| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 | /* * Copyright 2019-2022 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2019, Oracle and/or its affiliates.  All rights reserved. * * Licensed under the Apache License 2.0 (the "License").  You may not use * this file except in compliance with the License.  You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */#include <openssl/crypto.h>#include <openssl/bn.h>#include "crypto/sparse_array.h"/* * How many bits are used to index each level in the tree structure? * This setting determines the number of pointers stored in each node of the * tree used to represent the sparse array.  Having more pointers reduces the * depth of the tree but potentially wastes more memory.  That is, this is a * direct space versus time tradeoff. * * The default is to use four bits which means that the are 16 * pointers in each tree node. * * The library builder is also permitted to define other sizes in the closed * interval [2, sizeof(ossl_uintmax_t) * 8].  Space use generally scales * exponentially with the block size, although the implementation only * creates enough blocks to support the largest used index.  The depth is: *      ceil(log_2(largest index) / 2^{block size}) * E.g. with a block size of 4, and a largest index of 1000, the depth * will be three. */#ifndef OPENSSL_SA_BLOCK_BITS# define OPENSSL_SA_BLOCK_BITS           4#elif OPENSSL_SA_BLOCK_BITS < 2 || OPENSSL_SA_BLOCK_BITS > (BN_BITS2 - 1)# error OPENSSL_SA_BLOCK_BITS is out of range#endif/* * From the number of bits, work out: *    the number of pointers in a tree node; *    a bit mask to quickly extract an index and *    the maximum depth of the tree structure.  */#define SA_BLOCK_MAX            (1 << OPENSSL_SA_BLOCK_BITS)#define SA_BLOCK_MASK           (SA_BLOCK_MAX - 1)#define SA_BLOCK_MAX_LEVELS     (((int)sizeof(ossl_uintmax_t) * 8 \                                  + OPENSSL_SA_BLOCK_BITS - 1) \                                 / OPENSSL_SA_BLOCK_BITS)struct sparse_array_st {    int levels;    ossl_uintmax_t top;    size_t nelem;    void **nodes;};OPENSSL_SA *ossl_sa_new(void){    OPENSSL_SA *res = OPENSSL_zalloc(sizeof(*res));    return res;}static void sa_doall(const OPENSSL_SA *sa, void (*node)(void **),                     void (*leaf)(ossl_uintmax_t, void *, void *), void *arg){    int i[SA_BLOCK_MAX_LEVELS];    void *nodes[SA_BLOCK_MAX_LEVELS];    ossl_uintmax_t idx = 0;    int l = 0;    i[0] = 0;    nodes[0] = sa->nodes;    while (l >= 0) {        const int n = i[l];        void ** const p = nodes[l];        if (n >= SA_BLOCK_MAX) {            if (p != NULL && node != NULL)                (*node)(p);            l--;            idx >>= OPENSSL_SA_BLOCK_BITS;        } else {            i[l] = n + 1;            if (p != NULL && p[n] != NULL) {                idx = (idx & ~SA_BLOCK_MASK) | n;                if (l < sa->levels - 1) {                    i[++l] = 0;                    nodes[l] = p[n];                    idx <<= OPENSSL_SA_BLOCK_BITS;                } else if (leaf != NULL) {                    (*leaf)(idx, p[n], arg);                }            }        }    }}static void sa_free_node(void **p){    OPENSSL_free(p);}static void sa_free_leaf(ossl_uintmax_t n, void *p, void *arg){    OPENSSL_free(p);}void ossl_sa_free(OPENSSL_SA *sa){    if (sa != NULL) {        sa_doall(sa, &sa_free_node, NULL, NULL);        OPENSSL_free(sa);    }}void ossl_sa_free_leaves(OPENSSL_SA *sa){    sa_doall(sa, &sa_free_node, &sa_free_leaf, NULL);    OPENSSL_free(sa);}/* Wrap this in a structure to avoid compiler warnings */struct trampoline_st {    void (*func)(ossl_uintmax_t, void *);};static void trampoline(ossl_uintmax_t n, void *l, void *arg){    ((const struct trampoline_st *)arg)->func(n, l);}void ossl_sa_doall(const OPENSSL_SA *sa, void (*leaf)(ossl_uintmax_t, void *)){    struct trampoline_st tramp;    tramp.func = leaf;    if (sa != NULL)        sa_doall(sa, NULL, &trampoline, &tramp);}void ossl_sa_doall_arg(const OPENSSL_SA *sa,                          void (*leaf)(ossl_uintmax_t, void *, void *),                          void *arg){    if (sa != NULL)        sa_doall(sa, NULL, leaf, arg);}size_t ossl_sa_num(const OPENSSL_SA *sa){    return sa == NULL ? 0 : sa->nelem;}void *ossl_sa_get(const OPENSSL_SA *sa, ossl_uintmax_t n){    int level;    void **p, *r = NULL;    if (sa == NULL || sa->nelem == 0)        return NULL;    if (n <= sa->top) {        p = sa->nodes;        for (level = sa->levels - 1; p != NULL && level > 0; level--)            p = (void **)p[(n >> (OPENSSL_SA_BLOCK_BITS * level))                           & SA_BLOCK_MASK];        r = p == NULL ? NULL : p[n & SA_BLOCK_MASK];    }    return r;}static ossl_inline void **alloc_node(void){    return OPENSSL_zalloc(SA_BLOCK_MAX * sizeof(void *));}int ossl_sa_set(OPENSSL_SA *sa, ossl_uintmax_t posn, void *val){    int i, level = 1;    ossl_uintmax_t n = posn;    void **p;    if (sa == NULL)        return 0;    for (level = 1; level < SA_BLOCK_MAX_LEVELS; level++)        if ((n >>= OPENSSL_SA_BLOCK_BITS) == 0)            break;    for (;sa->levels < level; sa->levels++) {        p = alloc_node();        if (p == NULL)            return 0;        p[0] = sa->nodes;        sa->nodes = p;    }    if (sa->top < posn)        sa->top = posn;    p = sa->nodes;    for (level = sa->levels - 1; level > 0; level--) {        i = (posn >> (OPENSSL_SA_BLOCK_BITS * level)) & SA_BLOCK_MASK;        if (p[i] == NULL && (p[i] = alloc_node()) == NULL)            return 0;        p = p[i];    }    p += posn & SA_BLOCK_MASK;    if (val == NULL && *p != NULL)        sa->nelem--;    else if (val != NULL && *p == NULL)        sa->nelem++;    *p = val;    return 1;}
 |