| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981 | 
							- /*
 
-  * Copyright 2001-2023 The OpenSSL Project Authors. All Rights Reserved.
 
-  * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
 
-  *
 
-  * Licensed under the Apache License 2.0 (the "License").  You may not use
 
-  * this file except in compliance with the License.  You can obtain a copy
 
-  * in the file LICENSE in the source distribution or at
 
-  * https://www.openssl.org/source/license.html
 
-  */
 
- /*
 
-  * ECDSA low level APIs are deprecated for public use, but still ok for
 
-  * internal use.
 
-  */
 
- #include "internal/deprecated.h"
 
- #include <string.h>
 
- #include <openssl/err.h>
 
- #include "internal/cryptlib.h"
 
- #include "crypto/bn.h"
 
- #include "ec_local.h"
 
- #include "internal/refcount.h"
 
- /*
 
-  * This file implements the wNAF-based interleaving multi-exponentiation method
 
-  * Formerly at:
 
-  *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp
 
-  * You might now find it here:
 
-  *   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
 
-  *   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
 
-  * For multiplication with precomputation, we use wNAF splitting, formerly at:
 
-  *   http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp
 
-  */
 
- /* structure for precomputed multiples of the generator */
 
- struct ec_pre_comp_st {
 
-     const EC_GROUP *group;      /* parent EC_GROUP object */
 
-     size_t blocksize;           /* block size for wNAF splitting */
 
-     size_t numblocks;           /* max. number of blocks for which we have
 
-                                  * precomputation */
 
-     size_t w;                   /* window size */
 
-     EC_POINT **points;          /* array with pre-calculated multiples of
 
-                                  * generator: 'num' pointers to EC_POINT
 
-                                  * objects followed by a NULL */
 
-     size_t num;                 /* numblocks * 2^(w-1) */
 
-     CRYPTO_REF_COUNT references;
 
- };
 
- static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group)
 
- {
 
-     EC_PRE_COMP *ret = NULL;
 
-     if (!group)
 
-         return NULL;
 
-     ret = OPENSSL_zalloc(sizeof(*ret));
 
-     if (ret == NULL)
 
-         return ret;
 
-     ret->group = group;
 
-     ret->blocksize = 8;         /* default */
 
-     ret->w = 4;                 /* default */
 
-     if (!CRYPTO_NEW_REF(&ret->references, 1)) {
 
-         OPENSSL_free(ret);
 
-         return NULL;
 
-     }
 
-     return ret;
 
- }
 
- EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre)
 
- {
 
-     int i;
 
-     if (pre != NULL)
 
-         CRYPTO_UP_REF(&pre->references, &i);
 
-     return pre;
 
- }
 
- void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
 
- {
 
-     int i;
 
-     if (pre == NULL)
 
-         return;
 
-     CRYPTO_DOWN_REF(&pre->references, &i);
 
-     REF_PRINT_COUNT("EC_ec", i, pre);
 
-     if (i > 0)
 
-         return;
 
-     REF_ASSERT_ISNT(i < 0);
 
-     if (pre->points != NULL) {
 
-         EC_POINT **pts;
 
-         for (pts = pre->points; *pts != NULL; pts++)
 
-             EC_POINT_free(*pts);
 
-         OPENSSL_free(pre->points);
 
-     }
 
-     CRYPTO_FREE_REF(&pre->references);
 
-     OPENSSL_free(pre);
 
- }
 
- #define EC_POINT_BN_set_flags(P, flags) do { \
 
-     BN_set_flags((P)->X, (flags)); \
 
-     BN_set_flags((P)->Y, (flags)); \
 
-     BN_set_flags((P)->Z, (flags)); \
 
- } while(0)
 
- /*-
 
-  * This functions computes a single point multiplication over the EC group,
 
-  * using, at a high level, a Montgomery ladder with conditional swaps, with
 
-  * various timing attack defenses.
 
-  *
 
-  * It performs either a fixed point multiplication
 
-  *          (scalar * generator)
 
-  * when point is NULL, or a variable point multiplication
 
-  *          (scalar * point)
 
-  * when point is not NULL.
 
-  *
 
-  * `scalar` cannot be NULL and should be in the range [0,n) otherwise all
 
-  * constant time bets are off (where n is the cardinality of the EC group).
 
-  *
 
-  * This function expects `group->order` and `group->cardinality` to be well
 
-  * defined and non-zero: it fails with an error code otherwise.
 
