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460),    PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0),    PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560),    PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0)};static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]){    u128 Z;    int cnt = 15;    size_t rem, nlo, nhi;    DECLARE_IS_ENDIAN;    nlo = ((const u8 *)Xi)[15];    nhi = nlo >> 4;    nlo &= 0xf;    Z.hi = Htable[nlo].hi;    Z.lo = Htable[nlo].lo;    while (1) {        rem = (size_t)Z.lo & 0xf;        Z.lo = (Z.hi << 60) | (Z.lo >> 4);        Z.hi = (Z.hi >> 4);        if (sizeof(size_t) == 8)            Z.hi ^= rem_4bit[rem];        else            Z.hi ^= (u64)rem_4bit[rem] << 32;        Z.hi ^= Htable[nhi].hi;        Z.lo ^= Htable[nhi].lo;        if (--cnt < 0)            break;        nlo = ((const u8 *)Xi)[cnt];        nhi = nlo >> 4;        nlo &= 0xf;        rem = (size_t)Z.lo & 0xf;        Z.lo = (Z.hi << 60) | (Z.lo >> 4);        Z.hi = (Z.hi >> 4);        if (sizeof(size_t) == 8)            Z.hi ^= rem_4bit[rem];        else            Z.hi ^= (u64)rem_4bit[rem] << 32;        Z.hi ^= Htable[nlo].hi;        Z.lo ^= Htable[nlo].lo;    }    if (IS_LITTLE_ENDIAN) {#  ifdef BSWAP8        Xi[0] = BSWAP8(Z.hi);        Xi[1] = BSWAP8(Z.lo);#  else        u8 *p = (u8 *)Xi;        u32 v;        v = (u32)(Z.hi >> 32);        PUTU32(p, v);        v = (u32)(Z.hi);        PUTU32(p + 4, v);        v = (u32)(Z.lo >> 32);        PUTU32(p + 8, v);        v = (u32)(Z.lo);        PUTU32(p + 12, v);#  endif    } else {        Xi[0] = Z.hi;        Xi[1] = Z.lo;    }}# endif# if !defined(GHASH_ASM) || defined(INCLUDE_C_GHASH_4BIT)#  if !defined(OPENSSL_SMALL_FOOTPRINT)/* * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for * details... Compiler-generated code doesn't seem to give any * performance improvement, at least not on x86[_64]. It's here * mostly as reference and a placeholder for possible future * non-trivial optimization[s]... */static void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16],                           const u8 *inp, size_t len){    u128 Z;    int cnt;    size_t rem, nlo, nhi;    DECLARE_IS_ENDIAN;    do {        cnt = 15;        nlo = ((const u8 *)Xi)[15];        nlo ^= inp[15];        nhi = nlo >> 4;        nlo &= 0xf;        Z.hi = Htable[nlo].hi;        Z.lo = Htable[nlo].lo;        while (1) {            rem = (size_t)Z.lo & 0xf;            Z.lo = (Z.hi << 60) | (Z.lo >> 4);            Z.hi = (Z.hi >> 4);            if (sizeof(size_t) == 8)                Z.hi ^= rem_4bit[rem];            else                Z.hi ^= (u64)rem_4bit[rem] << 32;            Z.hi ^= Htable[nhi].hi;            Z.lo ^= Htable[nhi].lo;            if (--cnt < 0)                break;            nlo = ((const u8 *)Xi)[cnt];            nlo ^= inp[cnt];            nhi = nlo >> 4;            nlo &= 0xf;            rem = (size_t)Z.lo & 0xf;            Z.lo = (Z.hi << 60) | (Z.lo >> 4);            Z.hi = (Z.hi >> 4);            if (sizeof(size_t) == 8)                Z.hi ^= rem_4bit[rem];            else                Z.hi ^= (u64)rem_4bit[rem] << 32;            Z.hi ^= Htable[nlo].hi;            Z.lo ^= Htable[nlo].lo;        }        if (IS_LITTLE_ENDIAN) {#   ifdef BSWAP8            Xi[0] = BSWAP8(Z.hi);            Xi[1] = BSWAP8(Z.lo);#   else            u8 *p = (u8 *)Xi;            u32 v;            v = (u32)(Z.hi >> 32);            PUTU32(p, v);            v = (u32)(Z.hi);            PUTU32(p + 4, v);            v = (u32)(Z.lo >> 32);            PUTU32(p + 8, v);            v = (u32)(Z.lo);            PUTU32(p + 12, v);#   endif        } else {            Xi[0] = Z.hi;            Xi[1] = Z.lo;        }        inp += 16;        /* Block size is 128 bits so len is a multiple of 16 */        len -= 16;    } while (len > 0);}#  endif# elsevoid gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]);void gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16], const u8 *inp,                    size_t len);# endif# define GCM_MUL(ctx)      ctx->funcs.gmult(ctx->Xi.u,ctx->Htable)# if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT)#  define GHASH(ctx,in,len) ctx->funcs.ghash((ctx)->Xi.u,(ctx)->Htable,in,len)/* * GHASH_CHUNK is "stride parameter" missioned to mitigate cache trashing * effect. In other words idea is to hash data while it's still in L1 cache * after encryption pass... */#  define GHASH_CHUNK       (3*1024)# endif#if     (defined(GHASH_ASM) || defined(OPENSSL_CPUID_OBJ))# if    !defined(I386_ONLY) && \        (defined(__i386)        || defined(__i386__)    || \         defined(__x86_64)      || defined(__x86_64__)  || \         defined(_M_IX86)       || defined(_M_AMD64)    || defined(_M_X64))#  define GHASH_ASM_X86_OR_64void gcm_init_clmul(u128 Htable[16], const u64 Xi[2]);void