| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449 | /* * Copyright 2018-2024 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2018-2019, Oracle and/or its affiliates.  All rights reserved. * * Licensed under the Apache License 2.0 (the "License").  You may not use * this file except in compliance with the License.  You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */#include <openssl/err.h>#include <openssl/bn.h>#include "crypto/bn.h"#include "rsa_local.h"#include "../bn/bn_local.h" // WINSCP/* * Part of the RSA keypair test. * Check the Chinese Remainder Theorem components are valid. * * See SP800-5bBr1 *   6.4.1.2.3: rsakpv1-crt Step 7 *   6.4.1.3.3: rsakpv2-crt Step 7 */int ossl_rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx){    int ret = 0;    BIGNUM *r = NULL, *p1 = NULL, *q1 = NULL;    /* check if only some of the crt components are set */    if (rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL) {        if (rsa->dmp1 != NULL || rsa->dmq1 != NULL || rsa->iqmp != NULL)            return 0;        return 1; /* return ok if all components are NULL */    }    BN_CTX_start(ctx);    r = BN_CTX_get(ctx);    p1 = BN_CTX_get(ctx);    q1 = BN_CTX_get(ctx);    if (q1 != NULL) {        BN_set_flags(r, BN_FLG_CONSTTIME);        BN_set_flags(p1, BN_FLG_CONSTTIME);        BN_set_flags(q1, BN_FLG_CONSTTIME);        ret = 1;    } else {        ret = 0;    }    ret = ret          /* p1 = p -1 */          && (BN_copy(p1, rsa->p) != NULL)          && BN_sub_word(p1, 1)          /* q1 = q - 1 */          && (BN_copy(q1, rsa->q) != NULL)          && BN_sub_word(q1, 1)          /* (a) 1 < dP < (p – 1). */          && (BN_cmp(rsa->dmp1, BN_value_one()) > 0)          && (BN_cmp(rsa->dmp1, p1) < 0)          /* (b) 1 < dQ < (q - 1). */          && (BN_cmp(rsa->dmq1, BN_value_one()) > 0)          && (BN_cmp(rsa->dmq1, q1) < 0)          /* (c) 1 < qInv < p */          && (BN_cmp(rsa->iqmp, BN_value_one()) > 0)          && (BN_cmp(rsa->iqmp, rsa->p) < 0)          /* (d) 1 = (dP . e) mod (p - 1)*/          && BN_mod_mul(r, rsa->dmp1, rsa->e, p1, ctx)          && BN_is_one(r)          /* (e) 1 = (dQ . e) mod (q - 1) */          && BN_mod_mul(r, rsa->dmq1, rsa->e, q1, ctx)          && BN_is_one(r)          /* (f) 1 = (qInv . q) mod p */          && BN_mod_mul(r, rsa->iqmp, rsa->q, rsa->p, ctx)          && BN_is_one(r);    BN_clear(r);    BN_clear(p1);    BN_clear(q1);    BN_CTX_end(ctx);    return ret;}/* * Part of the RSA keypair test. * Check that (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2) - 1 * * See SP800-5bBr1 6.4.1.2.1 Part 5 (c) & (g) - used for both p and q. * * (√2)(2^(nbits/2 - 1) = (√2/2)(2^(nbits/2)) */int ossl_rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx){    int ret = 0;    BIGNUM *low;    int shift;    nbits >>= 1;    shift = nbits - BN_num_bits(&ossl_bn_inv_sqrt_2);    /* Upper bound check */    if (BN_num_bits(p) != nbits)        return 0;    BN_CTX_start(ctx);    low = BN_CTX_get(ctx);    if (low == NULL)        goto err;    /* set low = (√2)(2^(nbits/2 - 1) */    if (!BN_copy(low, &ossl_bn_inv_sqrt_2))        goto err;    if (shift >= 0) {        /*         * We don't have all the bits. ossl_bn_inv_sqrt_2 contains a rounded up         * value, so there is a very low probability that we'll reject a valid         * value.         */        if (!BN_lshift(low, low, shift))            goto err;    } else if (!BN_rshift(low, low, -shift)) {        goto err;    }    if (BN_cmp(p, low) <= 0)        goto err;    ret = 1;err:    BN_CTX_end(ctx);    return ret;}/* * Part of the RSA keypair test. * Check the prime factor (for either p or q) * i.e: p is prime AND GCD(p - 1, e) = 1 * * See SP800-56Br1 6.4.1.2.3 Step 5 (a to d) & (e to h). */int ossl_rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx){    int ret = 0;    BIGNUM *p1 = NULL, *gcd = NULL;    /* (Steps 5 a-b) prime test */    if (BN_check_prime(p, ctx, NULL) != 1            /* (Step 5c) (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2 - 1) */            || ossl_rsa_check_prime_factor_range(p, nbits, ctx) != 1)        return 0;    BN_CTX_start(ctx);    p1 = BN_CTX_get(ctx);    gcd = BN_CTX_get(ctx);    if (gcd != NULL) {        