-  *
 
-  * NB: This says nothing about the constant-timeness of the ladder step
 
-  * implementation (i.e., the default implementation is based on EC_POINT_add and
 
-  * EC_POINT_dbl, which of course are not constant time themselves) or the
 
-  * underlying multiprecision arithmetic.
 
-  *
 
-  * The product is stored in `r`.
 
-  *
 
-  * This is an internal function: callers are in charge of ensuring that the
 
-  * input parameters `group`, `r`, `scalar` and `ctx` are not NULL.
 
-  *
 
-  * Returns 1 on success, 0 otherwise.
 
-  */
 
- int ossl_ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
 
-                               const BIGNUM *scalar, const EC_POINT *point,
 
-                               BN_CTX *ctx)
 
- {
 
-     int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
 
-     EC_POINT *p = NULL;
 
-     EC_POINT *s = NULL;
 
-     BIGNUM *k = NULL;
 
-     BIGNUM *lambda = NULL;
 
-     BIGNUM *cardinality = NULL;
 
-     int ret = 0;
 
-     /* early exit if the input point is the point at infinity */
 
-     if (point != NULL && EC_POINT_is_at_infinity(group, point))
 
-         return EC_POINT_set_to_infinity(group, r);
 
-     if (BN_is_zero(group->order)) {
 
-         ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
 
-         return 0;
 
-     }
 
-     if (BN_is_zero(group->cofactor)) {
 
-         ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_COFACTOR);
 
-         return 0;
 
-     }
 
-     BN_CTX_start(ctx);
 
-     if (((p = EC_POINT_new(group)) == NULL)
 
-         || ((s = EC_POINT_new(group)) == NULL)) {
 
-         ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
 
-         goto err;
 
-     }
 
-     if (point == NULL) {
 
-         if (!EC_POINT_copy(p, group->generator)) {
 
-             ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
 
-             goto err;
 
-         }
 
-     } else {
 
-         if (!EC_POINT_copy(p, point)) {
 
-             ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
 
-             goto err;
 
-         }
 
-     }
 
-     EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
 
-     EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
 
-     EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
 
-     cardinality = BN_CTX_get(ctx);
 
-     lambda = BN_CTX_get(ctx);
 
-     k = BN_CTX_get(ctx);
 
-     if (k == NULL) {
 
-         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
 
-         goto err;
 
-     }
 
-     if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
 
-         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
 
-         goto err;
 
-     }
 
-     /*
 
-      * Group cardinalities are often on a word boundary.
 
-      * So when we pad the scalar, some timing diff might
 
-      * pop if it needs to be expanded due to carries.
 
-      * So expand ahead of time.
 
-      */
 
-     cardinality_bits = BN_num_bits(cardinality);
 
-     group_top = bn_get_top(cardinality);
 
-     if ((bn_wexpand(k, group_top + 2) == NULL)
 
-         || (bn_wexpand(lambda, group_top + 2) == NULL)) {
 
-         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
 
-         goto err;
 
-     }
 
-     if (!BN_copy(k, scalar)) {
 
-         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
 
-         goto err;
 
-     }
 
-     BN_set_flags(k, BN_FLG_CONSTTIME);
 
-     if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) {
 
-         /*-
 
-          * this is an unusual input, and we don't guarantee
 
-          * constant-timeness
 
-          */
 
-         if (!BN_nnmod(k, k, cardinality, ctx)) {
 
-             ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
 
-             goto err;
 
-         }
 
-     }
 
-     if (!BN_add(lambda, k, cardinality)) {
 
-         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
 
-         goto err;
 
-     }
 
-     BN_set_flags(lambda, BN_FLG_CONSTTIME);
 
-     if (!BN_add(k, lambda, cardinality)) {
 
-         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
 
-         goto err;
 
-     }
 
-     /*
 
-      * lambda := scalar + cardinality
 
-      * k := scalar + 2*cardinality
 
-      */
 
-     kbit = BN_is_bit_set(lambda, cardinality_bits);
 
-     BN_consttime_swap(kbit, k, lambda, group_top + 2);
 
-     group_top = bn_get_top(group->field);
 
-     if ((bn_wexpand(s->X, group_top) == NULL)
 
-         || (bn_wexpand(s->Y, group_top) == NULL)
 
-         || (bn_wexpand(s->Z, group_top) == NULL)
 
-         || (bn_wexpand(r->X, group_top) == NULL)
 