gcm_gmult_clmul(u64 Xi[2], const u128 Htable[16]);void gcm_ghash_clmul(u64 Xi[2], const u128 Htable[16], const u8 *inp,                     size_t len);#  if defined(__i386) || defined(__i386__) || defined(_M_IX86)#   define gcm_init_avx   gcm_init_clmul#   define gcm_gmult_avx  gcm_gmult_clmul#   define gcm_ghash_avx  gcm_ghash_clmul#  elsevoid gcm_init_avx(u128 Htable[16], const u64 Xi[2]);void gcm_gmult_avx(u64 Xi[2], const u128 Htable[16]);void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *inp,                   size_t len);#  endif#  if   defined(__i386) || defined(__i386__) || defined(_M_IX86)#   define GHASH_ASM_X86void gcm_gmult_4bit_mmx(u64 Xi[2], const u128 Htable[16]);void gcm_ghash_4bit_mmx(u64 Xi[2], const u128 Htable[16], const u8 *inp,                        size_t len);void gcm_gmult_4bit_x86(u64 Xi[2], const u128 Htable[16]);void gcm_ghash_4bit_x86(u64 Xi[2], const u128 Htable[16], const u8 *inp,                        size_t len);#  endif# elif defined(__arm__) || defined(__arm) || defined(__aarch64__) || defined(_M_ARM64)#  include "arm_arch.h"#  if __ARM_MAX_ARCH__>=7#   define GHASH_ASM_ARM#   define PMULL_CAPABLE        (OPENSSL_armcap_P & ARMV8_PMULL)#   if defined(__arm__) || defined(__arm)#    define NEON_CAPABLE        (OPENSSL_armcap_P & ARMV7_NEON)#   endifvoid gcm_init_neon(u128 Htable[16], const u64 Xi[2]);void gcm_gmult_neon(u64 Xi[2], const u128 Htable[16]);void gcm_ghash_neon(u64 Xi[2], const u128 Htable[16], const u8 *inp,                    size_t len);void gcm_init_v8(u128 Htable[16], const u64 Xi[2]);void gcm_gmult_v8(u64 Xi[2], const u128 Htable[16]);void gcm_ghash_v8(u64 Xi[2], const u128 Htable[16], const u8 *inp,                  size_t len);#  endif# elif defined(__sparc__) || defined(__sparc)#  include "crypto/sparc_arch.h"#  define GHASH_ASM_SPARCvoid gcm_init_vis3(u128 Htable[16], const u64 Xi[2]);void gcm_gmult_vis3(u64 Xi[2], const u128 Htable[16]);void gcm_ghash_vis3(u64 Xi[2], const u128 Htable[16], const u8 *inp,                    size_t len);# elif defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__POWERPC__) || defined(_ARCH_PPC))#  include "crypto/ppc_arch.h"#  define GHASH_ASM_PPCvoid gcm_init_p8(u128 Htable[16], const u64 Xi[2]);void gcm_gmult_p8(u64 Xi[2], const u128 Htable[16]);void gcm_ghash_p8(u64 Xi[2], const u128 Htable[16], const u8 *inp,                  size_t len);# elif defined(OPENSSL_CPUID_OBJ) && defined(__riscv) && __riscv_xlen == 64#  include "crypto/riscv_arch.h"#  define GHASH_ASM_RV64I/* Zbc/Zbkc (scalar crypto with clmul) based routines. */void gcm_init_rv64i_zbc(u128 Htable[16], const u64 Xi[2]);void gcm_init_rv64i_zbc__zbb(u128 Htable[16], const u64 Xi[2]);void gcm_init_rv64i_zbc__zbkb(u128 Htable[16], const u64 Xi[2]);void gcm_gmult_rv64i_zbc(u64 Xi[2], const u128 Htable[16]);void gcm_gmult_rv64i_zbc__zbkb(u64 Xi[2], const u128 Htable[16]);void gcm_ghash_rv64i_zbc(u64 Xi[2], const u128 Htable[16],                         const u8 *inp, size_t len);void gcm_ghash_rv64i_zbc__zbkb(u64 Xi[2], const u128 Htable[16],                               const u8 *inp, size_t len);/* zvkb/Zvbc (vector crypto with vclmul) based routines. */void gcm_init_rv64i_zvkb_zvbc(u128 Htable[16], const u64 Xi[2]);void gcm_gmult_rv64i_zvkb_zvbc(u64 Xi[2], const u128 Htable[16]);void gcm_ghash_rv64i_zvkb_zvbc(u64 Xi[2], const u128 Htable[16],                               const u8 *inp, size_t len);/* Zvkg (vector crypto with vgmul.vv and vghsh.vv). */void gcm_init_rv64i_zvkg(u128 Htable[16], const u64 Xi[2]);void gcm_init_rv64i_zvkg_zvkb(u128 Htable[16], const u64 Xi[2]);void gcm_gmult_rv64i_zvkg(u64 Xi[2], const u128 Htable[16]);void gcm_ghash_rv64i_zvkg(u64 Xi[2], const u128 Htable[16],                          const u8 *inp, size_t len);# endif#endifstatic void gcm_get_funcs(struct gcm_funcs_st *ctx){    /* set defaults -- overridden below as needed */    ctx->ginit = gcm_init_4bit;#if !defined(GHASH_ASM)    ctx->gmult = gcm_gmult_4bit;#else    ctx->gmult = NULL;#endif#if !defined(GHASH_ASM) && !defined(OPENSSL_SMALL_FOOTPRINT)    ctx->ghash = gcm_ghash_4bit;#else    ctx->ghash = NULL;#endif#if defined(GHASH_ASM_X86_OR_64)# if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2)    /* x86_64 */    if (OPENSSL_ia32cap_P[1] & (1 << 1)) { /* check PCLMULQDQ bit */        if (((OPENSSL_ia32cap_P[1] >> 22) & 0x41) == 0x41) { /* AVX+MOVBE */            ctx->ginit = gcm_init_avx;            ctx->gmult = gcm_gmult_avx;            ctx->ghash = gcm_ghash_avx;        } else {            ctx->ginit = gcm_init_clmul;            ctx->gmult = gcm_gmult_clmul;            ctx->ghash = gcm_ghash_clmul;        }        return;    }# endif# if defined(GHASH_ASM_X86)    /* x86 only */#  if defined(OPENSSL_IA32_SSE2)    if (OPENSSL_ia32cap_P[0] & (1 << 25)) { /* check SSE bit */        