| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709 | /* * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License").  You may not use * this file except in compliance with the License.  You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html *//* * NB: these functions have been "upgraded", the deprecated versions (which * are compatibility wrappers using these functions) are in rsa_depr.c. - * Geoff *//* * RSA low level APIs are deprecated for public use, but still ok for * internal use. */#include "internal/deprecated.h"#include <stdio.h>#include <time.h>#include "internal/cryptlib.h"#include <openssl/bn.h>#include <openssl/self_test.h>#include "prov/providercommon.h"#include "rsa_local.h"static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg);static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,                      BIGNUM *e_value, BN_GENCB *cb, int pairwise_test);/* * NB: this wrapper would normally be placed in rsa_lib.c and the static * implementation would probably be in rsa_eay.c. Nonetheless, is kept here * so that we don't introduce a new linker dependency. Eg. any application * that wasn't previously linking object code related to key-generation won't * have to now just because key-generation is part of RSA_METHOD. */int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb){    if (rsa->meth->rsa_keygen != NULL)        return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);    return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,                                        e_value, cb);}int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,                                 BIGNUM *e_value, BN_GENCB *cb){#ifndef FIPS_MODULE    /* multi-prime is only supported with the builtin key generation */    if (rsa->meth->rsa_multi_prime_keygen != NULL) {        return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,                                                 e_value, cb);    } else if (rsa->meth->rsa_keygen != NULL) {        /*         * However, if rsa->meth implements only rsa_keygen, then we         * have to honour it in 2-prime case and assume that it wouldn't         * know what to do with multi-prime key generated by builtin         * subroutine...         */        if (primes == 2)            return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);        else            return 0;    }#endif /* FIPS_MODULE */    return rsa_keygen(rsa->libctx, rsa, bits, primes, e_value, cb, 0);}DEFINE_STACK_OF(BIGNUM)/* * Given input values, q, p, n, d and e, derive the exponents * and coefficients for each prime in this key, placing the result * on their respective exps and coeffs stacks */#ifndef FIPS_MODULEint ossl_rsa_multiprime_derive(RSA *rsa, int bits, int primes,                               BIGNUM *e_value,                               STACK_OF(BIGNUM) *factors,                               STACK_OF(BIGNUM) *exps,                               STACK_OF(BIGNUM) *coeffs){    STACK_OF(BIGNUM) *pplist = NULL, *pdlist = NULL;    BIGNUM *factor = NULL, *newpp = NULL, *newpd = NULL;    BIGNUM *dval = NULL, *newexp = NULL, *newcoeff = NULL;    BIGNUM *p = NULL, *q = NULL;    BIGNUM *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL;    BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL;    BN_CTX *ctx = NULL;    BIGNUM *tmp = NULL;    int i;    int ret = 0;    ctx = BN_CTX_new_ex(rsa->libctx);    if (ctx == NULL)        goto err;    BN_CTX_start(ctx);    pplist = sk_BIGNUM_new_null();    if (pplist == NULL)        goto err;    pdlist = sk_BIGNUM_new_null();    if (pdlist == NULL)        goto err;    r0 = BN_CTX_get(ctx);    r1 = BN_CTX_get(ctx);    r2 = BN_CTX_get(ctx);    if (r2 == NULL)        goto err;    BN_set_flags(r0, BN_FLG_CONSTTIME);    BN_set_flags(r1, BN_FLG_CONSTTIME);    BN_set_flags(r2, BN_FLG_CONSTTIME);    if (BN_copy(r1, rsa->n) == NULL)        goto err;    p = sk_BIGNUM_value(factors, 0);    q = sk_BIGNUM_value(factors, 1);    /* Build list of partial products of primes */    for (i = 0; i < sk_BIGNUM_num(factors); i++) {        switch (i) {        case 0:            /* our first prime, p */            if (!BN_sub(r2, p, BN_value_one()))                goto err;            BN_set_flags(r2, BN_FLG_CONSTTIME);            if (BN_mod_inverse(r1, r2, rsa->e, ctx) == NULL)                goto err;            break;        