| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253 | /* * Zlib (RFC1950 / RFC1951) compression for PuTTY. * * There will no doubt be criticism of my decision to reimplement * Zlib compression from scratch instead of using the existing zlib * code. People will cry `reinventing the wheel'; they'll claim * that the `fundamental basis of OSS' is code reuse; they'll want * to see a really good reason for me having chosen not to use the * existing code. * * Well, here are my reasons. Firstly, I don't want to link the * whole of zlib into the PuTTY binary; PuTTY is justifiably proud * of its small size and I think zlib contains a lot of unnecessary * baggage for the kind of compression that SSH requires. * * Secondly, I also don't like the alternative of using zlib.dll. * Another thing PuTTY is justifiably proud of is its ease of * installation, and the last thing I want to do is to start * mandating DLLs. Not only that, but there are two _kinds_ of * zlib.dll kicking around, one with C calling conventions on the * exported functions and another with WINAPI conventions, and * there would be a significant danger of getting the wrong one. * * Thirdly, there seems to be a difference of opinion on the IETF * secsh mailing list about the correct way to round off a * compressed packet and start the next. In particular, there's * some talk of switching to a mechanism zlib isn't currently * capable of supporting (see below for an explanation). Given that * sort of uncertainty, I thought it might be better to have code * that will support even the zlib-incompatible worst case. * * Fourthly, it's a _second implementation_. Second implementations * are fundamentally a Good Thing in standardisation efforts. The * difference of opinion mentioned above has arisen _precisely_ * because there has been only one zlib implementation and * everybody has used it. I don't intend that this should happen * again. */#include <stdlib.h>#include <string.h>#include <assert.h>#include "defs.h"#include "ssh.h"/* ---------------------------------------------------------------------- * Basic LZ77 code. This bit is designed modularly, so it could be * ripped out and used in a different LZ77 compressor. Go to it, * and good luck :-) */struct LZ77InternalContext;struct LZ77Context {    struct LZ77InternalContext *ictx;    void *userdata;    void (*literal) (struct LZ77Context *ctx, unsigned char c);    void (*match) (struct LZ77Context *ctx, int distance, int len);};/* * Initialise the private fields of an LZ77Context. It's up to the * user to initialise the public fields. */static int lz77_init(struct LZ77Context *ctx);/* * Supply data to be compressed. Will update the private fields of * the LZ77Context, and will call literal() and match() to output. * If `compress' is false, it will never emit a match, but will * instead call literal() for everything. */static void lz77_compress(struct LZ77Context *ctx,                          const unsigned char *data, int len);/* * Modifiable parameters. */#define WINSIZE 32768                  /* window size. Must be power of 2! */#define HASHMAX 2039                   /* one more than max hash value */#define MAXMATCH 32                    /* how many matches we track */#define HASHCHARS 3                    /* how many chars make a hash *//* * This compressor takes a less slapdash approach than the * gzip/zlib one. Rather than allowing our hash chains to fall into * disuse near the far end, we keep them doubly linked so we can * _find_ the far end, and then every time we add a new byte to the * window (thus rolling round by one and removing the previous * byte), we can carefully remove the hash chain entry. */#define INVALID -1                     /* invalid hash _and_ invalid offset */struct WindowEntry {    short next, prev;                  /* array indices within the window */    short hashval;};struct HashEntry {    short first;                       /* window index of first in chain */};struct Match {    int distance, len;};struct LZ77InternalContext {    struct WindowEntry win[WINSIZE];    unsigned char data[WINSIZE];    int winpos;    struct HashEntry hashtab[HASHMAX];    unsigned char pending[HASHCHARS];    int npending;};static int lz77_hash(const unsigned char *data){    return (257 * data[0] + 263 * data[1] + 269 * data[2]) % HASHMAX;}static int lz77_init(struct LZ77Context *ctx){    struct LZ77InternalContext *st;    int i;    st = snew(struct LZ77InternalContext);    if (!st)        return 0;    ctx->ictx = st;    for (i = 0; i < WINSIZE; i++)        st->win[i].next = st->win[i].prev = st->win[i].hashval = INVALID;    for (i = 0; i < HASHMAX; i++)        st->hashtab[i].first = INVALID;    st->winpos = 0;    st->npending = 0;    return 1;}static void lz77_advance(struct LZ77InternalContext *st,                         unsigned char c, int hash){    int off;    /*     * Remove the hash entry at winpos from the tail of its chain,     * or empty the chain if it's the only thing on the chain.     */    if (st->win[st->winpos].prev != INVALID) {        st->win[st->win[st->winpos].prev].next = INVALID;    } else if (st->win[st->winpos].hashval != INVALID) {        st->hashtab[st->win[st->winpos].hashval].first = INVALID;    }    /*     * Create a new entry at winpos and add it to the head of its     * hash chain.     */    st->win[st->winpos].hashval = hash;    st->win[st->winpos].prev = INVALID;    off = st->win[st->winpos].next = st->hashtab[hash].first;    st->hashtab[hash].first = st->winpos;    if (off != INVALID)        st->win[off].prev = st->winpos;    st->data[st->winpos] = c;    /*     * Advance the window pointer.     */    st->winpos = (st->winpos + 1) & (WINSIZE - 1);}#define CHARAT(k) ( (k)<0 ? st->data[(st->winpos+k)&(WINSIZE-1)] : data[k] )static void lz77_compress(struct LZ77Context *ctx,                          const unsigned char *data, int len){    struct LZ77InternalContext *st = ctx->ictx;    int i, distance, off, nmatch, matchlen, advance;    struct Match defermatch, matches[MAXMATCH];    int deferchr;    assert(st->npending <= HASHCHARS);    /*     * Add any pending characters from last time to the window. (We     * might not be able to.)     *     * This leaves st->pending empty in the usual case (when len >=     * HASHCHARS); otherwise it leaves st->pending empty enough that     * adding all the remaining 'len' characters will not push it past     * HASHCHARS in size.     */    for (i = 0; i < st->npending; i++) {        unsigned char foo[HASHCHARS];        int j;        if (len + st->npending - i < HASHCHARS) {            /* Update the pending array. */            for (j = i; j < st->npending; j++)                st->pending[j - i] = st->pending[j];            break;        }        for (j = 0; j < HASHCHARS; j++)            foo[j] = (i + j < st->npending ? st->pending[i + j] :                      data[i + j - st->npending]);        lz77_advance(st, foo[0], lz77_hash(foo));    }    st->npending -= i;    defermatch.distance = 0; /* appease compiler */    defermatch.len = 0;    deferchr = '\0';    while (len > 0) {        if (len >= HASHCHARS) {            /*             * Hash the next few characters.             */            int hash = lz77_hash(data);            /*             * Look the hash up in the corresponding hash chain and see             * what we can find.             */            nmatch = 0;            for (off = st->hashtab[hash].first;                 off != INVALID; off = st->win[off].next) {                /* distance = 1       if off == st->winpos-1 */                /* distance = WINSIZE if off == st->winpos   */                distance =                    WINSIZE - (off + WINSIZE - st->winpos) % WINSIZE;                for (i = 0; i < HASHCHARS; i++)                    if (CHARAT(i) != CHARAT(i - distance))                        break;                if (i == HASHCHARS) {                    matches[nmatch].distance = distance;                    matches[nmatch].len = 3;                    if (++nmatch >= MAXMATCH)                        break;                }            }        } else {            nmatch = 0;        }        if (nmatch > 0) {            /*             * We've now filled up matches[] with nmatch potential             * matches. Follow them down to find the longest. (We             * assume here that it's always worth favouring a             * longer match over a shorter one.)             */            matchlen = HASHCHARS;            while (matchlen < len) {                int j;                for (i = j = 0; i < nmatch; i++) {                    if (CHARAT(matchlen) ==                        CHARAT(matchlen - matches[i].distance)) {                        matches[j++] = matches[i];                    }                }                if (j == 0)                    break;                matchlen++;                nmatch = j;            }            /*             * We've now got all the longest matches. We favour the             * shorter distances, which means we go with matches[0].             * So see if we want to defer it or throw it away.             */            matches[0].len = matchlen;            if (defermatch.len > 0) {                if (matches[0].len > defermatch.len + 1) {                    /* We have a better match. Emit the deferred char,                     * and defer this match. */                    ctx->literal(ctx, (unsigned char) deferchr);                    defermatch = matches[0];                    deferchr = data[0];                    advance = 1;                } else {                    /* We don't have a better match. Do the deferred one. */                    ctx->match(ctx, defermatch.distance, defermatch.len);                    advance = defermatch.len - 1;                    defermatch.len = 0;                }            } else {                /* There was no deferred match. Defer this one. */                defermatch = matches[0];                deferchr = data[0];                advance = 1;            }        } else {            /*             * We found no matches. Emit the deferred match, if             * any; otherwise emit a literal.             */            if (defermatch.len > 0) {                ctx->match(ctx, defermatch.distance, defermatch.len);                advance = defermatch.len - 1;                defermatch.len = 0;            } else {                ctx->literal(ctx, data[0]);                advance = 1;            }        }        /*         * Now advance the position by `advance' characters,         * keeping the window and hash chains consistent.         */        while (advance > 0) {            if (len >= HASHCHARS) {                lz77_advance(st, *data, lz77_hash(data));            } else {                assert(st->npending < HASHCHARS);                st->pending[st->npending++] = *data;            }            data++;            len--;            advance--;        }    }}/* ---------------------------------------------------------------------- * Zlib compression. We always use the static Huffman tree option. * Mostly this is because it's hard to scan a block in advance to * work out better trees; dynamic trees are great when you're * compressing a large file under no significant time constraint, * but when you're compressing little bits in real time, things get * hairier. * * I suppose it's possible that I could compute Huffman trees based * on the frequencies in the _previous_ block, as a sort of * heuristic, but I'm not confident that the gain would balance out * having to transmit the trees. */struct Outbuf {    strbuf *outbuf;    unsigned long outbits;    int noutbits;    bool firstblock;};static void outbits(struct Outbuf *out, unsigned long bits, int nbits){    assert(out->noutbits + nbits <= 32);    out->outbits |= bits << out->noutbits;    out->noutbits += nbits;    while (out->noutbits >= 8) {        put_byte(out->outbuf, out->outbits & 0xFF);        out->outbits >>= 8;        out->noutbits -= 8;    }}static const unsigned char mirrorbytes[256] = {    0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,    0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,    0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,    0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,    0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,    0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,    0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,    0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,    0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,    0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,    0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,    0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,    0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,    0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,    0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,    0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,    0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,    0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,    0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,    0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,    0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,    0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,    0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,    0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,    0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,    0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,    0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,    0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,    0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,    0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,    0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,    0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,};typedef struct {    short code, extrabits;    int min, max;} coderecord;static const coderecord lencodes[] = {    {257, 0, 3, 3},    {258, 0, 4, 4},    {259, 0, 5, 5},    {260, 0, 6, 6},    {261, 0, 7, 7},    {262, 0, 8, 8},    {263, 0, 9, 9},    {264, 0, 10, 10},    {265, 1, 11, 12},    {266, 1, 13, 14},    {267, 1, 15, 16},    {268, 1, 17, 18},    {269, 2, 19, 22},    {270, 2, 23, 26},    {271, 2, 27, 30},    {272, 2, 31, 34},    {273, 3, 35, 42},    {274, 3, 43, 50},    {275, 3, 51, 58},    {276, 3, 59, 66},    {277, 4, 67, 82},    {278, 4, 83, 98},    {279, 4, 99, 114},    {280, 4, 115, 130},    {281, 5, 131, 162},    {282, 5, 163, 194},    {283, 5, 195, 226},    {284, 5, 227, 257},    {285, 0, 258, 258},};static const coderecord distcodes[] = {    {0, 0, 1, 1},    {1, 0, 2, 2},    {2, 0, 3, 3},    {3, 0, 4, 4},    {4, 1, 5, 6},    {5, 1, 7, 8},    {6, 2, 9, 12},    {7, 2, 13, 16},    {8, 3, 17, 24},    {9, 3, 25, 32},    {10, 4, 33, 48},    {11, 4, 49, 64},    {12, 5, 65, 96},    {13, 5, 97, 128},    {14, 6, 129, 192},    {15, 6, 193, 256},    {16, 7, 257, 384},    {17, 7, 385, 512},    {18, 8, 513, 768},    {19, 8, 769, 1024},    {20, 9, 1025, 1536},    {21, 9, 1537, 2048},    {22, 10, 2049, 3072},    {23, 10, 3073, 4096},    {24, 11, 4097, 6144},    {25, 11, 6145, 8192},    {26, 12, 8193, 12288},    {27, 12, 12289, 16384},    {28, 13, 16385, 24576},    {29, 