ctx->gmult = gcm_gmult_4bit_mmx;        ctx->ghash = gcm_ghash_4bit_mmx;        return;    }#  else    if (OPENSSL_ia32cap_P[0] & (1 << 23)) { /* check MMX bit */        ctx->gmult = gcm_gmult_4bit_mmx;        ctx->ghash = gcm_ghash_4bit_mmx;        return;    }#  endif    ctx->gmult = gcm_gmult_4bit_x86;    ctx->ghash = gcm_ghash_4bit_x86;    return;# else    /* x86_64 fallback defaults */    ctx->gmult = gcm_gmult_4bit;    ctx->ghash = gcm_ghash_4bit;    return;# endif#elif defined(GHASH_ASM_ARM)    /* ARM defaults */    ctx->gmult = gcm_gmult_4bit;    ctx->ghash = gcm_ghash_4bit;# ifdef PMULL_CAPABLE    if (PMULL_CAPABLE) {        ctx->ginit = (gcm_init_fn)gcm_init_v8;        ctx->gmult = gcm_gmult_v8;        ctx->ghash = gcm_ghash_v8;    }# elif defined(NEON_CAPABLE)    if (NEON_CAPABLE) {        ctx->ginit = gcm_init_neon;        ctx->gmult = gcm_gmult_neon;        ctx->ghash = gcm_ghash_neon;    }# endif    return;#elif defined(GHASH_ASM_SPARC)    /* SPARC defaults */    ctx->gmult = gcm_gmult_4bit;    ctx->ghash = gcm_ghash_4bit;    if (OPENSSL_sparcv9cap_P[0] & SPARCV9_VIS3) {        ctx->ginit = gcm_init_vis3;        ctx->gmult = gcm_gmult_vis3;        ctx->ghash = gcm_ghash_vis3;    }    return;#elif defined(GHASH_ASM_PPC)    /* PowerPC does not define GHASH_ASM; defaults set above */    if (OPENSSL_ppccap_P & PPC_CRYPTO207) {        ctx->ginit = gcm_init_p8;        ctx->gmult = gcm_gmult_p8;        ctx->ghash = gcm_ghash_p8;    }    return;#elif defined(GHASH_ASM_RV64I)    /* RISCV defaults */    ctx->gmult = gcm_gmult_4bit;    ctx->ghash = gcm_ghash_4bit;    if (RISCV_HAS_ZVKG() && riscv_vlen() >= 128) {        if (RISCV_HAS_ZVKB())            ctx->ginit = gcm_init_rv64i_zvkg_zvkb;        else            ctx->ginit = gcm_init_rv64i_zvkg;        ctx->gmult = gcm_gmult_rv64i_zvkg;        ctx->ghash = gcm_ghash_rv64i_zvkg;    } else if (RISCV_HAS_ZVKB() && RISCV_HAS_ZVBC() && riscv_vlen() >= 128) {        ctx->ginit = gcm_init_rv64i_zvkb_zvbc;        ctx->gmult = gcm_gmult_rv64i_zvkb_zvbc;        ctx->ghash = gcm_ghash_rv64i_zvkb_zvbc;    } else if (RISCV_HAS_ZBC()) {        if (RISCV_HAS_ZBKB()) {            ctx->ginit = gcm_init_rv64i_zbc__zbkb;            ctx->gmult = gcm_gmult_rv64i_zbc__zbkb;            ctx->ghash = gcm_ghash_rv64i_zbc__zbkb;        } else if (RISCV_HAS_ZBB()) {            ctx->ginit = gcm_init_rv64i_zbc__zbb;            ctx->gmult = gcm_gmult_rv64i_zbc;            ctx->ghash = gcm_ghash_rv64i_zbc;        } else {            ctx->ginit = gcm_init_rv64i_zbc;            ctx->gmult = gcm_gmult_rv64i_zbc;            ctx->ghash = gcm_ghash_rv64i_zbc;        }    }    return;#elif defined(GHASH_ASM)    /* all other architectures use the generic names */    ctx->gmult = gcm_gmult_4bit;    ctx->ghash = gcm_ghash_4bit;    return;#endif}void ossl_gcm_init_4bit(u128 Htable[16], const u64 H[2]){    struct gcm_funcs_st funcs;    gcm_get_funcs(&funcs);    funcs.ginit(Htable, H);}void ossl_gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16]){    struct gcm_funcs_st funcs;    gcm_get_funcs(&funcs);    funcs.gmult(Xi, Htable);}void ossl_gcm_ghash_4bit(u64 Xi[2], const u128 Htable[16],                         const u8 *inp, size_t len){    struct gcm_funcs_st funcs;    u64 tmp[2];    size_t i;    gcm_get_funcs(&funcs);    if (funcs.ghash != NULL) {        funcs.ghash(Xi, Htable, inp, len);    } else {        /* Emulate ghash if needed */        for (i = 0; i < len; i += 16) {            memcpy(tmp, &inp[i], sizeof(tmp));            Xi[0] ^= tmp[0];            Xi[1] ^= tmp[1];            funcs.gmult(Xi, Htable);        }    }}void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, void *key, block128_f block){    DECLARE_IS_ENDIAN;    memset(ctx, 0, sizeof(*ctx));    ctx->block = block;    ctx->key = key;    (*block) (ctx->H.c, ctx->H.c, key);    if (IS_LITTLE_ENDIAN) {        /* H is stored in host byte order */#ifdef BSWAP8        ctx->H.u[0] = BSWAP8(ctx->H.u[0]);        ctx->H.u[1] = BSWAP8(ctx->H.u[1]);#else        u8 *p = ctx->H.c;        u64 hi, lo;        hi = (u64)GETU32(p) << 32 | GETU32(p + 4);        lo = (u64)GETU32(p + 8) << 32 | GETU32(p + 12);        ctx->H.u[0] = hi;        ctx->H.u[1] = lo;#endif    }    gcm_get_funcs(&ctx->funcs);    ctx->funcs.ginit(ctx->Htable, ctx->H.u);}void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const unsigned char *iv,                         size_t len){    DECLARE_IS_ENDIAN;    unsigned int ctr;    ctx->len.u[0] = 0;          /* AAD length */    ctx->len.u[1] = 0;          /* message length */    ctx->ares = 0;    ctx->mres = 0;    if (len == 12) {        memcpy(ctx->Yi.c, iv, 12);        ctx->Yi.c[12] = 0;        ctx->Yi.c[13] = 0;        ctx->Yi.c[14] = 0;        ctx->Yi.c[15] = 1;        ctr = 1;    } else {        size_t i;        u64 len0 = len;        /* Borrow