| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646 | /* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License").  You may not use * this file except in compliance with the License.  You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html *//* * RSA low level APIs are deprecated for public use, but still ok for * internal use. */#include "internal/deprecated.h"#include "internal/constant_time.h"#include <stdio.h>#include <openssl/bn.h>#include <openssl/rsa.h>#include <openssl/rand.h>/* Just for the SSL_MAX_MASTER_KEY_LENGTH value */#include <openssl/prov_ssl.h>#include <openssl/evp.h>#include <openssl/sha.h>#include <openssl/hmac.h>#include "internal/cryptlib.h"#include "crypto/rsa.h"#include "rsa_local.h"int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen,                                 const unsigned char *from, int flen){    int j;    unsigned char *p;    if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) {        ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);        return 0;    }    p = (unsigned char *)to;    *(p++) = 0;    *(p++) = 1;                 /* Private Key BT (Block Type) */    /* pad out with 0xff data */    j = tlen - 3 - flen;    memset(p, 0xff, j);    p += j;    *(p++) = '\0';    memcpy(p, from, (unsigned int)flen);    return 1;}int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen,                                   const unsigned char *from, int flen,                                   int num){    int i, j;    const unsigned char *p;    p = from;    /*     * The format is     * 00 || 01 || PS || 00 || D     * PS - padding string, at least 8 bytes of FF     * D  - data.     */    if (num < RSA_PKCS1_PADDING_SIZE)        return -1;    /* Accept inputs with and without the leading 0-byte. */    if (num == flen) {        if ((*p++) != 0x00) {            ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_PADDING);            return -1;        }        flen--;    }    if ((num != (flen + 1)) || (*(p++) != 0x01)) {        ERR_raise(ERR_LIB_RSA, RSA_R_BLOCK_TYPE_IS_NOT_01);        return -1;    }    /* scan over padding data */    j = flen - 1;               /* one for type. */    for (i = 0; i < j; i++) {        if (*p != 0xff) {       /* should decrypt to 0xff */            if (*p == 0) {                p++;                break;            } else {                ERR_raise(ERR_LIB_RSA, RSA_R_BAD_FIXED_HEADER_DECRYPT);                return -1;            }        }        p++;    }    if (i == j) {        ERR_raise(ERR_LIB_RSA, RSA_R_NULL_BEFORE_BLOCK_MISSING);        return -1;    }    if (i < 8) {        ERR_raise(ERR_LIB_RSA, RSA_R_BAD_PAD_BYTE_COUNT);        return -1;    }    i++;                        /* Skip over the '\0' */    j -= i;    if (j > tlen) {        ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE);        return -1;    }    memcpy(to, p, (unsigned int)j);    return j;}int ossl_rsa_padding_add_PKCS1_type_2_ex(OSSL_LIB_CTX *libctx, unsigned char *to,                                         int tlen, const unsigned char *from,                                         int flen){    int i, j;    unsigned char *p;    if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) {        ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);        return 0;    } else if (flen < 0) {        ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH);        return 0;    }    p = (unsigned char *)to;    *(p++) = 0;    *(p++) = 2;                 /* Public Key BT (Block Type) */    /* pad out with non-zero random data */    j = tlen - 3 - flen;    if (RAND_bytes_ex(libctx, p, j, 0) <= 0)        return 0;    for (i = 0; i < j; i++) {        if (*p == '\0')            do {                if (RAND_bytes_ex(libctx, p, 1, 0) <= 0)                    return 0;            } while (*p == '\0');        p++;    }    *(p++) = '\0';    memcpy(p, from, (unsigned int)flen);    return 1;}int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen,                                 const unsigned char *from, int flen){    return ossl_rsa_padding_add_PKCS1_type_2_ex(NULL, to, tlen, from, flen);}int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen,                                   const unsigned char *from, int flen,                                   int num){    int i;    /* |em| is the encoded message, zero-padded to exactly |num| bytes */    unsigned char *em = NULL;    unsigned int good, found_zero_byte, mask;    int zero_index = 0, msg_index, mlen = -1;    if (tlen <= 0 || flen <= 0)        return -1;    /*     * PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard",     * section 7.2.2.     */    if (flen > num || num < RSA_PKCS1_PADDING_SIZE) {        ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR);        return -1;    }    em = OPENSSL_malloc(num);    if (em == NULL)        return -1;    /*     * Caller is encouraged to pass zero-padded message created with     * BN_bn2binpad. Trouble is that since we can't read out of |from|'s     * bounds, it's impossible to have an invariant memory access pattern     * in case |from| was not zero-padded in advance.     */    for (from += flen, em += num, i = 0; i < num; i++) {        mask = ~constant_time_is_zero(flen);        flen -= 1 & mask;        from -= 1 & mask;        *--em = *from & mask;    }    good = constant_time_is_zero(em[0]);    good &= constant_time_eq(em[1], 2);    /* scan over padding data */    found_zero_byte = 0;    for (i = 2; i < num; i++) {        unsigned int equals0 = constant_time_is_zero(em[i]);        zero_index = constant_time_select_int(~found_zero_byte & equals0,                                              i, zero_index);        found_zero_byte |= equals0;    }    /*     * PS must be at least 8 bytes long, and it starts two bytes into |em|.     * If we never found a 0-byte, then |zero_index| is 0 and the check     * also fails.     */    good &= constant_time_ge(zero_index, 2 + 8);    /*     * Skip the zero byte. This is incorrect if we never found a zero-byte     * but in this case we also do not copy the message out.     */    msg_index = zero_index + 1;    mlen = num - msg_index;    /*     * For good measure, do this check in constant time as well.     */    good &= constant_time_ge(tlen, mlen);    /*     * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left.     * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|.     * Otherwise leave |to| unchanged.     * Copy the memory back in a way that does not reveal the size of     * the data being copied via a timing side channel. This requires copying     * parts of the buffer multiple times based on the bits set in the real     * length. Clear bits do a non-copy with identical access pattern.     * The loop below has overall complexity of O(N*log(N)).     */    tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen),                                    num - RSA_PKCS1_PADDING_SIZE, tlen);    for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) {        mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0);        for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++)            em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]);    }    for (i = 0; i < tlen; i++) {        mask = good & constant_time_lt(i, mlen);        to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]);    }    OPENSSL_clear_free(em, num);#ifndef FIPS_MODULE    /*     * This trick doesn't work in the FIPS provider because libcrypto manages     * the error stack. Instead we opt not to put an error on the stack at all     * in case of padding failure in the FIPS provider.     */    ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR);    err_clear_last_constant_time(1 & good);#endif    return constant_time_select_int(good, mlen, -1);}static int ossl_rsa_prf(OSSL_LIB_CTX *ctx,                        unsigned char *to, int tlen,                        const char *label, int llen,                        const unsigned char *kdk,                        uint16_t bitlen){    int pos;    int ret = -1;    uint16_t iter = 0;    unsigned char be_iter[sizeof(iter)];    unsigned char be_bitlen[sizeof(bitlen)];    HMAC_CTX *hmac = NULL;    EVP_MD *md = NULL;    unsigned char hmac_out[SHA256_DIGEST_LENGTH];    unsigned int md_len;    if (tlen * 8 != bitlen) {        ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);        return ret;    }    be_bitlen[0] = (bitlen >> 8) & 0xff;    be_bitlen[1] = bitlen & 0xff;    hmac = HMAC_CTX_new();    if (hmac == NULL) {        ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);        goto err;    }    /*     * we use hardcoded hash so that migrating between versions that use     * different hash doesn't provide a Bleichenbacher oracle:     * if the attacker can see that different versions return different     * messages for the same ciphertext, they'll know that the message is     * synthetically generated, which means that the padding check failed     */    md = EVP_MD_fetch(ctx, "sha256", NULL);    if (md == NULL) {        ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);        goto err;    }    if (HMAC_Init_ex(hmac, kdk, SHA256_DIGEST_LENGTH, md, NULL) <= 0) {        ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);        goto err;    }    for (pos = 0; pos < tlen; pos += SHA256_DIGEST_LENGTH, iter++) {        if (HMAC_Init_ex(hmac, NULL, 0, NULL, NULL) <= 0) {            ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);            goto err;        }        be_iter[0] = (iter >> 8) & 0xff;        be_iter[1] = iter & 0xff;        if (HMAC_Update(hmac, be_iter, sizeof(be_iter)) <= 0) {            ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);            goto err;        }        if (HMAC_Update(hmac, (unsigned char *)label, llen) <= 0) {            ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);            goto err;        }        if (HMAC_Update(hmac, be_bitlen, sizeof(be_bitlen)) <= 0) {            ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);            goto err;        }        /*         * HMAC_Final requires the output buffer to fit the whole MAC         * value, so we need to use the intermediate buffer for the last         * unaligned block         */        md_len = SHA256_DIGEST_LENGTH;        if (pos + SHA256_DIGEST_LENGTH > tlen) {            if (HMAC_Final(hmac, hmac_out, &md_len) <= 0) {                ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);                goto err;            }            memcpy(to + pos, hmac_out, tlen - pos);        } else {            if (HMAC_Final(hmac, to + pos, &md_len) <= 0) {                ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);                goto err;            }        }    }    ret = 0;err:    HMAC_CTX_free(hmac);    