| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780 | 
							- /*
 
-  * Implementation of OpenSSH 9.x's hybrid key exchange protocol
 
-  * [email protected] .
 
-  *
 
-  * This consists of the 'Streamlined NTRU Prime' quantum-resistant
 
-  * cryptosystem, run in parallel with ordinary Curve25519 to generate
 
-  * a shared secret combining the output of both systems.
 
-  *
 
-  * (Hence, even if you don't trust this newfangled NTRU Prime thing at
 
-  * all, it's at least no _less_ secure than the kex you were using
 
-  * already.)
 
-  *
 
-  * References for the NTRU Prime cryptosystem, up to and including
 
-  * binary encodings of public and private keys and the exact preimages
 
-  * of the hashes used in key exchange:
 
-  *
 
-  * https://ntruprime.cr.yp.to/
 
-  * https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf
 
-  *
 
-  * The SSH protocol layer is not documented anywhere I could find (as
 
-  * of 2022-04-15, not even in OpenSSH's PROTOCOL.* files). I had to
 
-  * read OpenSSH's source code to find out how it worked, and the
 
-  * answer is as follows:
 
-  *
 
-  * This hybrid kex method is treated for SSH purposes as a form of
 
-  * elliptic-curve Diffie-Hellman, and shares the same SSH message
 
-  * sequence: client sends SSH2_MSG_KEX_ECDH_INIT containing its public
 
-  * half, server responds with SSH2_MSG_KEX_ECDH_REPLY containing _its_
 
-  * public half plus the host key and signature on the shared secret.
 
-  *
 
-  * (This is a bit of a fudge, because unlike actual ECDH, this kex
 
-  * method is asymmetric: one side sends a public key, and the other
 
-  * side encrypts something with it and sends the ciphertext back. So
 
-  * while the normal ECDH implementations can compute the two sides
 
-  * independently in parallel, this system reusing the same messages
 
-  * has to be serial. But the order of the messages _is_ firmly
 
-  * specified in SSH ECDH, so it works anyway.)
 
-  *
 
-  * For this kex method, SSH2_MSG_KEX_ECDH_INIT still contains a single
 
-  * SSH 'string', which consists of the concatenation of a Streamlined
 
-  * NTRU Prime public key with the Curve25519 public value. (Both of
 
-  * these have fixed length in bytes, so there's no ambiguity in the
 
-  * concatenation.)
 
-  *
 
-  * SSH2_MSG_KEX_ECDH_REPLY is mostly the same as usual. The only
 
-  * string in the packet that varies is the second one, which would
 
-  * normally contain the server's public elliptic curve point. Instead,
 
-  * it now contains the concatenation of
 
-  *
 
-  *  - a Streamlined NTRU Prime ciphertext
 
-  *  - the 'confirmation hash' specified in ntruprime-20201007.pdf,
 
-  *    hashing the plaintext of that ciphertext together with the
 
-  *    public key
 
-  *  - the Curve25519 public point as usual.
 
-  *
 
-  * Again, all three of those elements have fixed lengths.
 
-  *
 
-  * The client decrypts the ciphertext, checks the confirmation hash,
 
-  * and if successful, generates the 'session hash' specified in
 
-  * ntruprime-20201007.pdf, which is 32 bytes long and is the ultimate
 
-  * output of the Streamlined NTRU Prime key exchange.
 
-  *
 
-  * The output of the hybrid kex method as a whole is an SSH 'string'
 
-  * of length 64 containing the SHA-512 hash of the concatenatio of
 
-  *
 
-  *  - the Streamlined NTRU Prime session hash (32 bytes)
 
-  *  - the Curve25519 shared secret (32 bytes).
 
-  *
 
-  * That string is included directly into the SSH exchange hash and key
 
-  * derivation hashes, in place of the mpint that comes out of most
 
-  * other kex methods.
 