case 1:            /* second prime q */            if (!BN_mul(r1, p, q, ctx))                goto err;            tmp = BN_dup(r1);            if (tmp == NULL)                goto err;            if (!sk_BIGNUM_insert(pplist, tmp, sk_BIGNUM_num(pplist)))                goto err;            break;        default:            factor = sk_BIGNUM_value(factors, i);            /* all other primes */            if (!BN_mul(r1, r1, factor, ctx))                goto err;            tmp = BN_dup(r1);            if (tmp == NULL)                goto err;            if (!sk_BIGNUM_insert(pplist, tmp, sk_BIGNUM_num(pplist)))                goto err;            break;        }    }    /* build list of relative d values */    /* p -1 */    if (!BN_sub(r1, p, BN_value_one()))        goto err;    if (!BN_sub(r2, q, BN_value_one()))        goto err;    if (!BN_mul(r0, r1, r2, ctx))        goto err;    for (i = 2; i < sk_BIGNUM_num(factors); i++) {        factor = sk_BIGNUM_value(factors, i);        dval = BN_new();        if (dval == NULL)            goto err;        BN_set_flags(dval, BN_FLG_CONSTTIME);        if (!BN_sub(dval, factor, BN_value_one()))            goto err;        if (!BN_mul(r0, r0, dval, ctx))            goto err;        if (!sk_BIGNUM_insert(pdlist, dval, sk_BIGNUM_num(pdlist)))            goto err;    }    /* Calculate dmp1, dmq1 and additional exponents */    dmp1 = BN_secure_new();    if (dmp1 == NULL)        goto err;    dmq1 = BN_secure_new();    if (dmq1 == NULL)        goto err;    if (!BN_mod(dmp1, rsa->d, r1, ctx))        goto err;    if (!sk_BIGNUM_insert(exps, dmp1, sk_BIGNUM_num(exps)))        goto err;    dmp1 = NULL;    if (!BN_mod(dmq1, rsa->d, r2, ctx))        goto err;    if (!sk_BIGNUM_insert(exps, dmq1, sk_BIGNUM_num(exps)))        goto err;    dmq1 = NULL;    for (i = 2; i < sk_BIGNUM_num(factors); i++) {        newpd = sk_BIGNUM_value(pdlist, i - 2);        newexp = BN_new();        if (newexp == NULL)            goto err;        if (!BN_mod(newexp, rsa->d, newpd, ctx)) {            BN_free(newexp);            goto err;        }        if (!sk_BIGNUM_insert(exps, newexp, sk_BIGNUM_num(exps)))            goto err;    }    /* Calculate iqmp and additional coefficients */    iqmp = BN_new();    if (iqmp == NULL)        goto err;    if (BN_mod_inverse(iqmp, sk_BIGNUM_value(factors, 1),                       sk_BIGNUM_value(factors, 0), ctx) == NULL)        goto err;    if (!sk_BIGNUM_insert(coeffs, iqmp, sk_BIGNUM_num(coeffs)))        goto err;    iqmp = NULL;    for (i = 2; i < sk_BIGNUM_num(factors); i++) {        newpp = sk_BIGNUM_value(pplist, i - 2);        newcoeff = BN_new();        if (newcoeff == NULL)            goto err;        if (BN_mod_inverse(newcoeff, newpp, sk_BIGNUM_value(factors, i),                           ctx) == NULL) {            BN_free(newcoeff);            goto err;        }        if (!sk_BIGNUM_insert(coeffs, newcoeff, sk_BIGNUM_num(coeffs)))            goto err;    }    ret = 1; err:    sk_BIGNUM_pop_free(pplist, BN_free);    sk_BIGNUM_pop_free(pdlist, BN_free);    BN_CTX_end(ctx);    BN_CTX_free(ctx);    BN_clear_free(dmp1);    BN_clear_free(dmq1);    BN_clear_free(iqmp);    return ret;}static int rsa_multiprime_keygen(RSA *rsa, int bits, int primes,                                 BIGNUM *e_value, BN_GENCB *cb){    BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *tmp2, *prime;    int n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;    int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;    RSA_PRIME_INFO *pinfo = NULL;    STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;    STACK_OF(BIGNUM) *factors = NULL;    STACK_OF(BIGNUM) *exps = NULL;    STACK_OF(BIGNUM) *coeffs = NULL;    BN_CTX *ctx = NULL;    BN_ULONG bitst = 0;    unsigned long error = 0;    int ok = -1;    if (bits < RSA_MIN_MODULUS_BITS) {        ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);        return 0;    }    if (e_value == NULL) {        ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE);        return 0;    }    /* A bad value for e can cause infinite loops */    if (!ossl_rsa_check_public_exponent(e_value)) {        ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE);        return 0;    }    if (primes < RSA_DEFAULT_PRIME_NUM || primes > ossl_rsa_multip_cap(bits)) {        ERR_raise(ERR_LIB_RSA, RSA_R_KEY_PRIME_NUM_INVALID);        