| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638 | /* * tree234.c: reasonably generic counted 2-3-4 tree routines. * * This file is copyright 1999-2001 Simon Tatham. * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT.  IN NO EVENT SHALL SIMON TATHAM BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */#include <stdio.h>#include <stdlib.h>#include <assert.h>#include "defs.h"#include "tree234.h"#include "puttymem.h"#ifdef TESTstatic int verbose = 0;#define LOG(x) do                               \    {                                           \        if (verbose > 2)                        \            printf x;                           \    } while (0)#else#define LOG(x)#endiftypedef struct node234_Tag node234;struct tree234_Tag {    node234 *root;    cmpfn234 cmp;};struct node234_Tag {    node234 *parent;    node234 *kids[4];    int counts[4];    void *elems[3];};/* * Create a 2-3-4 tree. */tree234 *newtree234(cmpfn234 cmp){    tree234 *ret = snew(tree234);    LOG(("created tree %p\n", ret));    ret->root = NULL;    ret->cmp = cmp;    return ret;}/* * Free a 2-3-4 tree (not including freeing the elements). */static void freenode234(node234 *n){    if (!n)        return;    freenode234(n->kids[0]);    freenode234(n->kids[1]);    freenode234(n->kids[2]);    freenode234(n->kids[3]);    sfree(n);}void freetree234(tree234 *t){    freenode234(t->root);    sfree(t);}/* * Internal function to count a node. */static int countnode234(node234 *n){    int count = 0;    int i;    if (!n)        return 0;    for (i = 0; i < 4; i++)        count += n->counts[i];    for (i = 0; i < 3; i++)        if (n->elems[i])            count++;    return count;}/* * Internal function to return the number of elements in a node. */static int elements234(node234 *n){    int i;    for (i = 0; i < 3; i++)        if (!n->elems[i])            break;    return i;}/* * Count the elements in a tree. */int count234(tree234 *t){    if (t->root)        return countnode234(t->root);    else        return 0;}/* * Add an element e to a 2-3-4 tree t. Returns e on success, or if * an existing element compares equal, returns that. */static void *add234_internal(tree234 *t, void *e, int index){    node234 *n, **np, *left, *right;    void *orig_e = e;    int c, lcount, rcount;    LOG(("adding node %p to tree %p\n", e, t));    if (t->root == NULL) {        t->root = snew(node234);        t->root->elems[1] = t->root->elems[2] = NULL;        t->root->kids[0] = t->root->kids[1] = NULL;        t->root->kids[2] = t->root->kids[3] = NULL;        t->root->counts[0] = t->root->counts[1] = 0;        t->root->counts[2] = t->root->counts[3] = 0;        t->root->parent = NULL;        t->root->elems[0] = e;        LOG(("  created root %p\n", t->root));        return orig_e;    }    n = NULL; /* placate gcc; will always be set below since t->root != NULL */    np = &t->root;    while (*np) {        int childnum;        n = *np;        LOG(("  node %p: %p/%d [%p] %p/%d [%p] %p/%d [%p] %p/%d\n",             n,             n->kids[0], n->counts[0], n->elems[0],             n->kids[1], n->counts[1], n->elems[1],             n->kids[2], n->counts[2], n->elems[2],             n->kids[3], n->counts[3]));        if (index >= 0) {            if (!n->kids[0]) {                /*                 * Leaf node. We want to insert at kid position                 * equal to the index:                 *                 *   0 A 1 B 2 C 3                 */                childnum = index;            } else {                /*                 * Internal node. We always descend through it (add                 * always starts at the bottom, never in the                 * middle).                 */                do {                   /* this is a do ... while (0) to allow `break' */                    if (index <= n->counts[0]) {                        childnum = 0;                        break;                    }                    index -= n->counts[0] + 1;                    if (index <= n->counts[1]) {                        childnum = 1;                        break;                    }                    index -= n->counts[1] + 1;                    if (index <= n->counts[2]) {                        childnum = 2;                        break;                    }                    index -= n->counts[2] + 1;                    if (index <= n->counts[3]) {                        childnum = 3;                        break;                    }                    return NULL;       /* error: index out of range */                } while (0);            }        } else {            if ((c = t->cmp(e, n->elems[0])) < 0)                childnum = 0;            else if (c == 0)                return n->elems[0];    /* already exists */            else if (n->elems[1] == NULL                     || (c = t->cmp(e, n->elems[1])) < 0) childnum = 1;            else if (c == 0)                return n->elems[1];    /* already exists */            else if (n->elems[2] == NULL                     || (c = t->cmp(e, n->elems[2])) < 0) childnum = 2;            else if (c == 0)                return n->elems[2];    /* already exists */            else                childnum = 3;        }        np = &n->kids[childnum];        LOG(("  moving to child %d (%p)\n", childnum, *np));    }    /*     * We need to insert the new element in n at position np.     */    left = NULL;    lcount = 0;    right = NULL;    rcount = 0;    while (n) {        LOG(("  at %p: %p/%d [%p] %p/%d [%p] %p/%d [%p] %p/%d\n",             n,             n->kids[0], n->counts[0], n->elems[0],             n->kids[1], n->counts[1], n->elems[1],             n->kids[2], n->counts[2], n->elems[2],             n->kids[3], n->counts[3]));        LOG(("  need to insert %p/%d [%p] %p/%d at position %d\n",             left, lcount, e, right, rcount, (int)(np - n->kids)));        if (n->elems[1] == NULL) {            /*             * Insert in a 2-node; simple.             */            if (np == &n->kids[0]) {                LOG(("  inserting on left of 2-node\n"));                n->kids[2] = n->kids[1];                n->counts[2] = n->counts[1];                n->elems[1] = n->elems[0];                n->kids[1] = right;                n->counts[1] = rcount;                n->elems[0] = e;                n->kids[0] = left;                n->counts[0] = lcount;            } else {                   /* np == &n->kids[1] */                LOG(("  inserting on right of 2-node\n"));                n->kids[2] = right;                n->counts[2] = rcount;                n->elems[1] = e;                n->kids[1] = left;                n->counts[1] = lcount;            }            if (n->kids[0])                n->kids[0]->parent = n;            if (n->kids[1])                n->kids[1]->parent = n;            if (n->kids[2])                n->kids[2]->parent = n;            LOG(("  done\n"));            break;        } else if (n->elems[2] == NULL) {            /*             * Insert in a 3-node; simple.             */            if (np == &n->kids[0]) {                LOG(("  inserting on left of 3-node\n"));                n->kids[3] = n->kids[2];                n->counts[3] = n->counts[2];                n->elems[2] = n->elems[1];                n->kids[2] = n->kids[1];                n->counts[2] = n->counts[1];                n->elems[1] = n->elems[0];                n->kids[1] = right;                n->counts[1] = rcount;                n->elems[0] = e;                n->kids[0] = left;                n->counts[0] = lcount;            } else if (np == &n->kids[1]) {                LOG(("  inserting in middle of 3-node\n"));                n->kids[3] = n->kids[2];                n->counts[3] = n->counts[2];                n->elems[2] = n->elems[1];                n->kids[2] = right;                n->counts[2] = rcount;                n->elems[1] = e;                n->kids[1] = left;                n->counts[1] = lcount;            } else {                   /* np == &n->kids[2] */                LOG(("  inserting on right of 3-node\n"));                n->kids[3] = right;                n->counts[3] = rcount;                n->elems[2] = e;                n->kids[2] = left;                n->counts[2] = lcount;            }            if (n->kids[0])                n->kids[0]->parent = n;            if (n->kids[1])                n->kids[1]->parent = n;            if (n->kids[2])                n->kids[2]->parent = n;            if (n->kids[3])                n->kids[3]->parent = n;            LOG(("  done\n"));            break;        } else {            node234 *m = snew(node234);            m->parent = n->parent;            LOG(("  splitting a 4-node; created new node %p\n", m));            /*             * Insert in a 4-node; split into a 2-node and a             * 3-node, and move focus up a level.             *             * I don't think it matters which way round we put the             * 2 and the 3. For simplicity, we'll put the 3 first             * always.             */            if (np == &n->kids[0]) {                m->kids[0] = left;                m->counts[0] = lcount;                m->elems[0] = e;                m->kids[1] = right;                m->counts[1] = rcount;                m->elems[1] = n->elems[0];                m->kids[2] = n->kids[1];                m->counts[2] = n->counts[1];                e = n->elems[1];                n->kids[0] = n->kids[2];                n->counts[0] = n->counts[2];                n->elems[0] = n->elems[2];                n->kids[1] = n->kids[3];                n->counts[1] = n->counts[3];            } else if (np == &n->kids[1]) {                m->kids[0] = n->kids[0];                m->counts[0] = n->counts[0];                m->elems[0] = n->elems[0];                m->kids[1] = left;                m->counts[1] = lcount;                m->elems[1] = e;                m->kids[2] = right;                m->counts[2] = rcount;                e = n->elems[1];                n->kids[0] = n->kids[2];                n->counts[0] = n->counts[2];                n->elems[0] = n->elems[2];                n->kids[1] = n->kids[3];                n->counts[1] = n->counts[3];            } else if (np == &n->kids[2]) {                m->kids[0] = n->kids[0];                m->counts[0] = n->counts[0];                m->elems[0] = n->elems[0];                m->kids[1] = n->kids[1];                m->counts[1] = n->counts[1];                m->elems[1] = n->elems[1];                m->kids[2] = left;                m->counts[2] = lcount;                /* e = e; */                n->kids[0] = right;                n->counts[0] = rcount;                n->elems[0] = n->elems[2];                n->kids[1] = n->kids[3];                n->counts[1] = n->counts[3];            } else {                   /* np == &n->kids[3] */                m->kids[0] = n->kids[0];                m->counts[0] = n->counts[0];                m->elems[0] = n->elems[0];                m->kids[1] = n->kids[1];                m->counts[1] = n->counts[1];                m->elems[1] = n->elems[1];                m->kids[2] = n->kids[2];                m->counts[2] = n->counts[2];                n->kids[0] = left;                n->counts[0] = lcount;                n->elems[0] = e;                n->kids[1] = right;                n->counts[1] = rcount;                e = n->elems[2];            }            m->kids[3] = n->kids[3] = n->kids[2] = NULL;            m->counts[3] = n->counts[3] = n->counts[2] = 0;            m->elems[2] = n->elems[2] = n->elems[1] = NULL;            if (m->kids[0])                m->kids[0]->parent = m;            if (m->kids[1])                m->kids[1]->parent = m;            if (m->kids[2])                m->kids[2]->parent = m;            if (n->kids[0])                n->kids[0]->parent = n;            if (n->kids[1])                n->kids[1]->parent = n;            LOG(("  left (%p): %p/%d [%p] %p/%d [%p] %p/%d\n", m,                 m->kids[0], m->counts[0], m->elems[0],                 m->kids[1], m->counts[1], m->elems[1],                 m->kids[2], m->counts[2]));            LOG(("  right (%p): %p/%d [%p] %p/%d\n", n,                 n->kids[0], n->counts[0], n->elems[0],                 n->kids[1], n->counts[1]));            left = m;            lcount = countnode234(left);            right = n;            rcount = countnode234(right);        }        if (n->parent)            np = (n->parent->kids[0] == n ? &n->parent->kids[0] :                  n->parent->kids[1] == n ? &n->parent->kids[1] :                  n->parent->kids[2] == n ? &n->parent->kids[2] :                  &n->parent->kids[3]);        n = n->parent;    }    /*     * If we've come out of here by `break', n will still be     * non-NULL and all we need to do is go back up the tree     * updating counts. If we've come here because n is NULL, we     * need to create a new root for the tree because the old one     * has just split into two. */    if (n) {        while (n->parent) {            int count = countnode234(n);            int childnum;            childnum = (n->parent->kids[0] == n ? 