13, 24577, 32768},};static void zlib_literal(struct LZ77Context *ectx, unsigned char c){    struct Outbuf *out = (struct Outbuf *) ectx->userdata;    if (c <= 143) {        /* 0 through 143 are 8 bits long starting at 00110000. */        outbits(out, mirrorbytes[0x30 + c], 8);    } else {        /* 144 through 255 are 9 bits long starting at 110010000. */        outbits(out, 1 + 2 * mirrorbytes[0x90 - 144 + c], 9);    }}static void zlib_match(struct LZ77Context *ectx, int distance, int len){    const coderecord *d, *l;    int i, j, k;    struct Outbuf *out = (struct Outbuf *) ectx->userdata;    while (len > 0) {        int thislen;        /*         * We can transmit matches of lengths 3 through 258         * inclusive. So if len exceeds 258, we must transmit in         * several steps, with 258 or less in each step.         *         * Specifically: if len >= 261, we can transmit 258 and be         * sure of having at least 3 left for the next step. And if         * len <= 258, we can just transmit len. But if len == 259         * or 260, we must transmit len-3.         */        thislen = (len > 260 ? 258 : len <= 258 ? len : len - 3);        len -= thislen;        /*         * Binary-search to find which length code we're         * transmitting.         */        i = -1;        j = lenof(lencodes);        while (1) {            assert(j - i >= 2);            k = (j + i) / 2;            if (thislen < lencodes[k].min)                j = k;            else if (thislen > lencodes[k].max)                i = k;            else {                l = &lencodes[k];                break;                 /* found it! */            }        }        /*         * Transmit the length code. 256-279 are seven bits         * starting at 0000000; 280-287 are eight bits starting at         * 11000000.         */        if (l->code <= 279) {            outbits(out, mirrorbytes[(l->code - 256) * 2], 7);        } else {            outbits(out, mirrorbytes[0xc0 - 280 + l->code], 8);        }        /*         * Transmit the extra bits.         */        if (l->extrabits)            outbits(out, thislen - l->min, l->extrabits);        /*         * Binary-search to find which distance code we're         * transmitting.         */        i = -1;        j = lenof(distcodes);        while (1) {            assert(j - i >= 2);            k = (j + i) / 2;            if (distance < distcodes[k].min)                j = k;            else if (distance > distcodes[k].max)                i = k;            else {                d = &distcodes[k];                break;                 /* found it! */            }        }        /*         * Transmit the distance code. Five bits starting at 00000.         */        outbits(out, mirrorbytes[d->code * 8], 5);        /*         * Transmit the extra bits.         */        if (d->extrabits)            outbits(out, distance - d->min, d->extrabits);    }}struct ssh_zlib_compressor {    struct LZ77Context ectx;    ssh_compressor sc;};static ssh_compressor *zlib_compress_init(void){    struct Outbuf *out;    struct ssh_zlib_compressor *comp = snew(struct ssh_zlib_compressor);    lz77_init(&comp->ectx);    comp->sc.vt = &ssh_zlib;    comp->ectx.literal = zlib_literal;    comp->ectx.match = zlib_match;    out = snew(struct Outbuf);    out->outbuf = NULL;    out->outbits = out->noutbits = 0;    out->firstblock = true;    comp->ectx.userdata = out;    return &comp->sc;}static void zlib_compress_cleanup(ssh_compressor *sc){    struct ssh_zlib_compressor *comp =        container_of(sc, struct ssh_zlib_compressor, sc);    struct Outbuf *out = (struct Outbuf *)comp->ectx.userdata;    if (out->outbuf)        strbuf_free(out->outbuf);    sfree(out);    sfree(comp->ectx.ictx);    sfree(comp);}static void zlib_compress_block(    ssh_compressor *sc, const unsigned char *block, int len,    unsigned char **outblock, int *outlen, int minlen){    struct ssh_zlib_compressor *comp =        container_of(sc, struct ssh_zlib_compressor, sc);    struct Outbuf *out = (struct Outbuf *) comp->ectx.userdata;    bool in_block;    assert(!out->outbuf);    out->outbuf = strbuf_new_nm();    /*     * If this is the first block, output the Zlib (RFC1950) header     * bytes 78 9C. (Deflate compression, 32K window size, default     * algorithm.)     */    if (out->firstblock) {        outbits(out, 0x9C78, 16);        out->firstblock = false;        in_block = false;    } else        in_block = true;    if (!in_block) {        /*         * Start a Deflate (RFC1951) fixed-trees block. We         * transmit a zero bit (BFINAL=0), followed by a zero         * bit and a one bit (BTYPE=01). Of course these are in         * the wrong order (01 0).         */        outbits(out, 2, 3);    }    /*     * Do the compression.     */    lz77_compress(&comp->ectx, block, len);    /*     * End the block (by transmitting code 256, which is     * 0000000 in fixed-tree mode), and transmit some empty     * blocks to ensure we have emitted the byte containing the     * last piece of genuine data. There are three ways we can     * do this:     *     *  - Minimal flush. Output end-of-block and then open a     *    new static block. This takes 9 bits, which is     *    guaranteed to flush out the last genuine code in the     *    closed block; but allegedly zlib can't handle it.     *     *  - Zlib partial flush. Output EOB, open and close an     *    empty static block, and _then_ open the new block.     *    This is the best zlib can handle.     *     *  - Zlib sync flush. Output EOB, then an empty     *    _uncompressed_ block (000, then sync to byte     *    boundary, then send bytes 00 00 FF FF). Then open the     *    new block.     *     * For the moment, we will use Zlib partial flush.     */    outbits(out, 0, 7);        /* close block */    outbits(out, 2, 3 + 7);    /* empty static block */    outbits(out, 2, 3);        /* open new block */    /*     * If we've been asked to pad out the compressed data until it's     * at least a given length, do so by emitting further empty static     * blocks.     */    while (out->outbuf->len < minlen) {        outbits(out, 0, 7);            /* close block */        outbits(out, 2, 3);            /* open new static block */    }    *outlen = out->outbuf->len;    *outblock = (unsigned char *)strbuf_to_str(out->outbuf);    out->outbuf = NULL;}/* ---------------------------------------------------------------------- * Zlib decompression. Of course, even though our compressor always * uses static trees, our _decompressor_ has to be capable of * handling dynamic trees if it sees them. *//* * The way we work the Huffman decode is to have a table lookup on * the first N bits of the input stream (in the order they arrive, * of course, i.e. the first bit of the Huffman code is in bit 0). * Each table entry lists the number of bits to consume, plus * either an output code or a pointer to a secondary table. */struct zlib_table;struct zlib_tableentry;struct zlib_tableentry {    unsigned char nbits;    short code;    struct zlib_table *nexttable;};struct zlib_table {    int mask;                          /* mask applied to input bit stream */    struct zlib_tableentry *table;};#define MAXCODELEN 16#define MAXSYMS 288/* * Build a single-level decode table for elements * [minlength,maxlength) of the provided code/length tables, and * recurse to build subtables. */static struct zlib_table *zlib_mkonetab(int *codes, unsigned char *lengths,                                        int nsyms,                                        int pfx, int pfxbits, int bits){    struct zlib_table *tab = snew(struct zlib_table);    int pfxmask = (1 << pfxbits) - 1;    int nbits, i, j, code;    tab->table = snewn((size_t)1 << bits, struct zlib_tableentry);    tab->mask = (1 << bits) - 1;    for (code = 0; code <= tab->mask; code++) {        tab->table[code].code = -1;        tab->table[code].nbits = 0;        tab->table[code].nexttable = NULL;    }    for (i = 0; i < nsyms; i++) {        if (lengths[i] <= pfxbits || (codes[i] & pfxmask) != pfx)            continue;        code = (codes[i] >> pfxbits) & tab->mask;        for (j = code; j <= tab->mask; j += 1 << (lengths[i] - pfxbits)) {            tab->table[j].code = i;            nbits = lengths[i] - pfxbits;            if (tab->table[j].nbits < nbits)                tab->table[j].nbits = nbits;        }    }    for (code = 0; code <= tab->mask; code++) {        if (tab->table[code].nbits <= bits)            continue;        /* Generate a subtable. */        tab->table[code].code = -1;        nbits = tab->table[code].nbits - bits;        if (nbits > 7)            nbits = 7;        tab->table[code].nbits = bits;        tab->table[code].nexttable = zlib_mkonetab(codes, lengths, nsyms,                                                   pfx | (code << pfxbits),                                                   pfxbits + bits, nbits);    }    return tab;}/* * Build a decode table, given a set of Huffman tree lengths. */static struct zlib_table *zlib_mktable(unsigned char *lengths,                                       int nlengths){    int count[MAXCODELEN], startcode[MAXCODELEN], codes[MAXSYMS];    int code, maxlen;    int i, j;    /* Count the codes of each length. */    maxlen = 0;    for (i = 1; i < MAXCODELEN; i++)        count[i] = 0;    for (i = 0; i < nlengths; i++) {        count[lengths[i]]++;        if (maxlen < lengths[i])            maxlen = lengths[i];    }    /* Determine the starting code for each length block. */    code = 0;    for (i = 1; i < MAXCODELEN; i++) {        startcode[i] = code;        code += count[i];        code <<= 1;    }    /* Determine the code for each symbol. Mirrored, of course. */    for (i = 0; i < nlengths; i++) {        code = startcode[lengths[i]]++;        codes[i] = 0;        for (j = 0; j < lengths[i]; j++) {            codes[i] = (codes[i] << 1) | (code & 1);            code >>= 1;        }    }    /*     * Now we have the complete list of Huffman codes. Build a     * table.     */    return zlib_mkonetab(codes, lengths, nlengths, 0, 0,                         maxlen < 9 ? maxlen : 9);}static int zlib_freetable(struct zlib_table **ztab){    struct zlib_table *tab;    int code;    if (ztab == NULL)        return -1;    if (*ztab == NULL)        return 0;    tab = *ztab;    for (code = 0; code <= tab->mask; code++)        if (tab->table[code].nexttable != NULL)            zlib_freetable(&tab->table[code].nexttable);    sfree(tab->table);    tab->table = NULL;    sfree(tab);    *ztab = NULL;    return (0);}struct zlib_decompress_ctx {    struct zlib_table *staticlentable, *staticdisttable;    struct zlib_table *currlentable, *currdisttable, *lenlentable;    enum {        START, OUTSIDEBLK,        TREES_HDR, TREES_LENLEN, TREES_LEN, TREES_LENREP,        INBLK, GOTLENSYM, GOTLEN, GOTDISTSYM,        UNCOMP_LEN, UNCOMP_NLEN, UNCOMP_DATA    } state;    int sym, hlit, hdist, hclen, lenptr, lenextrabits, lenaddon, len,        lenrep;    int uncomplen;    unsigned char lenlen[19];    /*     * Array that accumulates the code lengths sent in the header of a     * dynamic-Huffman-tree block.     *     * There are 286 actual symbols in the literal/length alphabet     * (256 literals plus 20 length categories), and 30 symbols in the     * distance alphabet. However, the block header transmits the     * number of code lengths for the former alphabet as a 5-bit value     * HLIT to be added to 257, and the latter as a 5-bit value HDIST     * to be added to 1. This means that the number of _code lengths_     * can go as high as 288 for the symbol alphabet and 32 for the     * distance alphabet - each of those values being 2 more than the     * maximum number of actual symbols.     *     * It's tempting to rule that sending out-of-range HLIT or HDIST     * is therefore just illegal, and to fault it when we initially     * receive that header. But instead I've chosen to permit the     * Huffman-code definition to include code length entries for     * those unused symbols; if a header of that form is transmitted,     * then the effect will be that in the main body of the block,     * some bit sequence(s) will generate an illegal symbol number,     * and _that_ will be faulted as a decoding error.     *     * Rationale: this can already happen! The standard Huffman code     * used in a _static_ block for the literal/length alphabet is     * defined in such a way that it includes codes for symbols 287     * and 288, which are then never actually sent in the body of the     * block. And I think that if the standard static tree definition     * is willing to include Huffman codes that don't correspond to a     * symbol, then it's an excessive restriction on dynamic tables     * not to permit them to do the same. In particular, it would be     * strange for a dynamic block not to be able to exactly mimic     * either or both of the Huffman codes used by a static block for     * the corresponding alphabet.     *     * So we place no constraint on HLIT or HDIST during code     * construction, and we make this array large enough to include     * the maximum number of code lengths that can possibly arise as a     * result. It's only trying to _use_ the junk Huffman codes after     * table construction is completed that will provoke a decode     * error.     */    unsigned char lengths[288 + 32];    unsigned long bits;    int nbits;    unsigned char window[WINSIZE];    int winpos;    strbuf *outblk;    ssh_decompressor dc;};static ssh_decompressor *zlib_decompress_init(void){    struct zlib_decompress_ctx *dctx = snew(struct zlib_decompress_ctx);    unsigned char lengths[288];    memset(lengths, 8, 144);    memset(lengths + 144, 9, 256 - 144);    memset(lengths + 256, 7, 280 - 256);    memset(lengths + 280, 8, 288 - 280);    dctx->staticlentable = zlib_mktable(lengths, 288);    memset(lengths, 5, 32);    dctx->staticdisttable = zlib_mktable(lengths, 32);    dctx->state = START;                       /* even before header */    dctx->currlentable = dctx->currdisttable = dctx->lenlentable = NULL;    dctx->bits = 0;    dctx->nbits = 0;    dctx->winpos = 0;    dctx->outblk = NULL;    dctx->dc.vt = &ssh_zlib;    return &dctx->dc;}static void zlib_decompress_cleanup(ssh_decompressor *dc){    struct zlib_decompress_ctx *dctx =        container_of(dc, struct zlib_decompress_ctx, dc);    if (dctx->currlentable && dctx->currlentable != dctx->staticlentable)        zlib_freetable(&dctx->currlentable);    if (dctx->currdisttable && dctx->currdisttable != dctx->staticdisttable)        zlib_freetable(&dctx->currdisttable);    if (dctx->lenlentable)        zlib_freetable(&dctx->lenlentable);    zlib_freetable(&dctx->staticlentable);    zlib_freetable(&dctx->staticdisttable);    if (dctx->outblk)        strbuf_free(dctx->outblk);    sfree(dctx);}static int zlib_huflookup(unsigned long *bitsp, int *nbitsp,                          struct zlib_table *tab){    unsigned long bits = *bitsp;    int nbits = *nbitsp;    while (1) {        struct zlib_tableentry *ent;        ent = &tab->table[bits & tab->mask];        if (ent->nbits > nbits)            return -1;                 /* not enough data */        bits >>= ent->nbits;        nbits -= ent->nbits;        if (ent->code == -1)            tab = ent->nexttable;        else {            *bitsp = bits;            *nbitsp = nbits;            return ent->code;        }        if (!tab) {            /*             * There was a missing entry in the table, presumably             * due to an invalid Huffman table description, and the             * subsequent data has attempted to use the missing             * entry. Return a decoding failure.             */            return -2;        }    }}static void zlib_emit_char(struct zlib_decompress_ctx *dctx, int c){    dctx->window[dctx->winpos] = c;    dctx->winpos = (dctx->winpos + 1) & (WINSIZE - 1);    put_byte(dctx->outblk, c);}#define EATBITS(n) ( dctx->nbits -= (n), dctx->bits >>= (n) )static bool zlib_decompress_block(    ssh_decompressor *dc, const unsigned char *block, int len,    unsigned char **outblock, int *outlen){    struct zlib_decompress_ctx *dctx =        container_of(dc, struct zlib_decompress_ctx, dc);    const coderecord *rec;    int code, blktype, rep, dist, nlen, header;    static const unsigned char lenlenmap[] = {        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15    };    assert(!dctx->outblk);    dctx->outblk = strbuf_new_nm();    while (len > 0 || dctx->nbits > 0) {        while (dctx->nbits < 24 && len > 0) {            dctx->bits |= (*block++) << dctx->nbits;            dctx->nbits += 8;            len--;        }        switch (dctx->state) {          case START:            /* Expect 16-bit zlib header. */            if (dctx->nbits < 16)                goto finished;         /* done all we can */            /*             * The header is stored as a big-endian 16-bit integer,             * in contrast to the general little-endian policy in             * the rest of the format :-(             */            header = (((dctx->bits & 0xFF00) >> 8) |                      ((dctx->bits & 0x00FF) << 8));            EATBITS(16);            /*             * Check the header:             *             *  - bits 8-11 should be 1000 (Deflate/RFC1951)             *  - bits 12-15 should be at most 0111 (window size)             *  - bit 5 should be zero (no dictionary present)             *  - we don't care about bits 6-7 (compression rate)             *  - bits 0-4 should be set up to make the whole thing             *    a multiple of 31 (checksum).             */            if ((header & 0x0F00) != 0x0800 ||                (header & 0xF000) >  0x7000 ||                (header & 0x0020) != 0x0000 ||                (header % 31) != 0)                goto decode_error;            dctx->state = OUTSIDEBLK;            break;          case OUTSIDEBLK:            /* Expect 3-bit block header. */            if (dctx->nbits < 3)                goto finished;         /* done all we can */            EATBITS(1);            blktype = dctx->bits & 3;            EATBITS(2);            if (blktype == 0) {                int to_eat = dctx->nbits & 7;                dctx->state = UNCOMP_LEN;                EATBITS(to_eat);       /* align to byte boundary */            } else if (blktype == 1) {                dctx->currlentable = dctx->staticlentable;                dctx->currdisttable = dctx->staticdisttable;                dctx->state = INBLK;            } else if (blktype == 2) {                dctx->state = TREES_HDR;            }            break;          case TREES_HDR:            /*             * Dynamic block header. Five bits of HLIT, five of             * HDIST, four of HCLEN.             */            if (dctx->nbits < 5 + 5 + 4)                goto finished;         /* done all we can */            dctx->hlit = 257 + (dctx->bits & 31);            EATBITS(5);            dctx->hdist = 1 + (dctx->bits & 31);            EATBITS(5);            dctx->hclen = 4 + (dctx->bits & 15);            EATBITS(4);            dctx->lenptr = 0;            dctx->state = TREES_LENLEN;            memset(dctx->lenlen, 0, sizeof(dctx->lenlen));            break;          case TREES_LENLEN:            if (dctx->nbits < 3)                goto finished;            while (dctx->lenptr < dctx->hclen && dctx->nbits >= 3) {                dctx->lenlen[lenlenmap[dctx->lenptr++]] =                    (unsigned char) (dctx->bits & 7);                EATBITS(3);            }            if (dctx->lenptr == dctx->hclen) {                dctx->lenlentable = zlib_mktable(dctx->lenlen, 19);                dctx->state = TREES_LEN;                dctx->lenptr = 0;            }            break;          case TREES_LEN:            if (dctx->lenptr >= dctx->hlit + dctx->hdist) {                dctx->currlentable = zlib_mktable(dctx->lengths, dctx->hlit);                dctx->currdisttable = zlib_mktable(dctx->lengths + dctx->hlit,                                                   dctx->hdist);                zlib_freetable(&dctx->lenlentable);                dctx->lenlentable = NULL;                dctx->state = INBLK;                break;            }            code =                zlib_huflookup(&dctx->bits, &dctx->nbits, dctx->lenlentable);            if (code == -1)                goto finished;            if (code == -2)                goto decode_error;            if (code < 16)                dctx->lengths[dctx->lenptr++] = code;            else {                dctx->lenextrabits = (code == 16 ? 