ctx->Xi to calculate initial Yi */        ctx->Xi.u[0] = 0;        ctx->Xi.u[1] = 0;        while (len >= 16) {            for (i = 0; i < 16; ++i)                ctx->Xi.c[i] ^= iv[i];            GCM_MUL(ctx);            iv += 16;            len -= 16;        }        if (len) {            for (i = 0; i < len; ++i)                ctx->Xi.c[i] ^= iv[i];            GCM_MUL(ctx);        }        len0 <<= 3;        if (IS_LITTLE_ENDIAN) {#ifdef BSWAP8            ctx->Xi.u[1] ^= BSWAP8(len0);#else            ctx->Xi.c[8] ^= (u8)(len0 >> 56);            ctx->Xi.c[9] ^= (u8)(len0 >> 48);            ctx->Xi.c[10] ^= (u8)(len0 >> 40);            ctx->Xi.c[11] ^= (u8)(len0 >> 32);            ctx->Xi.c[12] ^= (u8)(len0 >> 24);            ctx->Xi.c[13] ^= (u8)(len0 >> 16);            ctx->Xi.c[14] ^= (u8)(len0 >> 8);            ctx->Xi.c[15] ^= (u8)(len0);#endif        } else {            ctx->Xi.u[1] ^= len0;        }        GCM_MUL(ctx);        if (IS_LITTLE_ENDIAN)#ifdef BSWAP4            ctr = BSWAP4(ctx->Xi.d[3]);#else            ctr = GETU32(ctx->Xi.c + 12);#endif        else            ctr = ctx->Xi.d[3];        /* Copy borrowed Xi to Yi */        ctx->Yi.u[0] = ctx->Xi.u[0];        ctx->Yi.u[1] = ctx->Xi.u[1];    }    ctx->Xi.u[0] = 0;    ctx->Xi.u[1] = 0;    (*ctx->block) (ctx->Yi.c, ctx->EK0.c, ctx->key);    ++ctr;    if (IS_LITTLE_ENDIAN)#ifdef BSWAP4        ctx->Yi.d[3] = BSWAP4(ctr);#else        PUTU32(ctx->Yi.c + 12, ctr);#endif    else        ctx->Yi.d[3] = ctr;}int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const unsigned char *aad,                      size_t len){    size_t i;    unsigned int n;    u64 alen = ctx->len.u[0];    if (ctx->len.u[1])        return -2;    alen += len;    if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))        return -1;    ctx->len.u[0] = alen;    n = ctx->ares;    if (n) {        while (n && len) {            ctx->Xi.c[n] ^= *(aad++);            --len;            n = (n + 1) % 16;        }        if (n == 0)            GCM_MUL(ctx);        else {            ctx->ares = n;            return 0;        }    }#ifdef GHASH    if ((i = (len & (size_t)-16))) {        GHASH(ctx, aad, i);        aad += i;        len -= i;    }#else    while (len >= 16) {        for (i = 0; i < 16; ++i)            ctx->Xi.c[i] ^= aad[i];        GCM_MUL(ctx);        aad += 16;        len -= 16;    }#endif    if (len) {        n = (unsigned int)len;        for (i = 0; i < len; ++i)            ctx->Xi.c[i] ^= aad[i];    }    ctx->ares = n;    return 0;}int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,                          const unsigned char *in, unsigned char *out,                          size_t len){    DECLARE_IS_ENDIAN;    unsigned int n, ctr, mres;    size_t i;    u64 mlen = ctx->len.u[1];    block128_f block = ctx->block;    void *key = ctx->key;    mlen += len;    if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))        return -1;    ctx->len.u[1] = mlen;    mres = ctx->mres;    if (ctx->ares) {        /* First call to encrypt finalizes GHASH(AAD) */#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)        if (len == 0) {            GCM_MUL(ctx);            ctx->ares = 0;            return 0;        }        memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi));        ctx->Xi.u[0] = 0;        ctx->Xi.u[1] = 0;        mres = sizeof(ctx->Xi);#else        GCM_MUL(ctx);#endif        ctx->ares = 0;    }    if (IS_LITTLE_ENDIAN)#ifdef BSWAP4        ctr = BSWAP4(ctx->Yi.d[3]);#else        ctr = GETU32(ctx->Yi.c + 12);#endif    else        ctr = ctx->Yi.d[3];    n = mres % 16;#if !defined(OPENSSL_SMALL_FOOTPRINT)    if (16 % sizeof(size_t) == 0) { /* always true actually */        do {            if (n) {# if defined(GHASH)                while (n && len) {                    ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n];                    --len;                    n = (n + 1) % 16;                }                if (n == 0) {                    GHASH(ctx, ctx->Xn, mres);                    mres = 0;                } else {                    ctx->mres = mres;                    return 0;                }# else                while (n && len) {                    ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];                    --len;                    n = (n + 1) % 16;                }                if (n == 0) {                    GCM_MUL(ctx);                    mres = 0;                } else {                    ctx->mres = n;                    return 0;                }# endif            }# if defined(STRICT_ALIGNMENT)            if (((size_t)in | (size_t)out) % sizeof(size_t) != 0)                break;# endif# if defined(GHASH)            if (len >= 16 && mres) {                GHASH(ctx, ctx->Xn, mres);                mres = 0;            }#  if