0 :                        n->parent->kids[1] == n ? 1 :                        n->parent->kids[2] == n ? 2 : 3);            n->parent->counts[childnum] = count;            n = n->parent;        }    } else {        LOG(("  root is overloaded, split into two\n"));        t->root = snew(node234);        t->root->kids[0] = left;        t->root->counts[0] = lcount;        t->root->elems[0] = e;        t->root->kids[1] = right;        t->root->counts[1] = rcount;        t->root->elems[1] = NULL;        t->root->kids[2] = NULL;        t->root->counts[2] = 0;        t->root->elems[2] = NULL;        t->root->kids[3] = NULL;        t->root->counts[3] = 0;        t->root->parent = NULL;        if (t->root->kids[0])            t->root->kids[0]->parent = t->root;        if (t->root->kids[1])            t->root->kids[1]->parent = t->root;        LOG(("  new root is %p/%d [%p] %p/%d\n",             t->root->kids[0], t->root->counts[0],             t->root->elems[0], t->root->kids[1], t->root->counts[1]));    }    return orig_e;}void *add234(tree234 *t, void *e){    if (!t->cmp)                       /* tree is unsorted */        return NULL;    return add234_internal(t, e, -1);}void *addpos234(tree234 *t, void *e, int index){    if (index < 0 ||                   /* index out of range */        t->cmp)                        /* tree is sorted */        return NULL;                   /* return failure */    return add234_internal(t, e, index);        /* this checks the upper bound */}/* * Look up the element at a given numeric index in a 2-3-4 tree. * Returns NULL if the index is out of range. */void *index234(tree234 *t, int index){    node234 *n;    if (!t->root)        return NULL;                   /* tree is empty */    if (index < 0 || index >= countnode234(t->root))        return NULL;                   /* out of range */    n = t->root;    while (n) {        if (index < n->counts[0])            n = n->kids[0];        else if (index -= n->counts[0] + 1, index < 0)            return n->elems[0];        else if (index < n->counts[1])            n = n->kids[1];        else if (index -= n->counts[1] + 1, index < 0)            return n->elems[1];        else if (index < n->counts[2])            n = n->kids[2];        else if (index -= n->counts[2] + 1, index < 0)            return n->elems[2];        else            n = n->kids[3];    }    /* We shouldn't ever get here. I wonder how we did. */    return NULL;}/* * Find an element e in a sorted 2-3-4 tree t. Returns NULL if not * found. e is always passed as the first argument to cmp, so cmp * can be an asymmetric function if desired. cmp can also be passed * as NULL, in which case the compare function from the tree proper * will be used. */void *findrelpos234(tree234 *t, void *e, cmpfn234 cmp,                    int relation, int *index){    search234_state ss;    int reldir = (relation == REL234_LT || relation == REL234_LE ? -1 :                  relation == REL234_GT || relation == REL234_GE ? +1 : 0);    bool equal_permitted = (relation != REL234_LT && relation != REL234_GT);    void *toret;    /* Only LT / GT relations are permitted with a null query element. */    assert(!(equal_permitted && !e));    if (cmp == NULL)        cmp = t->cmp;    search234_start(&ss, t);    while (ss.element) {        int cmpret;        if (e) {            cmpret = cmp(e, ss.element);        } else {            cmpret = -reldir;          /* invent a fixed compare result */        }        if (cmpret == 0) {            /*             * We've found an element that compares exactly equal to             * the query element.             */            if (equal_permitted) {                /* If our search relation permits equality, we've                 * finished already. */                if (index)                    *index = ss.index;                return ss.element;            } else {                /* Otherwise, pretend this element was slightly too                 * big/small, according to the direction of search. */                cmpret = reldir;            }        }        search234_step(&ss, cmpret);    }    /*     * No element compares equal to the one we were after, but     * ss.index indicates the index that element would have if it were     * inserted.     *     * So if our search relation is EQ, we must simply return failure.     */    if (relation == REL234_EQ)        return NULL;    /*     * Otherwise, we must do an index lookup for the previous index     * (if we're going left - LE or LT) or this index (if we're going     * right - GE or GT).     */    if (relation == REL234_LT || relation == REL234_LE) {        ss.index--;    }    /*     * We know the index of the element we want; just call index234     * to do the rest. This will return NULL if the index is out of     * bounds, which is exactly what we want.     */    toret = index234(t, ss.index);    if (toret && index)        *index = ss.index;    return toret;}void *find234(tree234 *t, void *e, cmpfn234 cmp){    return findrelpos234(t, e, cmp, REL234_EQ, NULL);}void *findrel234(tree234 *t, void *e, cmpfn234 cmp, int relation){    return findrelpos234(t, e, cmp, relation, NULL);}void *findpos234(tree234 *t, void *e, cmpfn234 cmp, int *index){    return findrelpos234(t, e, cmp, REL234_EQ, index);}void search234_start(search234_state *state, tree234 *t){    state->_node = t->root;    state->_base = 0; /* index of first element in this node's subtree */    state->_last = -1; /* indicate that this node is not previously visited */    search234_step(state, 0);}void search234_step(search234_state *state, int direction){    node234 *node = state->_node;    int i;    if (!node) {        state->element = NULL;        state->index = 0;        return;    }    if (state->_last != -1) {        /*         * We're already pointing at some element of a node, so we         * should restrict to the elements left or right of it,         * depending on the requested search direction.         */        assert(direction);        assert(node);        if (direction > 0)            state->_lo = state->_last + 1;        else            state->_hi = state->_last - 1;        if (state->_lo > state->_hi) {            /*             * We've run out of elements in this node, i.e. we've             * narrowed to nothing but a child pointer. Descend to             * that child, and update _base to the leftmost index of             * its subtree.             */            for (i = 0; i < state->_lo; i++)                state->_base += 1 + node->counts[i];            state->_node = node = node->kids[state->_lo];            state->_last = -1;        }    }    if (state->_last == -1) {        /*         * We've just entered a new node - either because of the above         * code, or because we were called from search234_start - and         * anything in that node is a viable answer.         */        state->_lo = 0;        state->_hi = node ? elements234(node)-1 : 0;    }    /*     * Now we've got something we can return.     */    if (!node) {        state->element = NULL;        state->index = state->_base;    } else {        state->_last = (state->_lo + state->_hi) / 2;        state->element = node->elems[state->_last];        state->index = state->_base + state->_last;        for (i = 0; i <= state->_last; i++)            state->index += node->counts[i];    }}/* * Delete an element e in a 2-3-4 tree. Does not free the element, * merely removes all links to it from the tree nodes. */static void *delpos234_internal(tree234 *t, int index){    node234 *n;    void *retval;    int ei = -1;    retval = 0;    n = t->root;    LOG(("deleting item %d from tree %p\n", index, t));    while (1) {        while (n) {            int ki;            node234 *sub;            LOG(                ("  node %p: %p/%d [%p] %p/%d [%p] %p/%d [%p] %p/%d index=%d\n",                 n, n->kids[0], n->counts[0], n->elems[0], n->kids[1],                 n->counts[1], n->elems[1], n->kids[2], n->counts[2],                 n->elems[2], n->kids[3], n->counts[3], index));            if (index < n->counts[0]) {                ki = 0;            } else if (index -= n->counts[0] + 1, index < 0) {                ei = 0;                break;            } else if (index < n->counts[1]) {                ki = 1;            } else if (index -= n->counts[1] + 1, index < 0) {                ei = 1;                break;            } else if (index < n->counts[2]) {                ki = 2;            } else if (index -= n->counts[2] + 1, index < 0) {                ei = 2;                break;            } else {                ki = 3;            }            /*             * Recurse down to subtree ki. If it has only one element,             * we have to do some transformation to start with.             */            LOG(("  moving to subtree %d\n", ki));            sub = n->kids[ki];            if (!sub->elems[1]) {                LOG(("  subtree has only one element!\n"));                if (ki > 0 && n->kids[ki - 1]->elems[1]) {                    /*                     * Case 3a, left-handed variant. Child ki has                     * only one element, but child ki-1 has two or                     * more. So we need to move a subtree from ki-1                     * to ki.                     *                     *                . C .                     . B .                     *               /     \     ->            /     \                     * [more] a A b B c   d D e      [more] a A b   c C d D e                     */                    node234 *sib = n->kids[ki - 1];                    int lastelem = (sib->elems[2] ? 2 :                                    sib->elems[1] ? 1 : 0);                    sub->kids[2] = sub->kids[1];                    sub->counts[2] = sub->counts[1];                    sub->elems[1] = sub->elems[0];                    sub->kids[1] = sub->kids[0];                    sub->counts[1] = sub->counts[0];                    sub->elems[0] = n->elems[ki - 1];                    sub->kids[0] = sib->kids[lastelem + 1];                    sub->counts[0] = sib->counts[lastelem + 1];                    if (sub->kids[0])                        sub->kids[0]->parent = sub;                    n->elems[ki - 1] = sib->elems[lastelem];                    sib->kids[lastelem + 1] = NULL;                    sib->counts[lastelem + 1] = 0;                    sib->elems[lastelem] = NULL;                    n->counts[ki] = countnode234(sub);                    LOG(("  case 3a left\n"));                    LOG(                        ("  index and left subtree count before adjustment: %d, %d\n",                         index, n->counts[ki - 1]));                    index += n->counts[ki - 1];                    n->counts[ki - 1] = countnode234(sib);                    index -= n->counts[ki - 1];                    LOG(                        ("  index and left subtree count after adjustment: %d, %d\n",                         index, n->counts[ki - 1]));                } else if (ki < 3 && n->kids[ki + 1]                           && n->kids[ki + 1]->elems[1]) {                    /*                     * Case 3a, right-handed variant. ki has only                     * one element but ki+1 has two or more. Move a                     * subtree from ki+1 to ki.                     *                     *      . B .                             . C .                     *     /     \                ->         /     \                     *  a A b   c C d D e [more]      a A b B c   d D e [more]                     */                    node234 *sib = n->kids[ki + 1];                    int j;                    sub->elems[1] = n->elems[ki];                    sub->kids[2] = sib->kids[0];                    sub->counts[2] = sib->counts[0];                    if (sub->kids[2])                        sub->kids[2]->parent = sub;                    n->elems[ki] = sib->elems[0];                    sib->kids[0] = sib->kids[1];                    sib->counts[0] = sib->counts[1];                    for (j = 0; j < 2 && sib->elems[j + 1]; j++) {                        sib->kids[j + 1] = sib->kids[j + 2];                        sib->counts[j + 1] = sib->counts[j + 2];                        sib->elems[j] = sib->elems[j + 1];                    }                    sib->kids[j + 1] = NULL;                    sib->counts[j + 1] = 0;                    sib->elems[j] = NULL;                    n->counts[ki] = countnode234(sub);                    n->counts[ki + 1] = countnode234(sib);                    LOG(("  case 3a right\n"));                } else {                    /*                     * Case 3b. ki has only one element, and has no                     * neighbour with more than one. So pick a                     * neighbour and merge it with ki, taking an                     * element down from n to go in the middle.                     *                     *      . B .                .                     *     /     \     ->        |                     *  a A b   c C d      a A b B c C d                     *                     * (Since at all points we have avoided                     * descending to a node with only one element,                     * we can be sure that n is not reduced to                     * nothingness by this move, _unless_ it was                     * the very first node, ie the root of the                     * tree. In that case we remove the now-empty                     * root and replace it with its single large                     * child as shown.)                     */                    node234 *sib;                    int j;                    if (ki > 0) {                        ki--;                        index += n->counts[ki] + 1;                    }                    sib = n->kids[ki];                    sub = n->kids[ki + 1];                    sub->kids[3] = sub->kids[1];                    sub->counts[3] = sub->counts[1];                    sub->elems[2] = sub->elems[0];                    sub->kids[2] = sub->kids[0];                    sub->counts[2] = sub->counts[0];                    sub->elems[1] = n->elems[ki];                    sub->kids[1] = sib->kids[1];                    sub->counts[1] = sib->counts[1];                    if (sub->kids[1])                        sub->kids[1]->parent = sub;                    sub->elems[0] = sib->elems[0];                    sub->kids[0] = sib->kids[0];                    sub->counts[0] = sib->counts[0];                    if (sub->kids[0])                        sub->kids[0]->parent = sub;                    n->counts[ki + 1] = countnode234(sub);                    sfree(sib);                    /*                     * That's built the big node in sub. Now we                     * need to remove the reference to sib in n.                     */                    for (j = ki; j < 3 && n->kids[j + 1]; j++) {                        n->kids[j] = n->kids[j + 1];                        n->counts[j] = n->counts[j + 1];                        n->elems[j] = j < 2 ? n->elems[j + 1] : NULL;                    }                    n->kids[j] = NULL;                    n->counts[j] = 0;                    if (j < 3)                        n->elems[j] = NULL;                    LOG(("  case 3b ki=%d\n", ki));                    if (!n->elems[0]) {                        /*                         * The root is empty and needs to be                         * removed.                         */                        LOG(("  shifting root!\n"));                        t->root = sub;                        sub->parent = NULL;                        sfree(n);                    }                }            }            n = sub;        }        if (!retval)            retval = n->elems[ei];        if (ei == -1)            return NULL;               /* although this shouldn't happen */        /*         * Treat special case: this is the one remaining item in         * the tree. n is the tree root (no parent), has one         * element (no elems[1]), and has no kids (no kids[0]).         */        if (!n->parent && !n->elems[1] && !n->kids[0]) {            LOG(("  removed last element in tree\n"));            sfree(n);            t->root = NULL;            return retval;        }        /*         * Now we have the element we want, as n->elems[ei], and we         * have also arranged for that element not to be the only         * one in its node. So...         */        if (!n->kids[0] && n->elems[1]) {            /*             * Case 1. n is a leaf node with more than one element,             * so it's _really easy_. Just delete the thing and             * we're done.             */            int i;            LOG(("  case 1\n"));            for (i = ei; i < 2 && n->elems[i + 1]; i++)                n->elems[i] = n->elems[i + 1];            n->elems[i] = NULL;            /*             * Having done that to the leaf node, we now go back up             * the tree fixing the counts.             */            while (n->parent) {                int childnum;                childnum = (n->parent->kids[0] == n ? 0 :                            n->parent->kids[1] == n ? 1 :                            n->parent->kids[2] == n ? 2 : 3);                n->parent->counts[childnum]--;                n = n->parent;            }            return retval;             /* finished! */        } else if (n->kids[ei]->elems[1]) {            /*             * Case 2a. n is an internal node, and the root of the             * subtree to the left of e has more than one element.             * So find the predecessor p to e (ie the largest node             * in that subtree), place it where e currently is, and             * then start the deletion process over again on the             * subtree with p as target.             */            node234 *m = n->kids[ei];            void *target;            LOG(("  case 2a\n"));            while (m->kids[0]) {                m = (m->kids[3] ? m->kids[3] :                     m->kids[2] ? m->kids[2] :                     m->kids[1] ? m->kids[1] : m->kids[0]);            }            target = (m->elems[2] ? m->elems[2] :                      m->elems[1] ? m->elems[1] : m->elems[0]);            n->elems[ei] = target;            index = n->counts[ei] - 1;            n = n->kids[ei];        } else if (n->kids[ei + 1]->elems[1]) {            /*             * Case 2b, symmetric to 2a but s/left/right/ and             * s/predecessor/successor/. (And s/largest/smallest/).             */            node234 *m = n->kids[ei + 1];            void *target;            LOG(("  case 2b\n"));            while (m->kids[0]) {                m = m->kids[0];            }            target = m->elems[0];            n->elems[ei] = target;            n = n->kids[ei + 1];            index = 0;        } else {            /*             * Case 2c. n is an internal node, and the subtrees to             * the left and right of e both have only one element.             * So combine the two subnodes into a single big node             * with their own elements on the left and right and e             * in the middle, then restart the deletion process on             * that subtree, with e still as target.             */            node234 *a = n->kids[ei], *b = n->kids[ei + 1];            int j;            LOG(("  case 2c\n"));            a->elems[1] = n->elems[ei];            a->kids[2] = b->kids[0];            a->counts[2] = b->counts[0];            if (a->kids[2])                a->kids[2]->parent = a;            a->elems[2] = b->elems[0];            a->kids[3] = b->kids[1];            a->counts[3] = b->counts[1];            if (a->kids[3])                a->kids[3]->parent = a;            sfree(b);            n->counts[ei] = countnode234(a);            /*             * That's built the big node in a, and destroyed b. Now             * remove the reference to b (and e) in n.             */            for (j = ei; j < 2 && n->elems[j + 1]; j++) {                n->elems[j] = n->elems[j + 1];                n->kids[j + 1] = n->kids[j + 2];                n->counts[j + 1] = n->counts[j + 2];            }            n->elems[j] = NULL;            n->kids[j + 1] = NULL;            n->counts[j + 1] = 0;            /*             * It's possible, in this case, that we've just removed             * the only element in the root of the tree. If so,             * shift the root.             */            if (n->elems[0] == NULL) {                LOG(("  shifting root!\n"));                t->root = a;                a->parent = NULL;                sfree(n);            }            /*             * Now go round the deletion process again, with n             * pointing at the new big node and e still the same.             */            n = a;            index = a->counts[0] + a->counts[1] + 1;        }    }}void *delpos234(tree234 *t, int index){    if (index < 0 || index >= countnode234(t->root))        return NULL;    return delpos234_internal(t, index);}void *del234(tree234 *t, void *e){    int index;    if (!findrelpos234(t, e, NULL, REL234_EQ, &index))        return NULL;                   /* it wasn't in there anyway */    return delpos234_internal(t, index);        /* it's there; delete it. */}#ifdef TEST/* * Test code for the 2-3-4 tree. This code maintains an alternative * representation of the data in the tree, in an array (using the * obvious and slow insert and delete functions). After each tree * operation, the verify() function is called, which ensures all * the tree properties are preserved: *  - node->child->parent always equals node *  - tree->root->parent always equals NULL *  - number of kids == 0 or number of elements + 1; *  - tree has the same depth everywhere *  - every node has at least one element *  - subtree element counts are accurate *  - any NULL kid pointer is accompanied by a zero count *  - in a sorted tree: ordering property between elements of a *    node and elements of its children is preserved * and also ensures the list represented by the tree is the same * list it should be. (This last check also doubly verifies the * ordering properties, because the `same list it should be' is by * definition correctly ordered. It also ensures all nodes are * distinct, because the enum functions would get caught in a loop * if not.) */#include <stdarg.h>#include <string.h>int n_errors = 0;/* * Error reporting function. */PRINTF_LIKE(1, 2) void error(char *fmt, ...){    va_list ap;    printf("ERROR: ");    va_start(ap, fmt);    vfprintf(stdout, fmt, ap);    va_end(ap);    printf("\n");    n_errors++;}/* The array representation of the data. */void **array;int arraylen, arraysize;cmpfn234 cmp;/* The tree representation of the same data. */tree234 *tree;typedef struct {    int treedepth;    int elemcount;} chkctx;int chknode(chkctx *ctx, int level, node234 *node,            void *lowbound, void *highbound){    int nkids, nelems;    int i;    int count;    /* Count the non-NULL kids. */    for (nkids = 0; nkids < 4 && node->kids[nkids]; nkids++);    /* Ensure no kids beyond the first NULL are non-NULL. */    for (i = nkids; i < 4; i++)        if (node->kids[i]) {            error("node %p: nkids=%d but kids[%d] non-NULL",                  node, nkids, i);        } else if (node->counts[i]) {            error("node %p: kids[%d] NULL but count[%d]=%d nonzero",                  node, i, i, node->counts[i]);        }    /* Count the non-NULL elements. */    for (nelems = 0; nelems < 3 && node->elems[nelems]; nelems++);    /* Ensure no elements beyond the first NULL are non-NULL. */    for (i = nelems; i < 3; i++)        if (node->elems[i]) {            error("node %p: nelems=%d but elems[%d] non-NULL",                  node, nelems, i);        }    if (nkids == 0) {        /*         * If nkids==0, this is a leaf node; verify that the tree         * depth is the same everywhere.         */        if (ctx->treedepth < 0)            ctx->treedepth = level;    /* we didn't know the depth yet */        else if (ctx->treedepth != level)            error("node %p: leaf at depth %d, previously seen depth %d",                  node, level, ctx->treedepth);    } else {        /*         * If nkids != 0, then it should be nelems+1, unless nelems         * is 0 in which case nkids should also be 0 (and so we         * shouldn't be in this condition at all).         */        int shouldkids = (nelems ? nelems + 1 : 0);        if (nkids != shouldkids) {            error("node %p: %d elems should mean %d kids but has %d",                  node, nelems, shouldkids, nkids);        }    }    /*     * nelems should be at least 1.     */    if (nelems == 0) {        error("node %p: no elems", node);    }    /*     * Add nelems to the running element count of the whole tree.     */    ctx->elemcount += nelems;    /*     * Check ordering property: all elements should be strictly >     * lowbound, strictly < highbound, and strictly < each other in     * sequence. (lowbound and highbound are NULL at edges of tree     * - both NULL at root node - and NULL is considered to be <     * everything and > everything. IYSWIM.)     */    if (cmp) {        for (i = -1; i < nelems; i++) {            void *lower = (i == -1 ? lowbound : node->elems[i]);            void *higher =                (i + 1 == nelems ? highbound : node->elems[i + 1]);            if (lower && higher && cmp(lower, higher) >= 0) {                error("node %p: kid comparison [%d=%s,%d=%s] failed",                      node, i, (char *)lower, i + 1, (char *)higher);            }        }    }    /*     * Check parent pointers: all non-NULL kids should have a     * parent pointer coming back to this node.     */    for (i = 0; i < nkids; i++)        if (node->kids[i]->parent != node) {            error("node %p kid %d: parent ptr is %p not %p",                  node, i, node->kids[i]->parent, node);        }    /*     * Now (finally!) recurse into subtrees.     */    count = nelems;    for (i = 0; i < nkids; i++) {        void *lower = (i == 0 ? lowbound : node->elems[i - 1]);        void *higher = (i >= nelems ? highbound : node->elems[i]);        int subcount =            chknode(ctx, level + 1, node->kids[i], lower, higher);        if (node->counts[i] != subcount) {            error("node %p kid %d: count says %d, subtree really has %d",                  node, i, node->counts[i], subcount);        }        count += subcount;    }    return count;}void verify(void){    chkctx ctx[1];    int i;    void *p;    ctx->treedepth = -1;                /* depth unknown yet */    ctx->elemcount = 0;                 /* no elements seen yet */    /*     * Verify validity of tree properties.     */    if (tree->root) {        if (tree->root->parent != NULL)            error("root->parent is %p should be null", tree->root->parent);        chknode(ctx, 0, tree->root, NULL, NULL);    }    if (verbose)        printf("tree depth: %d\n", ctx->treedepth);    /*     * Enumerate the tree and ensure it matches up to the array.     */    for (i = 0; NULL != (p = index234(tree, i)); i++) {        if (i >= arraylen)            error("tree contains more than %d elements", arraylen);        if (array[i] != p)            error("enum at position %d: array says %s, tree says %s",                  i, (char *)array[i], (char *)p);    }    if (ctx->elemcount != i) {        error("tree really contains %d elements, enum gave %d",              ctx->elemcount, i);    }    if (i < arraylen) {        error("enum gave only %d elements, array has %d", i, arraylen);    }    i = count234(tree);    if (ctx->elemcount != i) {        error("tree really contains %d elements, count234 gave %d",              ctx->elemcount, i);    }}void internal_addtest(void *elem, int index, void *realret){    int i, j;    void *retval;    if (arraysize < arraylen + 1) {        arraysize = arraylen + 1 + 256;        array = sresize(array, arraysize, void *);    }    i = index;    /* now i points to the first element >= elem */    retval = elem;                     /* expect elem returned (success) */    for (j = arraylen; j > i; j--)        array[j] = array[j - 1];    array[i] = elem;                   /* add elem to array */    arraylen++;    if (realret != retval) {        error("add: retval was %p expected %p", realret, retval);    }    verify();}void addtest(void *elem){    int i;    void *realret;    realret = add234(tree, elem);    i = 0;    while (i < arraylen && cmp(elem, array[i]) > 0)        i++;    if (i < arraylen && !cmp(elem, array[i])) {        void *retval = array[i];       /* expect that returned not elem */        if (realret != retval) {            error("add: retval was %p expected %p", realret, retval);        }    } else        internal_addtest(elem, i, realret);}void addpostest(void *elem, int i){    void *realret;    realret = addpos234(tree, elem, i);    internal_addtest(elem, i, realret);}void delpostest(int i){    int index = i;    void *elem = array[i], *ret;    /* i points to the right element */    while (i < arraylen - 1) {        array[i] = array[i + 1];        i++;    }    arraylen--;                        /* delete elem from array */    if (tree->cmp)        ret = del234(tree, elem);    else        ret = delpos234(tree, index);    if (ret != elem) {        error("del returned %p, expected %p", ret, elem);    }    verify();}void deltest(void *elem){    int i;    i = 0;    while (i < arraylen && cmp(elem, array[i]) > 0)        i++;    if (i >= arraylen || cmp(elem, array[i]) != 0)        return;                        /* don't do it! */    delpostest(i);}/* A sample data set and test utility. Designed for pseudo-randomness, * and yet repeatability. *//* * This random number generator uses the `portable implementation' * given in ANSI C99 draft N869. It assumes `unsigned' is 32 bits; * change it if not. */int randomnumber(unsigned *seed){    *seed *= 1103515245;    *seed += 12345;    return ((*seed) / 65536) % 32768;}int mycmp(void *av, void *bv){    char const *a = (char const *) av;    char const *b = (char const *) bv;    return strcmp(a, b);}#define lenof(x) ( sizeof((x)) / sizeof(*(x)) )char *strings[] = {    "a", "ab", "absque", "coram", "de",    "palam", "clam", "cum", "ex", "e",    "sine", "tenus", "pro", "prae",    "banana", "carrot", "cabbage", "broccoli", "onion", "zebra",    "penguin", "blancmange", "pangolin", "whale", "hedgehog",    "giraffe", "peanut", "bungee", "foo", "bar", "baz", "quux",    "murfl", "spoo", "breen", "flarn", "octothorpe",    "snail", "tiger", "elephant", "octopus", "warthog", "armadillo",    "aardvark", "wyvern", "dragon", "elf", "dwarf", "orc", "goblin",    "pixie", "basilisk", "warg", "ape", "lizard", "newt", "shopkeeper",    "wand", "ring", "amulet"};#define NSTR lenof(strings)void findtest(void){    const static int rels[] = {        REL234_EQ, REL234_GE, REL234_LE, REL234_LT, REL234_GT    };    const static char *const relnames[] = {        "EQ", "GE", "LE", "LT", "GT"    };    int i, j, rel, index;    char *p, *ret, *realret, *realret2;    int lo, hi, mid, c;    for (i = 0; i < NSTR; i++) {        p = strings[i];        for (j = 0; j < sizeof(rels) / sizeof(*rels); j++) {            rel = rels[j];            lo = 0;            hi = arraylen - 1;            while (lo <= hi) {                mid = (lo + hi) / 2;                c = strcmp(p, array[mid]);                if (c < 0)                    hi = mid - 1;                else if (c > 0)                    lo = mid + 1;                else                    break;            }            if (c == 0) {                if (rel == REL234_LT)                    ret = (mid > 0 ? array[--mid] : NULL);                else if (rel == REL234_GT)                    ret = (mid < arraylen - 1 ? array[++mid] : NULL);                else                    ret = array[mid];            } else {                assert(lo == hi + 1);                if (rel == REL234_LT || rel == REL234_LE) {                    mid = hi;                    