return 0;    }    factors = sk_BIGNUM_new_null();    if (factors == NULL)        return 0;    exps = sk_BIGNUM_new_null();    if (exps == NULL)        goto err;    coeffs = sk_BIGNUM_new_null();    if (coeffs == NULL)        goto err;    ctx = BN_CTX_new_ex(rsa->libctx);    if (ctx == NULL)        goto err;    BN_CTX_start(ctx);    r0 = BN_CTX_get(ctx);    r1 = BN_CTX_get(ctx);    r2 = BN_CTX_get(ctx);    if (r2 == NULL)        goto err;    /* divide bits into 'primes' pieces evenly */    quo = bits / primes;    rmd = bits % primes;    for (i = 0; i < primes; i++)        bitsr[i] = (i < rmd) ? quo + 1 : quo;    rsa->dirty_cnt++;    /* We need the RSA components non-NULL */    if (!rsa->n && ((rsa->n = BN_new()) == NULL))        goto err;    if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))        goto err;    BN_set_flags(rsa->d, BN_FLG_CONSTTIME);    if (!rsa->e && ((rsa->e = BN_new()) == NULL))        goto err;    if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))        goto err;    BN_set_flags(rsa->p, BN_FLG_CONSTTIME);    if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))        goto err;    BN_set_flags(rsa->q, BN_FLG_CONSTTIME);    /* initialize multi-prime components */    if (primes > RSA_DEFAULT_PRIME_NUM) {        rsa->version = RSA_ASN1_VERSION_MULTI;        prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);        if (prime_infos == NULL)            goto err;        if (rsa->prime_infos != NULL) {            /* could this happen? */            sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos,                                       ossl_rsa_multip_info_free);        }        rsa->prime_infos = prime_infos;        /* prime_info from 2 to |primes| -1 */        for (i = 2; i < primes; i++) {            pinfo = ossl_rsa_multip_info_new();            if (pinfo == NULL)                goto err;            (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);        }    }    if (BN_copy(rsa->e, e_value) == NULL)        goto err;    /* generate p, q and other primes (if any) */    for (i = 0; i < primes; i++) {        adj = 0;        retries = 0;        if (i == 0) {            prime = rsa->p;        } else if (i == 1) {            prime = rsa->q;        } else {            pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);            prime = pinfo->r;        }        BN_set_flags(prime, BN_FLG_CONSTTIME);        for (;;) { redo:            if (!BN_generate_prime_ex2(prime, bitsr[i] + adj, 0, NULL, NULL,                                       cb, ctx))                goto err;            /*             * prime should not be equal to p, q, r_3...             * (those primes prior to this one)             */            {                int j;                for (j = 0; j < i; j++) {                    BIGNUM *prev_prime;                    if (j == 0)                        prev_prime = rsa->p;                    else if (j == 1)                        prev_prime = rsa->q;                    else                        prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,                                                             j - 2)->r;                    if (!BN_cmp(prime, prev_prime)) {                        goto redo;                    }                }            }            if (!BN_sub(r2, prime, BN_value_one()))                goto err;            ERR_set_mark();            BN_set_flags(r2, BN_FLG_CONSTTIME);            if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) {                /* GCD == 1 since inverse exists */                break;            }            error = ERR_peek_last_error();            if (ERR_GET_LIB(error) == ERR_LIB_BN                && ERR_GET_REASON(error) == BN_R_NO_INVERSE) {                /* GCD != 1 */                ERR_pop_to_mark();            } else {                goto err;            }            if (!BN_GENCB_call(cb, 2, n++))                goto err;        }        bitse += bitsr[i];        /* calculate n immediately to see if it's sufficient */        if (i == 1) {            /* we get at least 2 primes */            if (!BN_mul(r1, rsa->p, rsa->q, ctx))                goto err;        } else if (i != 0) {            /* modulus n = p * q * r_3 * r_4 ... */            if (!BN_mul(r1, rsa->n, prime, ctx))                goto err;        } else {            /* i == 0, do nothing */            if (!BN_GENCB_call(cb, 3, i))                goto err;            tmp = BN_dup(prime);            if (tmp == NULL)                goto err;            if (!sk_BIGNUM_insert(factors, tmp, sk_BIGNUM_num(factors)))                goto err;            continue;        }        /*         * if |r1|, product of factors so far, is not as long as expected         * (by checking the first 4 bits are less than 0x9 or greater than         * 0xF). If so, re-generate the last prime.         *         * NOTE: This actually can't happen in two-prime case, because of         * the way factors are generated.         *         * Besides, another consideration is, for multi-prime case, even the         * length modulus is as long as expected, the modulus could start at         * 0x8, which could be utilized to distinguish a multi-prime private         * key by using the modulus in a certificate. This is also covered         * by checking the length should not be less than 0x9.         */        if (!BN_rshift(r2, r1, bitse - 4))            goto err;        bitst = BN_get_word(r2);        if (bitst < 0x9 || bitst > 0xF) {            /*             * For keys with more than 4 primes, we attempt longer factor to             * meet length requirement.             *             * Otherwise, we just re-generate the prime with the same length.             *             * This strategy has the following goals:             *             * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key             * 2. stay the same logic with normal 2-prime key             */            bitse -= bitsr[i];            if (!BN_GENCB_call(cb, 2, n++))                goto err;            if (primes > 4) {                if (bitst < 0x9)                    adj++;                else                    adj--;            } else if (retries == 4) {                /*                 * re-generate all primes from scratch, mainly used                 * in 4 prime case to avoid long loop. Max retry times                 * is set to 4.                 */                i = -1;                bitse = 0;                sk_BIGNUM_pop_free(factors, BN_clear_free);                factors = sk_BIGNUM_new_null();                if (factors == NULL)                    goto err;                continue;            }            retries++;            goto redo;        }        /* save product of primes for further use, for multi-prime only */        if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)            goto err;        if (BN_copy(rsa->n, r1) == NULL)            goto err;        if (!BN_GENCB_call(cb, 3, i))            goto err;        tmp = BN_dup(prime);        if (tmp == NULL)            goto err;        if (!sk_BIGNUM_insert(factors, tmp, sk_BIGNUM_num(factors)))            goto err;    }    if (BN_cmp(rsa->p, rsa->q) < 0) {        tmp = rsa->p;        rsa->p = rsa->q;        rsa->q = tmp;        /* mirror this in our factor stack */        if (!sk_BIGNUM_insert(factors, sk_BIGNUM_delete(factors, 0), 1))            goto err;    }    /* calculate d */    /* p - 1 */    if (!BN_sub(r1, rsa->p, BN_value_one()))        goto err;    /* q - 1 */    if (!BN_sub(r2, rsa->q, BN_value_one()))        goto err;    /* (p - 1)(q - 1) */    if (!BN_mul(r0, r1, r2, ctx))        goto err;    /* multi-prime */    for (i = 2; i < primes; i++) {        pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);        /* save r_i - 1 to pinfo->d temporarily */        if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))            goto err;        if (!BN_mul(r0, r0, pinfo->d, ctx))            goto err;    }    BN_set_flags(r0, BN_FLG_CONSTTIME);    if (BN_mod_inverse(rsa->d, rsa->e, r0, ctx) == NULL) {        goto err;               /* d */    }    /* derive any missing exponents and coefficients */    if (!ossl_rsa_multiprime_derive(rsa, bits, primes, e_value,                                    factors, exps, coeffs))        goto err;    /*     * first 2 factors/exps are already tracked in p/q/dmq1/dmp1     * and the first coeff is in iqmp, so pop those off the stack     * Note, the first 2 factors/exponents are already tracked by p and q     * assign dmp1/dmq1 and iqmp     * the remaining pinfo values are separately allocated, so copy and delete      * those     */    BN_clear_free(sk_BIGNUM_delete(factors, 0));    