EVP_MD_free(md);    return ret;}/* * ossl_rsa_padding_check_PKCS1_type_2() checks and removes the PKCS#1 type 2 * padding from a decrypted RSA message. Unlike the * RSA_padding_check_PKCS1_type_2() it will not return an error in case it * detects a padding error, rather it will return a deterministically generated * random message. In other words it will perform an implicit rejection * of an invalid padding. This means that the returned value does not indicate * if the padding of the encrypted message was correct or not, making * side channel attacks like the ones described by Bleichenbacher impossible * without access to the full decrypted value and a brute-force search of * remaining padding bytes */int ossl_rsa_padding_check_PKCS1_type_2(OSSL_LIB_CTX *ctx,                                        unsigned char *to, int tlen,                                        const unsigned char *from, int flen,                                        int num, unsigned char *kdk){/* * We need to generate a random length for the synthetic message, to avoid * bias towards zero and avoid non-constant timeness of DIV, we prepare * 128 values to check if they are not too large for the used key size, * and use 0 in case none of them are small enough, as 2^-128 is a good enough * safety margin */#define MAX_LEN_GEN_TRIES 128    unsigned char *synthetic = NULL;    int synthetic_length;    uint16_t len_candidate;    unsigned char candidate_lengths[MAX_LEN_GEN_TRIES * sizeof(len_candidate)];    uint16_t len_mask;    uint16_t max_sep_offset;    int synth_msg_index = 0;    int ret = -1;    int i, j;    unsigned int good, found_zero_byte;    int zero_index = 0, msg_index;    /*     * If these checks fail then either the message in publicly invalid, or     * we've been called incorrectly. We can fail immediately.     * Since this code is called only internally by openssl, those are just     * sanity checks     */    if (num != flen || tlen <= 0 || flen <= 0) {        ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);        return -1;    }    /* Generate a random message to return in case the padding checks fail */    synthetic = OPENSSL_malloc(flen);    if (synthetic == NULL) {        ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);        return -1;    }    if (ossl_rsa_prf(ctx, synthetic, flen, "message", 7, kdk, flen * 8) < 0)        goto err;    /* decide how long the random message should be */    if (ossl_rsa_prf(ctx, candidate_lengths, sizeof(candidate_lengths),                     "length", 6, kdk,                     MAX_LEN_GEN_TRIES * sizeof(len_candidate) * 8) < 0)        goto err;    /*     * max message size is the size of the modulus size less 2 bytes for     * version and padding type and a minimum of 8 bytes padding     */    len_mask = max_sep_offset = flen - 2 - 8;    /*     * we want a mask so lets propagate the high bit to all positions less     * significant than it     */    len_mask |= len_mask >> 1;    len_mask |= len_mask >> 2;    len_mask |= len_mask >> 4;    len_mask |= len_mask >> 8;    synthetic_length = 0;    for (i = 0; i < MAX_LEN_GEN_TRIES * (int)sizeof(len_candidate);            i += sizeof(len_candidate)) {        len_candidate = (candidate_lengths[i] << 8) | candidate_lengths[i + 1];        len_candidate &= len_mask;        synthetic_length = constant_time_select_int(            constant_time_lt(len_candidate, max_sep_offset),            len_candidate, synthetic_length);    }    synth_msg_index = flen - synthetic_length;    /* we have alternative message ready, check the real one */    good = constant_time_is_zero(from[0]);    good &= constant_time_eq(from[1], 2);    /* then look for the padding|message separator (the first zero byte) */    found_zero_byte = 0;    for (i = 2; i < flen; i++) {        unsigned int equals0 = constant_time_is_zero(from[i]);        zero_index = constant_time_select_int(~found_zero_byte & equals0,                                              i, zero_index);        found_zero_byte |= equals0;    }    /*     * padding must be at least 8 bytes long, and it starts two bytes into     * |from|. If we never found a 0-byte, then |zero_index| is 0 and the check     * also fails.     */    good &= constant_time_ge(zero_index, 2 + 8);    /*     * Skip the zero byte. This is incorrect if we never found a zero-byte     * but in this case we also do not copy the message out.     */    msg_index = zero_index + 1;    /*     * old code returned an error in case the decrypted message wouldn't fit     * into the |to|, since that would leak information, return the synthetic     * message instead     */    good &= constant_time_ge(tlen, num - msg_index);    msg_index = constant_time_select_int(good, msg_index, synth_msg_index);    /*     * since at this point the |msg_index| does not provide the signal     * indicating if the padding check failed or not, we don't have to worry     * about leaking the length of returned message, we still need to ensure     * that we read contents of both buffers so that cache accesses don't leak     * the value of |good|     */    for (i = msg_index, j = 0; i < flen && j < tlen; i++, j++)        to[j] = constant_time_select_8(good, from[i], synthetic[i]);    ret = j;err:    /*     * the only time ret < 0 is when the ciphertext is publicly invalid     * or we were called with invalid parameters, so we don't have to perform     * a side-channel secure raising of the error     */    if (ret < 0)        ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);    OPENSSL_free(synthetic);    return ret;}/* * ossl_rsa_padding_check_PKCS1_type_2_TLS() checks and removes the PKCS1 type 2 * padding from a decrypted RSA message in a TLS signature. The result is stored * in the buffer pointed to by |to| which should be |tlen| bytes long. |tlen| * must be at least SSL_MAX_MASTER_KEY_LENGTH. The original decrypted message * should be stored in |from| which must be |flen| bytes in length and padded * such that |flen == RSA_size()|. The TLS protocol version that the client * originally requested should be passed in |client_version|. Some buggy clients * can exist which use the negotiated version instead of the originally * requested protocol version. If it is necessary to work around this bug then * the negotiated protocol version can be passed in |alt_version|, otherwise 0 * should be passed. * * If the passed message is publicly invalid or some other error that can be * treated in non-constant time occurs then -1 is returned. On success the * length of the decrypted data is returned. This will always be * SSL_MAX_MASTER_KEY_LENGTH. If an error occurs that should be treated in * constant time then this function will appear to return successfully, but the * decrypted data will be randomly generated (as per * https://tools.ietf.org/html/rfc5246#section-7.4.7.1). */int ossl_rsa_padding_check_PKCS1_type_2_TLS(OSSL_LIB_CTX *libctx,                                            unsigned char *to, size_t tlen,                                            const unsigned char *from,                                            size_t flen, int client_version,                                            int alt_version){    unsigned int i, good, version_good;    unsigned char rand_premaster_secret[SSL_MAX_MASTER_KEY_LENGTH];    /*     * If these checks fail then either the message in publicly invalid, or     * we've been called incorrectly. We can fail immediately.     */    if (flen < RSA_PKCS1_PADDING_SIZE + SSL_MAX_MASTER_KEY_LENGTH            || tlen < SSL_MAX_MASTER_KEY_LENGTH) {        ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR);        return -1;    }    /*     * Generate a random premaster secret to use in the event that we fail     * to decrypt.     */    if (RAND_priv_bytes_ex(libctx, rand_premaster_secret,                           sizeof(rand_premaster_secret), 0) <= 0) {        ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);        return -1;    }    good = constant_time_is_zero(from[0]);    good &= constant_time_eq(from[1], 2);    /* Check we have the expected padding data */    for (i = 2; i < flen - SSL_MAX_MASTER_KEY_LENGTH - 1; i++)        good &= ~constant_time_is_zero_8(from[i]);    good &= constant_time_is_zero_8(from[flen - SSL_MAX_MASTER_KEY_LENGTH - 1]);    /*     * If the version in the decrypted pre-master secret is correct then     * version_good will be 0xff, otherwise it'll be zero. The     * Klima-Pokorny-Rosa extension of Bleichenbacher's attack     * (http://eprint.iacr.org/2003/052/) exploits the version number     * check as a "bad version oracle". Thus version checks are done in     * constant time and are treated like any other decryption error.     */    version_good =        constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH],                         (client_version >> 8) & 0xff);    version_good &=        constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1],                         client_version & 0xff);    /*     * The premaster secret must contain the same version number as the     * ClientHello to detect version rollback attacks (strangely, the     * protocol does not offer such protection for DH ciphersuites).     * However, buggy clients exist that send the negotiated protocol     * version instead if the server does not support the requested     * protocol version. If SSL_OP_TLS_ROLLBACK_BUG is set then we tolerate     * such clients. In that case alt_version will be non-zero and set to     * the negotiated version.     */    if (alt_version > 0) {        unsigned int workaround_good;        workaround_good =            constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH],                             (alt_version >> 8) & 0xff);        workaround_good &=            constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1],                             alt_version & 0xff);        version_good |= workaround_good;    }    good &= version_good;    /*     * Now copy the result over to the to buffer if good, or random data if     * not good.     */    for (i = 0; i < SSL_MAX_MASTER_KEY_LENGTH; i++) {        to[i] =            constant_time_select_8(good,                                   from[flen - SSL_MAX_MASTER_KEY_LENGTH + i],                                   rand_premaster_secret[i]);    }    /*     * We must not leak whether a decryption failure occurs because of     * Bleichenbacher's attack on PKCS #1 v1.5 RSA padding (see RFC 2246,     * section 7.4.7.1). The code follows that advice of the TLS RFC and     * generates a random premaster secret for the case that the decrypt     * fails. See https://tools.ietf.org/html/rfc5246#section-7.4.7.1     * So, whether we actually succeeded or not, return success.     */    return SSL_MAX_MASTER_KEY_LENGTH;}
 |