-  */
 
- #include <stdio.h>
 
- #include <stdlib.h>
 
- #include <assert.h>
 
- #include "putty.h"
 
- #include "ssh.h"
 
- #include "mpint.h"
 
- #include "ntru.h"
 
- #include "smallmoduli.h"
 
- /* Invert x mod q, assuming it's nonzero. (For time-safety, no check
 
-  * is made for zero; it just returns 0.)
 
-  *
 
-  * Expects qrecip == reciprocal_for_reduction(q). (But it's passed in
 
-  * as a parameter to save recomputing it, on the theory that the
 
-  * caller will have had it lying around already in most cases.) */
 
- static uint16_t invert(uint16_t x, uint16_t q, uint64_t qrecip)
 
- {
 
-     /* Fermat inversion: compute x^(q-2), since x^(q-1) == 1. */
 
-     uint32_t sq = x, bit = 1, acc = 1, exp = q-2;
 
-     while (1) {
 
-         if (exp & bit) {
 
-             acc = reduce(acc * sq, q, qrecip);
 
-             exp &= ~bit;
 
-             if (!exp)
 
-                 return acc;
 
-         }
 
-         sq = reduce(sq * sq, q, qrecip);
 
-         bit <<= 1;
 
-     }
 
- }
 
- /* Check whether x == 0, time-safely, and return 1 if it is or 0 otherwise. */
 
- static unsigned iszero(uint16_t x)
 
- {
 
-     return 1 & ~((x + 0xFFFF) >> 16);
 
- }
 
- /*
 
-  * Handy macros to cut down on all those extra function parameters. In
 
-  * the common case where a function is working mod the same modulus
 
-  * throughout (and has called it q), you can just write 'SETUP;' at
 
-  * the top and then call REDUCE(...) and INVERT(...) without having to
 
-  * write out q and qrecip every time.
 
-  */
 
- #define SETUP uint64_t qrecip = reciprocal_for_reduction(q)
 
- #define REDUCE(x) reduce(x, q, qrecip)
 
- #define INVERT(x) invert(x, q, qrecip)
 
- /* ----------------------------------------------------------------------
 
-  * Quotient-ring functions.
 
-  *
 
-  * NTRU Prime works with two similar but different quotient rings:
 
-  *
 
-  *   Z_q[x] / <x^p-x-1>      where p,q are the prime parameters of the system
 
-  *   Z_3[x] / <x^p-x-1>      with the same p, but coefficients mod 3.
 
-  *
 
-  * The former is a field (every nonzero element is invertible),
 
-  * because the system parameters are chosen such that x^p-x-1 is
 
-  * invertible over Z_q. The latter is not a field (or not necessarily,
 
-  * and in particular, not for the value of p we use here).
 
-  *
 
-  * In these core functions, you pass in the modulus you want as the
 
-  * parameter q, which is either the 'real' q specified in the system
 
-  * parameters, or 3 if you're doing one of the mod-3 parts of the
 
-  * algorithm.
 
-  */
 
- /*
 
-  * Multiply two elements of a quotient ring.
 
-  *
 
-  * 'a' and 'b' are arrays of exactly p coefficients, with constant
 
-  * term first. 'out' is an array the same size to write the inverse
 
-  * into.
 
-  */
 
- void ntru_ring_multiply(uint16_t *out, const uint16_t *a, const uint16_t *b,
 
-                         unsigned p, unsigned q)
 
- {
 
-     SETUP;
 
-     /*
 
-      * Strategy: just compute the full product with 2p coefficients,
 
-      * and then reduce it mod x^p-x-1 by working downwards from the
 
-      * top coefficient replacing x^{p+k} with (x+1)x^k for k = ...,1,0.
 
-      *
 
-      * Possibly some speed could be gained here by doing the recursive
 
-      * Karatsuba optimisation for the initial multiplication? But I
 
-      * haven't tried it.
 