-         || (bn_wexpand(r->Y, group_top) == NULL)
 
-         || (bn_wexpand(r->Z, group_top) == NULL)
 
-         || (bn_wexpand(p->X, group_top) == NULL)
 
-         || (bn_wexpand(p->Y, group_top) == NULL)
 
-         || (bn_wexpand(p->Z, group_top) == NULL)) {
 
-         ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
 
-         goto err;
 
-     }
 
-     /* ensure input point is in affine coords for ladder step efficiency */
 
-     if (!p->Z_is_one && (group->meth->make_affine == NULL
 
-                          || !group->meth->make_affine(group, p, ctx))) {
 
-             ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
 
-             goto err;
 
-     }
 
-     /* Initialize the Montgomery ladder */
 
-     if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
 
-         ERR_raise(ERR_LIB_EC, EC_R_LADDER_PRE_FAILURE);
 
-         goto err;
 
-     }
 
-     /* top bit is a 1, in a fixed pos */
 
-     pbit = 1;
 
- #define EC_POINT_CSWAP(c, a, b, w, t) do {         \
 
-         BN_consttime_swap(c, (a)->X, (b)->X, w);   \
 
-         BN_consttime_swap(c, (a)->Y, (b)->Y, w);   \
 
-         BN_consttime_swap(c, (a)->Z, (b)->Z, w);   \
 
-         t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \
 
-         (a)->Z_is_one ^= (t);                      \
 
-         (b)->Z_is_one ^= (t);                      \
 
- } while(0)
 
-     /*-
 
-      * The ladder step, with branches, is
 
-      *
 
-      * k[i] == 0: S = add(R, S), R = dbl(R)
 
-      * k[i] == 1: R = add(S, R), S = dbl(S)
 
-      *
 
-      * Swapping R, S conditionally on k[i] leaves you with state
 
-      *
 
-      * k[i] == 0: T, U = R, S
 
-      * k[i] == 1: T, U = S, R
 
-      *
 
-      * Then perform the ECC ops.
 
-      *
 
-      * U = add(T, U)
 
-      * T = dbl(T)
 
-      *
 
-      * Which leaves you with state
 
-      *
 
-      * k[i] == 0: U = add(R, S), T = dbl(R)
 
-      * k[i] == 1: U = add(S, R), T = dbl(S)
 
-      *
 
-      * Swapping T, U conditionally on k[i] leaves you with state
 
-      *
 
-      * k[i] == 0: R, S = T, U
 
-      * k[i] == 1: R, S = U, T
 
-      *
 
-      * Which leaves you with state
 
-      *
 
-      * k[i] == 0: S = add(R, S), R = dbl(R)
 
-      * k[i] == 1: R = add(S, R), S = dbl(S)
 
-      *
 
-      * So we get the same logic, but instead of a branch it's a
 
-      * conditional swap, followed by ECC ops, then another conditional swap.
 
-      *
 
-      * Optimization: The end of iteration i and start of i-1 looks like
 
-      *
 
-      * ...
 
-      * CSWAP(k[i], R, S)
 
-      * ECC
 
-      * CSWAP(k[i], R, S)
 
-      * (next iteration)
 
-      * CSWAP(k[i-1], R, S)
 
-      * ECC
 
-      * CSWAP(k[i-1], R, S)
 
-      * ...
 
-      *
 
-      * So instead of two contiguous swaps, you can merge the condition
 
-      * bits and do a single swap.
 
-      *
 
-      * k[i]   k[i-1]    Outcome
 
-      * 0      0         No Swap
 
-      * 0      1         Swap
 
-      * 1      0         Swap
 
-      * 1      1         No Swap
 
-      *
 
-      * This is XOR. pbit tracks the previous bit of k.
 
-      */
 
-     for (i = cardinality_bits - 1; i >= 0; i--) {
 
-         kbit = BN_is_bit_set(k, i) ^ pbit;
 
-         EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
 
-         /* Perform a single step of the Montgomery ladder */
 
-         if (!ec_point_ladder_step(group, r, s, p, ctx)) {
 
-             ERR_raise(ERR_LIB_EC, EC_R_LADDER_STEP_FAILURE);
 
-             goto err;
 
-         }
 
-         /*
 
-          * pbit logic merges this cswap with that of the
 
-          * next iteration
 
-          */
 
-         pbit ^= kbit;
 