BN_clear_free(sk_BIGNUM_delete(factors, 0));    rsa->dmp1 = sk_BIGNUM_delete(exps, 0);    rsa->dmq1 = sk_BIGNUM_delete(exps, 0);    rsa->iqmp = sk_BIGNUM_delete(coeffs, 0);    for (i = 2; i < primes; i++) {        pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);        tmp = sk_BIGNUM_delete(factors, 0);        BN_copy(pinfo->r, tmp);        BN_clear_free(tmp);        tmp = sk_BIGNUM_delete(exps, 0);        tmp2 = BN_copy(pinfo->d, tmp);        BN_clear_free(tmp);        if (tmp2 == NULL)            goto err;        tmp = sk_BIGNUM_delete(coeffs, 0);        tmp2 = BN_copy(pinfo->t, tmp);        BN_clear_free(tmp);        if (tmp2 == NULL)            goto err;    }    ok = 1; err:    sk_BIGNUM_free(factors);    sk_BIGNUM_free(exps);    sk_BIGNUM_free(coeffs);    if (ok == -1) {        ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB);        ok = 0;    }    BN_CTX_end(ctx);    BN_CTX_free(ctx);    return ok;}#endif /* FIPS_MODULE */static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,                      BIGNUM *e_value, BN_GENCB *cb, int pairwise_test){    int ok = 0;#ifdef FIPS_MODULE    ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);    pairwise_test = 1; /* FIPS MODE needs to always run the pairwise test */#else    /*     * Only multi-prime keys or insecure keys with a small key length or a     * public exponent <= 2^16 will use the older rsa_multiprime_keygen().     */    if (primes == 2            && bits >= 2048            && (e_value == NULL || BN_num_bits(e_value) > 16))        ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);    else        ok = rsa_multiprime_keygen(rsa, bits, primes, e_value, cb);#endif /* FIPS_MODULE */    if (pairwise_test && ok > 0) {        OSSL_CALLBACK *stcb = NULL;        void *stcbarg = NULL;        OSSL_SELF_TEST_get_callback(libctx, &stcb, &stcbarg);        ok = rsa_keygen_pairwise_test(rsa, stcb, stcbarg);        if (!ok) {            ossl_set_error_state(OSSL_SELF_TEST_TYPE_PCT);            /* Clear intermediate results */            BN_clear_free(rsa->d);            BN_clear_free(rsa->p);            BN_clear_free(rsa->q);            BN_clear_free(rsa->dmp1);            BN_clear_free(rsa->dmq1);            BN_clear_free(rsa->iqmp);            rsa->d = NULL;            rsa->p = NULL;            rsa->q = NULL;            rsa->dmp1 = NULL;            rsa->dmq1 = NULL;            rsa->iqmp = NULL;        }    }    return ok;}/* * For RSA key generation it is not known whether the key pair will be used * for key transport or signatures. FIPS 140-2 IG 9.9 states that in this case * either a signature verification OR an encryption operation may be used to * perform the pairwise consistency check. The simpler encrypt/decrypt operation * has been chosen for this case. */static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg){    int ret = 0;    unsigned int ciphertxt_len;    unsigned char *ciphertxt = NULL;    const unsigned char plaintxt[16] = {0};    unsigned char *decoded = NULL;    unsigned int decoded_len;    unsigned int plaintxt_len = (unsigned int)sizeof(plaintxt_len);    int padding = RSA_PKCS1_PADDING;    OSSL_SELF_TEST *st = NULL;    st = OSSL_SELF_TEST_new(cb, cbarg);    if (st == NULL)        goto err;    OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT,                           OSSL_SELF_TEST_DESC_PCT_RSA_PKCS1);    ciphertxt_len = RSA_size(rsa);    /*     * RSA_private_encrypt() and RSA_private_decrypt() requires the 'to'     * parameter to be a maximum of RSA_size() - allocate space for both.     */    ciphertxt = OPENSSL_zalloc(ciphertxt_len * 2);    if (ciphertxt == NULL)        goto err;    decoded = ciphertxt + ciphertxt_len;    ciphertxt_len = RSA_public_encrypt(plaintxt_len, plaintxt, ciphertxt, rsa,                                       padding);    if (ciphertxt_len <= 0)        goto err;    if (ciphertxt_len == plaintxt_len        && memcmp(ciphertxt, plaintxt, plaintxt_len) == 0)        goto err;    OSSL_SELF_TEST_oncorrupt_byte(st, ciphertxt);    decoded_len = RSA_private_decrypt(ciphertxt_len, ciphertxt, decoded, rsa,                                      padding);    if (decoded_len != plaintxt_len        || memcmp(decoded, plaintxt,  decoded_len) != 0)        goto err;    ret = 1;err:    OSSL_SELF_TEST_onend(st, ret);    OSSL_SELF_TEST_free(st);    OPENSSL_free(ciphertxt);    return ret;}
 |