ret = (hi >= 0 ? array[hi] : NULL);                } else if (rel == REL234_GT || rel == REL234_GE) {                    mid = lo;                    ret = (lo < arraylen ? array[lo] : NULL);                } else                    ret = NULL;            }            realret = findrelpos234(tree, p, NULL, rel, &index);            if (realret != ret) {                error("find(\"%s\",%s) gave %s should be %s",                      p, relnames[j], realret, ret);            }            if (realret && index != mid) {                error("find(\"%s\",%s) gave %d should be %d",                      p, relnames[j], index, mid);            }            if (realret && rel == REL234_EQ) {                realret2 = index234(tree, index);                if (realret2 != realret) {                    error("find(\"%s\",%s) gave %s(%d) but %d -> %s",                          p, relnames[j], realret, index, index, realret2);                }            }            if (verbose)                printf("find(\"%s\",%s) gave %s(%d)\n", p, relnames[j],                       realret, index);        }    }    realret = findrelpos234(tree, NULL, NULL, REL234_GT, &index);    if (arraylen && (realret != array[0] || index != 0)) {        error("find(NULL,GT) gave %s(%d) should be %s(0)",              realret, index, (char *)array[0]);    } else if (!arraylen && (realret != NULL)) {        error("find(NULL,GT) gave %s(%d) should be NULL", realret, index);    }    realret = findrelpos234(tree, NULL, NULL, REL234_LT, &index);    if (arraylen        && (realret != array[arraylen - 1] || index != arraylen - 1)) {        error("find(NULL,LT) gave %s(%d) should be %s(0)", realret, index,              (char *)array[arraylen - 1]);    } else if (!arraylen && (realret != NULL)) {        error("find(NULL,LT) gave %s(%d) should be NULL", realret, index);    }}void searchtest_recurse(search234_state ss, int lo, int hi,                        char **expected, char *directionbuf,                        char *directionptr){    *directionptr = '\0';    if (!ss.element) {        if (lo != hi) {            error("search234(%s) gave NULL for non-empty interval [%d,%d)",                  directionbuf, lo, hi);        } else if (ss.index != lo) {            error("search234(%s) gave index %d should be %d",                  directionbuf, ss.index, lo);        } else {            if (verbose)                printf("%*ssearch234(%s) gave NULL,%d\n",                       (int)(directionptr-directionbuf) * 2, "", directionbuf,                       ss.index);        }    } else if (lo == hi) {        error("search234(%s) gave %s for empty interval [%d,%d)",              directionbuf, (char *)ss.element, lo, hi);    } else if (ss.element != expected[ss.index]) {        error("search234(%s) gave element %s should be %s",              directionbuf, (char *)ss.element, expected[ss.index]);    } else if (ss.index < lo || ss.index >= hi) {        error("search234(%s) gave index %d should be in [%d,%d)",              directionbuf, ss.index, lo, hi);        return;    } else {        search234_state next;        if (verbose)            printf("%*ssearch234(%s) gave %s,%d\n",                   (int)(directionptr-directionbuf) * 2, "", directionbuf,                   (char *)ss.element, ss.index);        next = ss;        search234_step(&next, -1);        *directionptr = '-';        searchtest_recurse(next, lo, ss.index,                           expected, directionbuf, directionptr+1);        next = ss;        search234_step(&next, +1);        *directionptr = '+';        searchtest_recurse(next, ss.index+1, hi,                           expected, directionbuf, directionptr+1);    }}void searchtest(void){    char *expected[NSTR], *p;    char directionbuf[NSTR * 10];    int n;    search234_state ss;    if (verbose)        printf("beginning searchtest:");    for (n = 0; (p = index234(tree, n)) != NULL; n++) {        expected[n] = p;        if (verbose)            printf(" %d=%s", n, p);    }    if (verbose)        printf(" count=%d\n", n);    search234_start(&ss, tree);    searchtest_recurse(ss, 0, n, expected, directionbuf, directionbuf);}void out_of_memory(void){    fprintf(stderr, "out of memory!\n");    exit(2);}int main(int argc, char **argv){    int in[NSTR];    int i, j, k;    unsigned seed = 0;    for (i = 1; i < argc; i++) {        char *arg = argv[i];        if (!strcmp(arg, "-v")) {            verbose++;        } else {            fprintf(stderr, "unrecognised option '%s'\n", arg);            return 1;        }    }    for (i = 0; i < NSTR; i++)        in[i] = 0;    array = NULL;    arraylen = arraysize = 0;    tree = newtree234(mycmp);    cmp = mycmp;    verify();    searchtest();    for (i = 0; i < 10000; i++) {        j = randomnumber(&seed);        j %= NSTR;        if (verbose)            printf("trial: %d\n", i);        if (in[j]) {            if (verbose)                printf("deleting %s (%d)\n", strings[j], j);            deltest(strings[j]);            in[j] = 0;        } else {            if (verbose)                printf("adding %s (%d)\n", strings[j], j);            addtest(strings[j]);            in[j] = 1;        }        findtest();        searchtest();    }    while (arraylen > 0) {        j = randomnumber(&seed);        j %= arraylen;        deltest(array[j]);    }    freetree234(tree);    /*     * Now try an unsorted tree. We don't really need to test     * delpos234 because we know del234 is based on it, so it's     * already been tested in the above sorted-tree code; but for     * completeness we'll use it to tear down our unsorted tree     * once we've built it.     */    tree = newtree234(NULL);    cmp = NULL;    verify();    for (i = 0; i < 1000; i++) {        if (verbose)            printf("trial: %d\n", i);        j = randomnumber(&seed);        j %= NSTR;        k = randomnumber(&seed);        k %= count234(tree) + 1;        if (verbose)            printf("adding string %s at index %d\n", strings[j], k);        addpostest(strings[j], k);    }    while (count234(tree) > 0) {        if (verbose)            printf("cleanup: tree size %d\n", count234(tree));        j = randomnumber(&seed);        j %= count234(tree);        if (verbose)            printf("deleting string %s from index %d\n",                   (const char *)array[j], j);        delpostest(j);    }    printf("%d errors found\n", n_errors);    return (n_errors != 0);}#endif /* TEST */
 |