-     }
 
-     /* one final cswap to move the right value into r */
 
-     EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
 
- #undef EC_POINT_CSWAP
 
-     /* Finalize ladder (and recover full point coordinates) */
 
-     if (!ec_point_ladder_post(group, r, s, p, ctx)) {
 
-         ERR_raise(ERR_LIB_EC, EC_R_LADDER_POST_FAILURE);
 
-         goto err;
 
-     }
 
-     ret = 1;
 
-  err:
 
-     EC_POINT_free(p);
 
-     EC_POINT_clear_free(s);
 
-     BN_CTX_end(ctx);
 
-     return ret;
 
- }
 
- #undef EC_POINT_BN_set_flags
 
- /*
 
-  * Table could be optimised for the wNAF-based implementation,
 
-  * sometimes smaller windows will give better performance (thus the
 
-  * boundaries should be increased)
 
-  */
 
- #define EC_window_bits_for_scalar_size(b) \
 
-                 ((size_t) \
 
-                  ((b) >= 2000 ? 6 : \
 
-                   (b) >=  800 ? 5 : \
 
-                   (b) >=  300 ? 4 : \
 
-                   (b) >=   70 ? 3 : \
 
-                   (b) >=   20 ? 2 : \
 
-                   1))
 
- /*-
 
-  * Compute
 
-  *      \sum scalars[i]*points[i],
 
-  * also including
 
-  *      scalar*generator
 
-  * in the addition if scalar != NULL
 
-  */
 
- int ossl_ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
 
-                      size_t num, const EC_POINT *points[],
 
-                      const BIGNUM *scalars[], BN_CTX *ctx)
 
- {
 
-     const EC_POINT *generator = NULL;
 
-     EC_POINT *tmp = NULL;
 
-     size_t totalnum;
 
-     size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */
 
-     size_t pre_points_per_block = 0;
 
-     size_t i, j;
 
-     int k;
 
-     int r_is_inverted = 0;
 
-     int r_is_at_infinity = 1;
 
-     size_t *wsize = NULL;       /* individual window sizes */
 
-     signed char **wNAF = NULL;  /* individual wNAFs */
 
-     size_t *wNAF_len = NULL;
 
-     size_t max_len = 0;
 
-     size_t num_val;
 
-     EC_POINT **val = NULL;      /* precomputation */
 
-     EC_POINT **v;
 
-     EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or
 
-                                  * 'pre_comp->points' */
 
-     const EC_PRE_COMP *pre_comp = NULL;
 
-     int num_scalar = 0;         /* flag: will be set to 1 if 'scalar' must be
 
-                                  * treated like other scalars, i.e.
 
-                                  * precomputation is not available */
 
-     int ret = 0;
 
-     if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
 
-         /*-
 
-          * Handle the common cases where the scalar is secret, enforcing a
 
-          * scalar multiplication implementation based on a Montgomery ladder,
 
-          * with various timing attack defenses.
 
-          */
 
-         if ((scalar != group->order) && (scalar != NULL) && (num == 0)) {
 
-             /*-
 
-              * In this case we want to compute scalar * GeneratorPoint: this
 
-              * codepath is reached most prominently by (ephemeral) key
 
-              * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
 
-              * ECDH keygen/first half), where the scalar is always secret. This
 
-              * is why we ignore if BN_FLG_CONSTTIME is actually set and we
 
-              * always call the ladder version.
 
-              */
 
-             return ossl_ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
 
-         }
 
-         if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) {
 
-             /*-
 
-              * In this case we want to compute scalar * VariablePoint: this
 
-              * codepath is reached most prominently by the second half of ECDH,
 
-              * where the secret scalar is multiplied by the peer's public point.
 
-              * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
 
-              * actually set and we always call the ladder version.
 
-              */
 
-             return ossl_ec_scalar_mul_ladder(group, r, scalars[0], points[0],
 
-                                              ctx);
 
-         }
 
-     }
 
-     if (scalar != NULL) {
 
-         generator = EC_GROUP_get0_generator(group);
 
-         if (generator == NULL) {
 
-             ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
 
-             goto err;
 
-         }
 
-         /* look if we can use precomputed multiples of generator */
 
-         pre_comp = group->pre_comp.ec;
 
-         if (pre_comp && pre_comp->numblocks
 
-             && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) ==
 
-                 0)) {
 
-             blocksize = pre_comp->blocksize;
 
-             /*
 
-              * determine maximum number of blocks that wNAF splitting may
 
-              * yield (NB: maximum wNAF length is bit length plus one)
 