defined(GHASH_CHUNK)            while (len >= GHASH_CHUNK) {                size_t j = GHASH_CHUNK;                while (j) {                    size_t_aX *out_t = (size_t_aX *)out;                    const size_t_aX *in_t = (const size_t_aX *)in;                    (*block) (ctx->Yi.c, ctx->EKi.c, key);                    ++ctr;                    if (IS_LITTLE_ENDIAN)#   ifdef BSWAP4                        ctx->Yi.d[3] = BSWAP4(ctr);#   else                        PUTU32(ctx->Yi.c + 12, ctr);#   endif                    else                        ctx->Yi.d[3] = ctr;                    for (i = 0; i < 16 / sizeof(size_t); ++i)                        out_t[i] = in_t[i] ^ ctx->EKi.t[i];                    out += 16;                    in += 16;                    j -= 16;                }                GHASH(ctx, out - GHASH_CHUNK, GHASH_CHUNK);                len -= GHASH_CHUNK;            }#  endif            if ((i = (len & (size_t)-16))) {                size_t j = i;                while (len >= 16) {                    size_t_aX *out_t = (size_t_aX *)out;                    const size_t_aX *in_t = (const size_t_aX *)in;                    (*block) (ctx->Yi.c, ctx->EKi.c, key);                    ++ctr;                    if (IS_LITTLE_ENDIAN)#  ifdef BSWAP4                        ctx->Yi.d[3] = BSWAP4(ctr);#  else                        PUTU32(ctx->Yi.c + 12, ctr);#  endif                    else                        ctx->Yi.d[3] = ctr;                    for (i = 0; i < 16 / sizeof(size_t); ++i)                        out_t[i] = in_t[i] ^ ctx->EKi.t[i];                    out += 16;                    in += 16;                    len -= 16;                }                GHASH(ctx, out - j, j);            }# else            while (len >= 16) {                size_t *out_t = (size_t *)out;                const size_t *in_t = (const size_t *)in;                (*block) (ctx->Yi.c, ctx->EKi.c, key);                ++ctr;                if (IS_LITTLE_ENDIAN)#  ifdef BSWAP4                    ctx->Yi.d[3] = BSWAP4(ctr);#  else                    PUTU32(ctx->Yi.c + 12, ctr);#  endif                else                    ctx->Yi.d[3] = ctr;                for (i = 0; i < 16 / sizeof(size_t); ++i)                    ctx->Xi.t[i] ^= out_t[i] = in_t[i] ^ ctx->EKi.t[i];                GCM_MUL(ctx);                out += 16;                in += 16;                len -= 16;            }# endif            if (len) {                (*block) (ctx->Yi.c, ctx->EKi.c, key);                ++ctr;                if (IS_LITTLE_ENDIAN)# ifdef BSWAP4                    ctx->Yi.d[3] = BSWAP4(ctr);# else                    PUTU32(ctx->Yi.c + 12, ctr);# endif                else                    ctx->Yi.d[3] = ctr;# if defined(GHASH)                while (len--) {                    ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n];                    ++n;                }# else                while (len--) {                    ctx->Xi.c[n] ^= out[n] = in[n] ^ ctx->EKi.c[n];                    ++n;                }                mres = n;# endif            }            ctx->mres = mres;            return 0;        } while (0);    }#endif    for (i = 0; i < len; ++i) {        if (n == 0) {            (*block) (ctx->Yi.c, ctx->EKi.c, key);            ++ctr;            if (IS_LITTLE_ENDIAN)#ifdef BSWAP4                ctx->Yi.d[3] = BSWAP4(ctr);#else                PUTU32(ctx->Yi.c + 12, ctr);#endif            else                ctx->Yi.d[3] = ctr;        }#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)        ctx->Xn[mres++] = out[i] = in[i] ^ ctx->EKi.c[n];        n = (n + 1) % 16;        if (mres == sizeof(ctx->Xn)) {            GHASH(ctx,ctx->Xn,sizeof(ctx->Xn));            mres = 0;        }#else        ctx->Xi.c[n] ^= out[i] = in[i] ^ ctx->EKi.c[n];        mres = n = (n + 1) % 16;        if (n == 0)            GCM_MUL(ctx);#endif    }    ctx->mres = mres;    return 0;}int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,                          const unsigned char *in, unsigned char *out,                          size_t len){    DECLARE_IS_ENDIAN;    unsigned int n, ctr, mres;    size_t i;    u64 mlen = ctx->len.u[1];    block128_f block = ctx->block;    void *key = ctx->key;    mlen += len;    if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))        return -1;    ctx->len.u[1] = mlen;    mres = ctx->mres;    if (ctx->ares) {        /* First call to decrypt finalizes GHASH(AAD) */#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)        if (len == 0) {            GCM_MUL(ctx);            ctx->ares = 0;            return 0;        }        memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi));        ctx->Xi.u[0] = 0;        ctx->Xi.u[1] = 0;        mres = sizeof(ctx->Xi);#else        GCM_MUL(ctx);#endif        