2 : code == 17 ? 3 : 7);                dctx->lenaddon = (code == 18 ? 11 : 3);                dctx->lenrep = (code == 16 && dctx->lenptr > 0 ?                                dctx->lengths[dctx->lenptr - 1] : 0);                dctx->state = TREES_LENREP;            }            break;          case TREES_LENREP:            if (dctx->nbits < dctx->lenextrabits)                goto finished;            rep =                dctx->lenaddon +                (dctx->bits & ((1 << dctx->lenextrabits) - 1));            EATBITS(dctx->lenextrabits);            while (rep > 0 && dctx->lenptr < dctx->hlit + dctx->hdist) {                dctx->lengths[dctx->lenptr] = dctx->lenrep;                dctx->lenptr++;                rep--;            }            dctx->state = TREES_LEN;            break;          case INBLK:            code =                zlib_huflookup(&dctx->bits, &dctx->nbits, dctx->currlentable);            if (code == -1)                goto finished;            if (code == -2)                goto decode_error;            if (code < 256)                zlib_emit_char(dctx, code);            else if (code == 256) {                dctx->state = OUTSIDEBLK;                if (dctx->currlentable != dctx->staticlentable) {                    zlib_freetable(&dctx->currlentable);                    dctx->currlentable = NULL;                }                if (dctx->currdisttable != dctx->staticdisttable) {                    zlib_freetable(&dctx->currdisttable);                    dctx->currdisttable = NULL;                }            } else if (code < 286) {                dctx->state = GOTLENSYM;                dctx->sym = code;            } else {                /* literal/length symbols 286 and 287 are invalid */                goto decode_error;            }            break;          case GOTLENSYM:            rec = &lencodes[dctx->sym - 257];            if (dctx->nbits < rec->extrabits)                goto finished;            dctx->len =                rec->min + (dctx->bits & ((1 << rec->extrabits) - 1));            EATBITS(rec->extrabits);            dctx->state = GOTLEN;            break;          case GOTLEN:            code =                zlib_huflookup(&dctx->bits, &dctx->nbits,                               dctx->currdisttable);            if (code == -1)                goto finished;            if (code == -2)                goto decode_error;            if (code >= 30)            /* dist symbols 30 and 31 are invalid */                goto decode_error;            dctx->state = GOTDISTSYM;            dctx->sym = code;            break;          case GOTDISTSYM:            rec = &distcodes[dctx->sym];            if (dctx->nbits < rec->extrabits)                goto finished;            dist = rec->min + (dctx->bits & ((1 << rec->extrabits) - 1));            EATBITS(rec->extrabits);            dctx->state = INBLK;            while (dctx->len--)                zlib_emit_char(dctx, dctx->window[(dctx->winpos - dist) &                                                  (WINSIZE - 1)]);            break;          case UNCOMP_LEN:            /*             * Uncompressed block. We expect to see a 16-bit LEN.             */            if (dctx->nbits < 16)                goto finished;            dctx->uncomplen = dctx->bits & 0xFFFF;            EATBITS(16);            dctx->state = UNCOMP_NLEN;            break;          case UNCOMP_NLEN:            /*             * Uncompressed block. We expect to see a 16-bit NLEN,             * which should be the one's complement of the previous             * LEN.             */            if (dctx->nbits < 16)                goto finished;            nlen = dctx->bits & 0xFFFF;            EATBITS(16);            if (dctx->uncomplen != (nlen ^ 0xFFFF))                goto decode_error;            if (dctx->uncomplen == 0)                dctx->state = OUTSIDEBLK;       /* block is empty */            else                dctx->state = UNCOMP_DATA;            break;          case UNCOMP_DATA:            if (dctx->nbits < 8)                goto finished;            zlib_emit_char(dctx, dctx->bits & 0xFF);            EATBITS(8);            if (--dctx->uncomplen == 0)                dctx->state = OUTSIDEBLK;       /* end of uncompressed block */            break;        }    }  finished:    *outlen = dctx->outblk->len;    *outblock = (unsigned char *)strbuf_to_str(dctx->outblk);    dctx->outblk = NULL;    return true;  decode_error:    *outblock = NULL;    *outlen = 0;    return false;}const ssh_compression_alg ssh_zlib = {    // WINSCP    /*.name =*/ "zlib",    /*.delayed_name =*/ "[email protected]", /* delayed version */    /*.compress_new =*/ zlib_compress_init,    /*.compress_free =*/ zlib_compress_cleanup,    /*.compress =*/ zlib_compress_block,    /*.decompress_new =*/ zlib_decompress_init,    /*.decompress_free =*/ zlib_decompress_cleanup,    /*.decompress =*/ zlib_decompress_block,    /*.text_name =*/ "zlib (RFC1950)",};
 |