-              */
 
-             numblocks = (BN_num_bits(scalar) / blocksize) + 1;
 
-             /*
 
-              * we cannot use more blocks than we have precomputation for
 
-              */
 
-             if (numblocks > pre_comp->numblocks)
 
-                 numblocks = pre_comp->numblocks;
 
-             pre_points_per_block = (size_t)1 << (pre_comp->w - 1);
 
-             /* check that pre_comp looks sane */
 
-             if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) {
 
-                 ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
 
-                 goto err;
 
-             }
 
-         } else {
 
-             /* can't use precomputation */
 
-             pre_comp = NULL;
 
-             numblocks = 1;
 
-             num_scalar = 1;     /* treat 'scalar' like 'num'-th element of
 
-                                  * 'scalars' */
 
-         }
 
-     }
 
-     totalnum = num + numblocks;
 
-     wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0]));
 
-     wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0]));
 
-     /* include space for pivot */
 
-     wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0]));
 
-     val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0]));
 
-     /* Ensure wNAF is initialised in case we end up going to err */
 
-     if (wNAF != NULL)
 
-         wNAF[0] = NULL;         /* preliminary pivot */
 
-     if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL)
 
-         goto err;
 
-     /*
 
-      * num_val will be the total number of temporarily precomputed points
 
-      */
 
-     num_val = 0;
 
-     for (i = 0; i < num + num_scalar; i++) {
 
-         size_t bits;
 
-         bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar);
 
-         wsize[i] = EC_window_bits_for_scalar_size(bits);
 
-         num_val += (size_t)1 << (wsize[i] - 1);
 
-         wNAF[i + 1] = NULL;     /* make sure we always have a pivot */
 
-         wNAF[i] =
 
-             bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i],
 
-                             &wNAF_len[i]);
 
-         if (wNAF[i] == NULL)
 
-             goto err;
 
-         if (wNAF_len[i] > max_len)
 
-             max_len = wNAF_len[i];
 
-     }
 
-     if (numblocks) {
 
-         /* we go here iff scalar != NULL */
 
-         if (pre_comp == NULL) {
 
-             if (num_scalar != 1) {
 
-                 ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
 
-                 goto err;
 
-             }
 
-             /* we have already generated a wNAF for 'scalar' */
 
-         } else {
 
-             signed char *tmp_wNAF = NULL;
 
-             size_t tmp_len = 0;
 
-             if (num_scalar != 0) {
 
-                 ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
 
-                 goto err;
 
-             }
 
-             /*
 
-              * use the window size for which we have precomputation
 
-              */
 
-             wsize[num] = pre_comp->w;
 
-             tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len);
 
-             if (!tmp_wNAF)
 
-                 goto err;
 
-             if (tmp_len <= max_len) {
 
-                 /*
 
-                  * One of the other wNAFs is at least as long as the wNAF
 
-                  * belonging to the generator, so wNAF splitting will not buy
 
-                  * us anything.
 
-                  */
 
-                 numblocks = 1;
 
-                 totalnum = num + 1; /* don't use wNAF splitting */
 
-                 wNAF[num] = tmp_wNAF;
 
-                 wNAF[num + 1] = NULL;
 
-                 wNAF_len[num] = tmp_len;
 
-                 /*
 
-                  * pre_comp->points starts with the points that we need here:
 
-                  */
 
-                 val_sub[num] = pre_comp->points;
 
-             } else {
 
-                 /*
 
-                  * don't include tmp_wNAF directly into wNAF array - use wNAF
 
-                  * splitting and include the blocks
 
-                  */
 
-                 signed char *pp;
 
-                 EC_POINT **tmp_points;
 
-                 if (tmp_len < numblocks * blocksize) {
 
-                     /*
 
-                      * possibly we can do with fewer blocks than estimated
 
-                      */
 
-                     numblocks = (tmp_len + blocksize - 1) / blocksize;
 
-                     if (numblocks > pre_comp->numblocks) {
 
-                         ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
 
-                         OPENSSL_free(tmp_wNAF);
 
-                         goto err;
 
-                     }
 
-                     totalnum = num + numblocks;
 
-                 }
 
-                 /* split wNAF in 'numblocks' parts */
 
-                 pp = tmp_wNAF;
 
-                 tmp_points = pre_comp->points;
 
-                 for (i = num; i < totalnum; i++) {
 
-                     if (i < totalnum - 1) {
 
-                         wNAF_len[i] = blocksize;
 
-                         if (tmp_len < blocksize) {
 
-                             ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
 
-                             OPENSSL_free(tmp_wNAF);
 
-                             goto err;
 
-                         }
 
-                         tmp_len -= blocksize;
 
-                     } else
 
-                         /*
 
-                          * last block gets whatever is left (this could be
 
-                          * more or less than 'blocksize'!)
 