ctx->ares = 0;    }    if (IS_LITTLE_ENDIAN)#ifdef BSWAP4        ctr = BSWAP4(ctx->Yi.d[3]);#else        ctr = GETU32(ctx->Yi.c + 12);#endif    else        ctr = ctx->Yi.d[3];    n = mres % 16;#if !defined(OPENSSL_SMALL_FOOTPRINT)    if (16 % sizeof(size_t) == 0) { /* always true actually */        do {            if (n) {# if defined(GHASH)                while (n && len) {                    *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n];                    --len;                    n = (n + 1) % 16;                }                if (n == 0) {                    GHASH(ctx, ctx->Xn, mres);                    mres = 0;                } else {                    ctx->mres = mres;                    return 0;                }# else                while (n && len) {                    u8 c = *(in++);                    *(out++) = c ^ ctx->EKi.c[n];                    ctx->Xi.c[n] ^= c;                    --len;                    n = (n + 1) % 16;                }                if (n == 0) {                    GCM_MUL(ctx);                    mres = 0;                } else {                    ctx->mres = n;                    return 0;                }# endif            }# if defined(STRICT_ALIGNMENT)            if (((size_t)in | (size_t)out) % sizeof(size_t) != 0)                break;# endif# if defined(GHASH)            if (len >= 16 && mres) {                GHASH(ctx, ctx->Xn, mres);                mres = 0;            }#  if defined(GHASH_CHUNK)            while (len >= GHASH_CHUNK) {                size_t j = GHASH_CHUNK;                GHASH(ctx, in, GHASH_CHUNK);                while (j) {                    size_t_aX *out_t = (size_t_aX *)out;                    const size_t_aX *in_t = (const size_t_aX *)in;                    (*block) (ctx->Yi.c, ctx->EKi.c, key);                    ++ctr;                    if (IS_LITTLE_ENDIAN)#   ifdef BSWAP4                        ctx->Yi.d[3] = BSWAP4(ctr);#   else                        PUTU32(ctx->Yi.c + 12, ctr);#   endif                    else                        ctx->Yi.d[3] = ctr;                    for (i = 0; i < 16 / sizeof(size_t); ++i)                        out_t[i] = in_t[i] ^ ctx->EKi.t[i];                    out += 16;                    in += 16;                    j -= 16;                }                len -= GHASH_CHUNK;            }#  endif            if ((i = (len & (size_t)-16))) {                GHASH(ctx, in, i);                while (len >= 16) {                    size_t_aX *out_t = (size_t_aX *)out;                    const size_t_aX *in_t = (const size_t_aX *)in;                    (*block) (ctx->Yi.c, ctx->EKi.c, key);                    ++ctr;                    if (IS_LITTLE_ENDIAN)#  ifdef BSWAP4                        ctx->Yi.d[3] = BSWAP4(ctr);#  else                        PUTU32(ctx->Yi.c + 12, ctr);#  endif                    else                        ctx->Yi.d[3] = ctr;                    for (i = 0; i < 16 / sizeof(size_t); ++i)                        out_t[i] = in_t[i] ^ ctx->EKi.t[i];                    out += 16;                    in += 16;                    len -= 16;                }            }# else            while (len >= 16) {                size_t *out_t = (size_t *)out;                const size_t *in_t = (const size_t *)in;                (*block) (ctx->Yi.c, ctx->EKi.c, key);                ++ctr;                if (IS_LITTLE_ENDIAN)#  ifdef BSWAP4                    ctx->Yi.d[3] = BSWAP4(ctr);#  else                    PUTU32(ctx->Yi.c + 12, ctr);#  endif                else                    ctx->Yi.d[3] = ctr;                for (i = 0; i < 16 / sizeof(size_t); ++i) {                    size_t c = in_t[i];                    out_t[i] = c ^ ctx->EKi.t[i];                    ctx->Xi.t[i] ^= c;                }                GCM_MUL(ctx);                out += 16;                in += 16;                len -= 16;            }# endif            if (len) {                (*block) (ctx->Yi.c, ctx->EKi.c, key);                ++ctr;                if (IS_LITTLE_ENDIAN)# ifdef BSWAP4                    ctx->Yi.d[3] = BSWAP4(ctr);# else                    PUTU32(ctx->Yi.c + 12, ctr);# endif                else                    ctx->Yi.d[3] = ctr;# if defined(GHASH)                while (len--) {                    out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n];                    ++n;                }# else                while (len--) {                    u8 c = in[n];                    ctx->Xi.c[n] ^= c;                    out[n] = c ^ ctx->EKi.c[n];                    ++n;                }                mres = n;# endif            }            ctx->mres = mres;            return 0;        } while (0);    }#endif    for (i = 0; i < len; ++i) {        u8 c;        if (n == 0) {            (*block) (ctx->Yi.c, ctx->EKi.c, key);            ++ctr;            if (IS_LITTLE_ENDIAN)#ifdef BSWAP4                ctx->Yi.d[3] = BSWAP4(ctr);#else                PUTU32(ctx->Yi.c + 12, ctr);#endif            else                ctx->Yi.d[3] = ctr;        }#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)        out[i] = (ctx->Xn[mres++] = c = in[i]) ^ ctx->EKi.c[n];        n = (n + 1) % 16;        if (mres == sizeof(ctx->Xn)) {            GHASH(ctx,ctx->Xn,sizeof(ctx->Xn));            mres = 0;        }#else        c = in[i];        out[i] = c ^ ctx->EKi.c[n];        ctx->Xi.c[n] ^= c;        mres = n = (n + 1) % 16;        if (n == 0)            GCM_MUL(ctx);#endif    }    ctx->mres = mres;    return 0;}int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,                                const unsigned char *in, unsigned char *out,                                size_t len, ctr128_f stream){#if defined(OPENSSL_SMALL_FOOTPRINT)    return CRYPTO_gcm128_encrypt(ctx, in, out, len);#else    DECLARE_IS_ENDIAN;    unsigned int n, ctr, mres;    size_t i;    u64 mlen = ctx->len.u[1];    void *key = ctx->key;    mlen += len;    if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))        return -1;    ctx->len.u[1] = mlen;    mres = ctx->mres;    if (ctx->ares) {        /* First call to encrypt finalizes GHASH(AAD) */#if defined(GHASH)        if (len == 0) {            GCM_MUL(ctx);            ctx->ares = 0;            return 0;        }        memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi));        ctx->Xi.u[0] = 0;        ctx->Xi.u[1] = 0;        mres = sizeof(ctx->Xi);#else        GCM_MUL(ctx);#endif        ctx->ares = 0;    }    if (IS_LITTLE_ENDIAN)# ifdef BSWAP4        ctr = BSWAP4(ctx->Yi.d[3]);# else        ctr = GETU32(ctx->Yi.c + 12);# endif    else        ctr = ctx->Yi.d[3];    n = mres % 16;    if (n) {# if defined(GHASH)        while (n && len) {            ctx->Xn[mres++] = *(out++) = *(in++) ^ ctx->EKi.c[n];            --len;            n = (n + 1) % 16;        }        if (n == 0) {            GHASH(ctx, ctx->Xn, mres);            mres = 0;        } else {            ctx->mres = mres;            return 0;        }# else        while (n && len) {            ctx->Xi.c[n] ^= *(out++) = *(in++) ^ ctx->EKi.c[n];            --len;            n = (n + 1) % 16;        }        if (n == 0) {            GCM_MUL(ctx);            mres = 0;        } else {            ctx->mres = n;            return 0;        }# endif    }# if defined(GHASH)        if (len >= 16 && mres) {            GHASH(ctx, ctx->Xn, mres);            mres = 0;        }#  if defined(GHASH_CHUNK)    while (len >= GHASH_CHUNK) {        (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c);        ctr += GHASH_CHUNK / 16;        if (IS_LITTLE_ENDIAN)#   ifdef BSWAP4            ctx->Yi.d[3] = BSWAP4(ctr);#   else            PUTU32(ctx->Yi.c + 12, ctr);#   endif        else            ctx->Yi.d[3] = ctr;        GHASH(ctx, out, GHASH_CHUNK);        out += GHASH_CHUNK;        in += GHASH_CHUNK;        len -= GHASH_CHUNK;    }#  endif# endif    if ((i = (len & (size_t)-16))) {        size_t j = i / 16;        (*stream) (in, out, j, key, ctx->Yi.c);        ctr += (unsigned int)j;        if (IS_LITTLE_ENDIAN)# ifdef BSWAP4            ctx->Yi.d[3] = BSWAP4(ctr);# else            PUTU32(ctx->Yi.c + 12, ctr);# endif        else            ctx->Yi.d[3] = ctr;        in += i;        len -= i;# if defined(GHASH)        GHASH(ctx, out, i);        out += i;# else        while (j--) {            for (i = 0; i < 16; ++i)                ctx->Xi.c[i] ^= out[i];            GCM_MUL(ctx);            out += 16;        }# endif    }    if (len) {        (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key);        ++ctr;        if (IS_LITTLE_ENDIAN)# ifdef BSWAP4            ctx->Yi.d[3] = BSWAP4(ctr);# else            PUTU32(ctx->Yi.c + 12, ctr);# endif        else            ctx->Yi.d[3] = ctr;        while (len--) {# if defined(GHASH)            ctx->Xn[mres++] = out[n] = in[n] ^ ctx->EKi.c[n];# else            ctx->Xi.c[mres++] ^= out[n] = in[n] ^ ctx->EKi.c[n];# endif            ++n;        }    }    ctx->mres = mres;    return 0;#endif}int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,                                const unsigned char *in, unsigned char *out,                                size_t len, ctr128_f stream){#if defined(OPENSSL_SMALL_FOOTPRINT)    return CRYPTO_gcm128_decrypt(ctx, in, out, len);#else    DECLARE_IS_ENDIAN;    unsigned int n, ctr, mres;    size_t i;    u64 mlen = ctx->len.u[1];    void *key = ctx->key;    mlen += len;    if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))        return -1;    ctx->len.u[1] = mlen;    mres = ctx->mres;    if (ctx->ares) {        /* First call to decrypt finalizes GHASH(AAD) */# if defined(GHASH)        if (len == 0) {            GCM_MUL(ctx);            ctx->ares = 0;            return 0;        }        memcpy(ctx->Xn, ctx->Xi.c, sizeof(ctx->Xi));        ctx->Xi.u[0] = 0;        ctx->Xi.u[1] = 0;        mres = sizeof(ctx->Xi);# else        GCM_MUL(ctx);# endif        ctx->ares = 0;    }    if (IS_LITTLE_ENDIAN)# ifdef BSWAP4        ctr = BSWAP4(ctx->Yi.d[3]);# else        ctr = GETU32(ctx->Yi.c + 12);# endif    else        ctr = ctx->Yi.d[3];    n = mres % 16;    if (n) {# if defined(GHASH)        while (n && len) {            *(out++) = (ctx->Xn[mres++] = *(in++)) ^ ctx->EKi.c[n];            --len;            n = (n + 1) % 16;        }        if (n == 0) {            GHASH(ctx, ctx->Xn, mres);            mres = 0;        } else {            ctx->mres = mres;            return 0;        }# else        while (n && len) {            u8 c = *(in++);            *(out++) = c ^ ctx->EKi.c[n];            ctx->Xi.c[n] ^= c;            --len;            n = (n + 1) % 16;        }        if (n == 0) {            GCM_MUL(ctx);            mres = 0;        } else {            ctx->mres = n;            return 0;        }# endif    }# if defined(GHASH)    if (len >= 16 && mres) {        GHASH(ctx, ctx->Xn, mres);        mres = 0;    }#  if defined(GHASH_CHUNK)    while (len >= GHASH_CHUNK) {        GHASH(ctx, in, GHASH_CHUNK);        (*stream) (in, out, GHASH_CHUNK / 16, key, ctx->Yi.c);        ctr += GHASH_CHUNK / 16;        if (IS_LITTLE_ENDIAN)#   ifdef BSWAP4            ctx->Yi.d[3] = BSWAP4(ctr);#   else            PUTU32(ctx->Yi.c + 12, ctr);#   endif        else            ctx->Yi.d[3] = ctr;        out += GHASH_CHUNK;        in += GHASH_CHUNK;        len -= GHASH_CHUNK;    }#  endif# endif    if ((i = (len & (size_t)-16))) {        size_t j = i / 16;# if defined(GHASH)        GHASH(ctx, in, i);# else        while (j--) {            size_t k;            for (k = 0; k < 16; ++k)                ctx->Xi.c[k] ^= in[k];            GCM_MUL(ctx);            in += 16;        }        j = i / 16;        in -= i;# endif        (*stream) (in, out, j, key, ctx->Yi.c);        ctr += (unsigned int)j;        if (IS_LITTLE_ENDIAN)# ifdef BSWAP4            ctx->Yi.d[3] = BSWAP4(ctr);# else            PUTU32(ctx->Yi.c + 12, ctr);# endif        else            ctx->Yi.d[3] = ctr;        out += i;        in += i;        len -= i;    }    if (len) {        (*ctx->block) (ctx->Yi.c, ctx->EKi.c, key);        ++ctr;        if (IS_LITTLE_ENDIAN)# ifdef BSWAP4            ctx->Yi.d[3] = BSWAP4(ctr);# else            PUTU32(ctx->Yi.c + 12, ctr);# endif        else            ctx->Yi.d[3] = ctr;        while (len--) {# if defined(GHASH)            out[n] = (ctx->Xn[mres++] = in[n]) ^ ctx->EKi.c[n];# else            u8 c = in[n];            ctx->Xi.c[mres++] ^= c;            out[n] = c ^ ctx->EKi.c[n];# endif            ++n;        }    }    ctx->mres = mres;    return 0;#endif}int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const unsigned char *tag,                         size_t len){    DECLARE_IS_ENDIAN;    u64 alen = ctx->len.u[0] << 3;    u64 clen = ctx->len.u[1] << 3;#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)    u128 bitlen;    unsigned int mres = ctx->mres;    if (mres) {        unsigned blocks = (mres + 15) & -16;        memset(ctx->Xn + mres, 0, blocks - mres);        mres = blocks;        if (mres == sizeof(ctx->Xn)) {            GHASH(ctx, ctx->Xn, mres);            mres = 0;        }    } else if (ctx->ares) {        GCM_MUL(ctx);    }#else    if (ctx->mres || ctx->ares)        GCM_MUL(ctx);#endif    if (IS_LITTLE_ENDIAN) {#ifdef BSWAP8        alen = BSWAP8(alen);        clen = BSWAP8(clen);#else        u8 *p = ctx->len.c;        ctx->len.u[0] = alen;        ctx->len.u[1] = clen;        alen = (u64)GETU32(p) << 32 | GETU32(p + 4);        clen = (u64)GETU32(p + 8) << 32 | GETU32(p + 12);#endif    }#if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)    bitlen.hi = alen;    bitlen.lo = clen;    memcpy(ctx->Xn + mres, &bitlen, sizeof(bitlen));    mres += sizeof(bitlen);    GHASH(ctx, ctx->Xn, mres);#else    ctx->Xi.u[0] ^= alen;    ctx->Xi.u[1] ^= clen;    GCM_MUL(ctx);#endif    ctx->Xi.u[0] ^= ctx->EK0.u[0];    ctx->Xi.u[1] ^= ctx->EK0.u[1];    if (tag && len <= sizeof(ctx->Xi))        return CRYPTO_memcmp(ctx->Xi.c, tag, len);    else        return -1;}void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len){    CRYPTO_gcm128_finish(ctx, NULL, 0);    memcpy(tag, ctx->Xi.c,           len <= sizeof(ctx->Xi.c) ? len : sizeof(ctx->Xi.c));}GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block){    GCM128_CONTEXT *ret;    if ((ret = OPENSSL_malloc(sizeof(*ret))) != NULL)        CRYPTO_gcm128_init(ret, key, block);    return ret;}void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx){    OPENSSL_clear_free(ctx, sizeof(*ctx));}
 |