BN_set_flags(p1, BN_FLG_CONSTTIME);        BN_set_flags(gcd, BN_FLG_CONSTTIME);        ret = 1;    } else {        ret = 0;    }    ret = ret          /* (Step 5d) GCD(p-1, e) = 1 */          && (BN_copy(p1, p) != NULL)          && BN_sub_word(p1, 1)          && BN_gcd(gcd, p1, e, ctx)          && BN_is_one(gcd);    BN_clear(p1);    BN_CTX_end(ctx);    return ret;}/* * See SP800-56Br1 6.4.1.2.3 Part 6(a-b) Check the private exponent d * satisfies: *     (Step 6a) 2^(nBit/2) < d < LCM(p–1, q–1). *     (Step 6b) 1 = (d*e) mod LCM(p–1, q–1) */int ossl_rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx){    int ret;    BIGNUM *r, *p1, *q1, *lcm, *p1q1, *gcd;    /* (Step 6a) 2^(nbits/2) < d */    if (BN_num_bits(rsa->d) <= (nbits >> 1))        return 0;    BN_CTX_start(ctx);    r = BN_CTX_get(ctx);    p1 = BN_CTX_get(ctx);    q1 = BN_CTX_get(ctx);    lcm = BN_CTX_get(ctx);    p1q1 = BN_CTX_get(ctx);    gcd = BN_CTX_get(ctx);    if (gcd != NULL) {        BN_set_flags(r, BN_FLG_CONSTTIME);        BN_set_flags(p1, BN_FLG_CONSTTIME);        BN_set_flags(q1, BN_FLG_CONSTTIME);        BN_set_flags(lcm, BN_FLG_CONSTTIME);        BN_set_flags(p1q1, BN_FLG_CONSTTIME);        BN_set_flags(gcd, BN_FLG_CONSTTIME);        ret = 1;    } else {        ret = 0;    }    ret = (ret          /* LCM(p - 1, q - 1) */          && (ossl_rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1,                               p1q1) == 1)          /* (Step 6a) d < LCM(p - 1, q - 1) */          && (BN_cmp(rsa->d, lcm) < 0)          /* (Step 6b) 1 = (e . d) mod LCM(p - 1, q - 1) */          && BN_mod_mul(r, rsa->e, rsa->d, lcm, ctx)          && BN_is_one(r));    BN_clear(r);    BN_clear(p1);    BN_clear(q1);    BN_clear(lcm);    BN_clear(gcd);    BN_CTX_end(ctx);    return ret;}/* * Check exponent is odd. * For FIPS also check the bit length is in the range [17..256] */int ossl_rsa_check_public_exponent(const BIGNUM *e){#ifdef FIPS_MODULE    int bitlen;    bitlen = BN_num_bits(e);    return (BN_is_odd(e) && bitlen > 16 && bitlen < 257);#else    /* Allow small exponents larger than 1 for legacy purposes */    return BN_is_odd(e) && BN_cmp(e, BN_value_one()) > 0;#endif /* FIPS_MODULE */}/* * SP800-56Br1 6.4.1.2.1 (Step 5i): |p - q| > 2^(nbits/2 - 100) * i.e- numbits(p-q-1) > (nbits/2 -100) */int ossl_rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q,                           int nbits){    int bitlen = (nbits >> 1) - 100;    if (!BN_sub(diff, p, q))        return -1;    BN_set_negative(diff, 0);    if (BN_is_zero(diff))        return 0;    if (!BN_sub_word(diff, 1))        return -1;    return (BN_num_bits(diff) > bitlen);}/* * return LCM(p-1, q-1) * * Caller should ensure that lcm, gcd, p1, q1, p1q1 are flagged with * BN_FLG_CONSTTIME. */int ossl_rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q,                     BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1,                     BIGNUM *p1q1){    return BN_sub(p1, p, BN_value_one())    /* p-1 */           && BN_sub(q1, q, BN_value_one()) /* q-1 */           && BN_mul(p1q1, p1, q1, ctx)     /* (p-1)(q-1) */           && BN_gcd(gcd, p1, q1, ctx)           && BN_div(lcm, NULL, p1q1, gcd, ctx); /* LCM((p-1, q-1)) */}/* * SP800-56Br1 6.4.2.2 Partial Public Key Validation for RSA refers to * SP800-89 5.3.3 (Explicit) Partial Public Key Validation for RSA * caveat is that the modulus must be as specified in SP800-56Br1 */int ossl_rsa_sp800_56b_check_public(const RSA *rsa){    int ret = 0, status;    int nbits;    BN_CTX *ctx = NULL;    BIGNUM *gcd = NULL;    if (rsa->n == NULL || rsa->e == NULL)        return 0;    nbits = BN_num_bits(rsa->n);    if (nbits > OPENSSL_RSA_MAX_MODULUS_BITS) {        ERR_raise(ERR_LIB_RSA, RSA_R_MODULUS_TOO_LARGE);        return 0;    }#ifdef FIPS_MODULE    /*     * (Step a): modulus must be 2048 or 3072 (caveat from SP800-56Br1)     * NOTE: changed to allow keys >= 2048     */    if (!ossl_rsa_sp800_56b_validate_strength(nbits, -1)) {        ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_KEY_LENGTH);        return 0;    }#endif    if (!BN_is_odd(rsa->n)) {        ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MODULUS);        return 0;    }    /* (Steps b-c): 2^16 < e < 2^256, n and e must be odd */    if (!ossl_rsa_check_public_exponent(rsa->e)) {        ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE);        return 0;    }    ctx = BN_CTX_new_ex(rsa->libctx);    gcd = BN_new();    if (ctx == NULL || gcd == NULL)        goto err;    /* (Steps d-f):     * The modulus is composite, but not a power of a prime.     * The modulus has no factors smaller than 752.     */    if (!BN_gcd(gcd, rsa->n, ossl_bn_get0_small_factors(), ctx)        || !BN_is_one(gcd)) {        ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MODULUS);        goto err;    }    /* Highest number of MR rounds from FIPS 186-5 Section B.3 Table B.1 */    ret = ossl_bn_miller_rabin_is_prime(rsa->n, 5, ctx, NULL, 1, &status);#ifdef FIPS_MODULE    if (ret != 1 || status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME) {#else    if (ret != 1 || (status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME                     && (nbits >= RSA_MIN_MODULUS_BITS                         || status != BN_PRIMETEST_COMPOSITE_WITH_FACTOR))) {#endif        ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MODULUS);        ret = 0;        goto err;    }    ret = 1;err:    BN_free(gcd);    BN_CTX_free(ctx);    return ret;}/* * Perform validation of the RSA private key to check that 0 < D < N. */int ossl_rsa_sp800_56b_check_private(const RSA *rsa){    if (rsa->d == NULL || rsa->n == NULL)        return 0;    return BN_cmp(rsa->d, BN_value_one()) >= 0 && BN_cmp(rsa->d, rsa->n) < 0;}/* * RSA key pair validation. * * SP800-56Br1. *    6.4.1.2 "RSAKPV1 Family: RSA Key - Pair Validation with a Fixed Exponent" *    6.4.1.3 "RSAKPV2 Family: RSA Key - Pair Validation with a Random Exponent" * * It uses: *     6.4.1.2.3 "rsakpv1 - crt" *     6.4.1.3.3 "rsakpv2 - crt" */int ossl_rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed,                                     int strength, int nbits){    int ret = 0;    BN_CTX *ctx = NULL;    BIGNUM *r = NULL;    if (rsa->p == NULL            || rsa->q == NULL            || rsa->e == NULL            || rsa->d == NULL            || rsa->n == NULL) {        ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_REQUEST);        return 0;    }    /* (Step 1): Check Ranges */    if (!ossl_rsa_sp800_56b_validate_strength(nbits, strength))        return 0;    /* If the exponent is known */    if (efixed != NULL) {        /* (2): Check fixed exponent matches public exponent. */        if (BN_cmp(efixed, rsa->e) != 0) {            ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_REQUEST);            return 0;        }    }    /* (Step 1.c): e is odd integer 65537 <= e < 2^256 */    if (!ossl_rsa_check_public_exponent(rsa->e)) {        /* exponent out of range */        ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE);        return 0;    }    /* (Step 3.b): check the modulus */    if (nbits != BN_num_bits(rsa->n)) {        ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_KEYPAIR);        return 0;    }    /* (Step 3.c): check that the modulus length is a positive even integer */    if (nbits <= 0 || (nbits & 0x1)) {        ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_KEYPAIR);        return 0;    }    ctx = BN_CTX_new_ex(rsa->libctx);    if (ctx == NULL)        return 0;    BN_CTX_start(ctx);    r = BN_CTX_get(ctx);    if (r == NULL || !BN_mul(r, rsa->p, rsa->q, ctx))        goto err;    /* (Step 4.c): Check n = pq */    if (BN_cmp(rsa->n, r) != 0) {        ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_REQUEST);        goto err;    }    /* (Step 5): check prime factors p & q */    ret = ossl_rsa_check_prime_factor(rsa->p, rsa->e, nbits, ctx)          && ossl_rsa_check_prime_factor(rsa->q, rsa->e, nbits, ctx)          && (ossl_rsa_check_pminusq_diff(r, rsa->p, rsa->q, nbits) > 0)          /* (Step 6): Check the private exponent d */          && ossl_rsa_check_private_exponent(rsa, nbits, ctx)          /* 6.4.1.2.3 (Step 7): Check the CRT components */          && ossl_rsa_check_crt_components(rsa, ctx);    if (ret != 1)        ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_KEYPAIR);err:    BN_clear(r);    BN_CTX_end(ctx);    BN_CTX_free(ctx);    return ret;}
 |