-                          */
 
-                         wNAF_len[i] = tmp_len;
 
-                     wNAF[i + 1] = NULL;
 
-                     wNAF[i] = OPENSSL_malloc(wNAF_len[i]);
 
-                     if (wNAF[i] == NULL) {
 
-                         OPENSSL_free(tmp_wNAF);
 
-                         goto err;
 
-                     }
 
-                     memcpy(wNAF[i], pp, wNAF_len[i]);
 
-                     if (wNAF_len[i] > max_len)
 
-                         max_len = wNAF_len[i];
 
-                     if (*tmp_points == NULL) {
 
-                         ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
 
-                         OPENSSL_free(tmp_wNAF);
 
-                         goto err;
 
-                     }
 
-                     val_sub[i] = tmp_points;
 
-                     tmp_points += pre_points_per_block;
 
-                     pp += blocksize;
 
-                 }
 
-                 OPENSSL_free(tmp_wNAF);
 
-             }
 
-         }
 
-     }
 
-     /*
 
-      * All points we precompute now go into a single array 'val'.
 
-      * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a
 
-      * subarray of 'pre_comp->points' if we already have precomputation.
 
-      */
 
-     val = OPENSSL_malloc((num_val + 1) * sizeof(val[0]));
 
-     if (val == NULL)
 
-         goto err;
 
-     val[num_val] = NULL;        /* pivot element */
 
-     /* allocate points for precomputation */
 
-     v = val;
 
-     for (i = 0; i < num + num_scalar; i++) {
 
-         val_sub[i] = v;
 
-         for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) {
 
-             *v = EC_POINT_new(group);
 
-             if (*v == NULL)
 
-                 goto err;
 
-             v++;
 
-         }
 
-     }
 
-     if (!(v == val + num_val)) {
 
-         ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
 
-         goto err;
 
-     }
 
-     if ((tmp = EC_POINT_new(group)) == NULL)
 
-         goto err;
 
-     /*-
 
-      * prepare precomputed values:
 
-      *    val_sub[i][0] :=     points[i]
 
-      *    val_sub[i][1] := 3 * points[i]
 
-      *    val_sub[i][2] := 5 * points[i]
 
-      *    ...
 
-      */
 
-     for (i = 0; i < num + num_scalar; i++) {
 
-         if (i < num) {
 
-             if (!EC_POINT_copy(val_sub[i][0], points[i]))
 
-                 goto err;
 
-         } else {
 
-             if (!EC_POINT_copy(val_sub[i][0], generator))
 
-                 goto err;
 
-         }
 
-         if (wsize[i] > 1) {
 
-             if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx))
 
-                 goto err;
 
-             for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) {
 
-                 if (!EC_POINT_add
 
-                     (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx))
 
-                     goto err;
 
-             }
 
-         }
 
-     }
 
-     if (group->meth->points_make_affine == NULL
 
-         || !group->meth->points_make_affine(group, num_val, val, ctx))
 
-         goto err;
 
-     r_is_at_infinity = 1;
 
-     for (k = max_len - 1; k >= 0; k--) {
 
-         if (!r_is_at_infinity) {
 
-             if (!EC_POINT_dbl(group, r, r, ctx))
 
-                 goto err;
 
-         }
 
-         for (i = 0; i < totalnum; i++) {
 
-             if (wNAF_len[i] > (size_t)k) {
 
-                 int digit = wNAF[i][k];
 
-                 int is_neg;
 
-                 if (digit) {
 
-                     is_neg = digit < 0;
 
-                     if (is_neg)
 
-                         digit = -digit;
 
-                     if (is_neg != r_is_inverted) {
 
-                         if (!r_is_at_infinity) {
 
-                             if (!EC_POINT_invert(group, r, ctx))
 
-                                 goto err;
 
-                         }
 
-                         r_is_inverted = !r_is_inverted;
 
-                     }
 
-                     /* digit > 0 */
 
-                     if (r_is_at_infinity) {
 
-                         if (!EC_POINT_copy(r, val_sub[i][digit >> 1]))
 
-                             goto err;
 
-                         /*-
 
-                          * Apply coordinate blinding for EC_POINT.
 
-                          *
 
-                          * The underlying EC_METHOD can optionally implement this function:
 
-                          * ossl_ec_point_blind_coordinates() returns 0 in case of errors or 1 on
 
-                          * success or if coordinate blinding is not implemented for this
 
-                          * group.
 
-                          */
 
-                         if (!ossl_ec_point_blind_coordinates(group, r, ctx)) {
 
-                             ERR_raise(ERR_LIB_EC, EC_R_POINT_COORDINATES_BLIND_FAILURE);
 
-                             goto err;
 
-                         }
 
-                         r_is_at_infinity = 0;
 
-                     } else {
 
-                         if (!EC_POINT_add
 
-                             (group, r, r, val_sub[i][digit >> 1], ctx))
 
-                             goto err;
 
-                     }
 
-                 }
 
-             }
 
-         }
 
-     }
 
-     if (r_is_at_infinity) {
 
-         if (!EC_POINT_set_to_infinity(group, r))
 
-             goto err;
 
-     } else {
 
-         if (r_is_inverted)
 
-             if (!EC_POINT_invert(group, r, ctx))
 
-                 goto err;
 
-     }
 
-     ret = 1;
 
-  err:
 
-     EC_POINT_free(tmp);
 
-     OPENSSL_free(wsize);
 
-     OPENSSL_free(wNAF_len);
 
-     if (wNAF != NULL) {
 
-         signed char **w;
 
-         for (w = wNAF; *w != NULL; w++)
 
-             OPENSSL_free(*w);
 
-         OPENSSL_free(wNAF);
 
-     }
 
-     if (val != NULL) {
 
-         for (v = val; *v != NULL; v++)
 
-             EC_POINT_clear_free(*v);
 
-         OPENSSL_free(val);
 
-     }
 
-     OPENSSL_free(val_sub);
 
-     return ret;
 
- }
 
- /*-
 
-  * ossl_ec_wNAF_precompute_mult()
 
-  * creates an EC_PRE_COMP object with preprecomputed multiples of the generator
 
-  * for use with wNAF splitting as implemented in ossl_ec_wNAF_mul().
 
-  *
 
-  * 'pre_comp->points' is an array of multiples of the generator
 
-  * of the following form:
 
-  * points[0] =     generator;
 
-  * points[1] = 3 * generator;
 
-  * ...
 
-  * points[2^(w-1)-1] =     (2^(w-1)-1) * generator;
 
-  * points[2^(w-1)]   =     2^blocksize * generator;
 
-  * points[2^(w-1)+1] = 3 * 2^blocksize * generator;
 
-  * ...
 
-  * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) *  2^(blocksize*(numblocks-2)) * generator
 
-  * points[2^(w-1)*(numblocks-1)]   =              2^(blocksize*(numblocks-1)) * generator
 
-  * ...
 
-  * points[2^(w-1)*numblocks-1]     = (2^(w-1)) *  2^(blocksize*(numblocks-1)) * generator
 
-  * points[2^(w-1)*numblocks]       = NULL
 
-  */
 
- int ossl_ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
 
- {
 
-     const EC_POINT *generator;
 
-     EC_POINT *tmp_point = NULL, *base = NULL, **var;
 
-     const BIGNUM *order;
 
-     size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num;
 
-     EC_POINT **points = NULL;
 
-     EC_PRE_COMP *pre_comp;
 
-     int ret = 0;
 
-     int used_ctx = 0;
 
- #ifndef FIPS_MODULE
 
-     BN_CTX *new_ctx = NULL;
 
- #endif
 
-     /* if there is an old EC_PRE_COMP object, throw it away */
 
-     EC_pre_comp_free(group);
 
-     if ((pre_comp = ec_pre_comp_new(group)) == NULL)
 
-         return 0;
 
-     generator = EC_GROUP_get0_generator(group);
 
-     if (generator == NULL) {
 
-         ERR_raise(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
 
-         goto err;
 
-     }
 
- #ifndef FIPS_MODULE
 
-     if (ctx == NULL)
 
-         ctx = new_ctx = BN_CTX_new();
 
- #endif
 
-     if (ctx == NULL)
 
-         goto err;
 
-     BN_CTX_start(ctx);
 
-     used_ctx = 1;
 
-     order = EC_GROUP_get0_order(group);
 
-     if (order == NULL)
 
-         goto err;
 
-     if (BN_is_zero(order)) {
 
-         ERR_raise(ERR_LIB_EC, EC_R_UNKNOWN_ORDER);
 
-         goto err;
 
-     }
 
-     bits = BN_num_bits(order);
 
-     /*
 
-      * The following parameters mean we precompute (approximately) one point
 
-      * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other
 
-      * bit lengths, other parameter combinations might provide better
 
-      * efficiency.
 
-      */
 
-     blocksize = 8;
 
-     w = 4;
 
-     if (EC_window_bits_for_scalar_size(bits) > w) {
 
-         /* let's not make the window too small ... */
 
-         w = EC_window_bits_for_scalar_size(bits);
 
-     }
 
-     numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks
 
-                                                      * to use for wNAF
 
-                                                      * splitting */
 
-     pre_points_per_block = (size_t)1 << (w - 1);
 
-     num = pre_points_per_block * numblocks; /* number of points to compute
 
-                                              * and store */
 
-     points = OPENSSL_malloc(sizeof(*points) * (num + 1));
 
-     if (points == NULL)
 
-         goto err;
 
-     var = points;
 
-     var[num] = NULL;            /* pivot */
 
-     for (i = 0; i < num; i++) {
 
-         if ((var[i] = EC_POINT_new(group)) == NULL) {
 
-             ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
 
-             goto err;
 
-         }
 
-     }
 
-     if ((tmp_point = EC_POINT_new(group)) == NULL
 
-         || (base = EC_POINT_new(group)) == NULL) {
 
-         ERR_raise(ERR_LIB_EC, ERR_R_EC_LIB);
 
-         goto err;
 
-     }
 
-     if (!EC_POINT_copy(base, generator))
 
-         goto err;
 
-     /* do the precomputation */
 
-     for (i = 0; i < numblocks; i++) {
 
-         size_t j;
 
-         if (!EC_POINT_dbl(group, tmp_point, base, ctx))
 
-             goto err;
 
-         if (!EC_POINT_copy(*var++, base))
 
-             goto err;
 
-         for (j = 1; j < pre_points_per_block; j++, var++) {
 
-             /*
 
-              * calculate odd multiples of the current base point
 
-              */
 
-             if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx))
 
-                 goto err;
 
-         }
 
-         if (i < numblocks - 1) {
 
-             /*
 
-              * get the next base (multiply current one by 2^blocksize)
 
-              */
 
-             size_t k;
 
-             if (blocksize <= 2) {
 
-                 ERR_raise(ERR_LIB_EC, ERR_R_INTERNAL_ERROR);
 
-                 goto err;
 
-             }
 
-             if (!EC_POINT_dbl(group, base, tmp_point, ctx))
 
-                 goto err;
 
-             for (k = 2; k < blocksize; k++) {
 
-                 if (!EC_POINT_dbl(group, base, base, ctx))
 
-                     goto err;
 
-             }
 
-         }
 
-     }
 
-     if (group->meth->points_make_affine == NULL
 
-         || !group->meth->points_make_affine(group, num, points, ctx))
 
-         goto err;
 
-     pre_comp->group = group;
 
-     pre_comp->blocksize = blocksize;
 
-     pre_comp->numblocks = numblocks;
 
-     pre_comp->w = w;
 
-     pre_comp->points = points;
 
-     points = NULL;
 
-     pre_comp->num = num;
 
-     SETPRECOMP(group, ec, pre_comp);
 
-     pre_comp = NULL;
 
-     ret = 1;
 
-  err:
 
-     if (used_ctx)
 
-         BN_CTX_end(ctx);
 
- #ifndef FIPS_MODULE
 
-     BN_CTX_free(new_ctx);
 
- #endif
 
-     EC_ec_pre_comp_free(pre_comp);
 
-     if (points) {
 
-         EC_POINT **p;
 
-         for (p = points; *p != NULL; p++)
 
-             EC_POINT_free(*p);
 
-         OPENSSL_free(points);
 
-     }
 
-     EC_POINT_free(tmp_point);
 
-     EC_POINT_free(base);
 
-     return ret;
 
- }
 
- int ossl_ec_wNAF_have_precompute_mult(const EC_GROUP *group)
 
- {
 
-     return HAVEPRECOMP(group, ec);
 
- }
 
 
  |