-      */
 
-     uint32_t *unreduced = snewn(2*p, uint32_t);
 
-     { // WINSCP
 
-     unsigned i;
 
-     for (i = 0; i < 2*p; i++)
 
-         unreduced[i] = 0;
 
-     } // WINSCP
 
-     { // WINSCP
 
-     unsigned i, j;
 
-     for (i = 0; i < p; i++)
 
-         for (j = 0; j < p; j++)
 
-             unreduced[i+j] = REDUCE(unreduced[i+j] + a[i] * b[j]);
 
-     } // WINSCP
 
-     { // WINSCP
 
-     unsigned i;
 
-     for (i = 2*p - 1; i >= p; i--) {
 
-         unreduced[i-p] += unreduced[i];
 
-         unreduced[i-p+1] += unreduced[i];
 
-         unreduced[i] = 0;
 
-     }
 
-     } // WINSCP
 
-     { // WINSCP
 
-     unsigned i;
 
-     for (i = 0; i < p; i++)
 
-         out[i] = REDUCE(unreduced[i]);
 
-     } // WINSCP
 
-     smemclr(unreduced, 2*p * sizeof(*unreduced));
 
-     sfree(unreduced);
 
- }
 
- /*
 
-  * Invert an element of the quotient ring.
 
-  *
 
-  * 'in' is an array of exactly p coefficients, with constant term
 
-  * first. 'out' is an array the same size to write the inverse into.
 
-  *
 
-  * Method: essentially Stein's gcd algorithm, taking the gcd of the
 
-  * input (regarded as an element of Z_q[x] proper) and x^p-x-1. Given
 
-  * two polynomials over a field which are not both divisible by x, you
 
-  * can find their gcd by iterating the following procedure:
 
-  *
 
-  *  - if one is divisible by x, divide off x
 
-  *  - otherwise, subtract from the higher-degree one whatever scalar
 
-  *    multiple of the lower-degree one will make it divisible by x,
 
-  *    and _then_ divide off x
 
-  *
 
-  * Neither of these types of step changes the gcd of the two
 
-  * polynomials.
 
-  *
 
-  * Each step reduces the sum of the two polynomials' degree by at
 
-  * least one, as long as at least one of the degrees is positive.
 
-  * (Maybe more than one if all the stars align in the second case, if
 
-  * the subtraction cancels the leading term as well as the constant
 
-  * term.) So in at most deg A + deg B steps, we must have reached the
 
-  * situation where both polys are constants; in one more step after
 
-  * that, one of them will be zero; and in one step after _that_, the
 
-  * zero one will reliably be the one we're dividing by x. Or rather,
 
-  * that's what happens in the case where A,B are coprime; if not, then
 
-  * one hits zero while the other is still nonzero.
 
-  *
 
-  * In a normal gcd algorithm, you'd track a linear combination of the
 
-  * two original polynomials that yields each working value, and end up
 
-  * with a linear combination of the inputs that yields the gcd. In
 
-  * this algorithm, the 'divide off x' step makes that awkward - but we
 
-  * can solve that by instead multiplying by the inverse of x in the
 
-  * ring that we want our answer to be valid in! And since the modulus
 
-  * polynomial of the ring is x^p-x-1, the inverse of x is easy to
 
-  * calculate, because it's always just x^{p-1} - 1, which is also very
 
-  * easy to multiply by.
 
-  */
 
- unsigned ntru_ring_invert(uint16_t *out, const uint16_t *in,
 
-                           unsigned p, unsigned q)
 
- {
 
-     SETUP;
 
-     /* Size of the polynomial arrays we'll work with */
 
-     const size_t SIZE = p+1;
 
-     /* Number of steps of the algorithm is the max possible value of
 
-      * deg A + deg B + 2, where deg A <= p-1 and deg B = p */
 
-     const size_t STEPS = 2*p + 1;
 
-     /* Our two working polynomials */
 
-     uint16_t *A = snewn(SIZE, uint16_t);
 
-     uint16_t *B = snewn(SIZE, uint16_t);
 
-     /* Coefficient of the input value in each one */
 
-     uint16_t *Ac = snewn(SIZE, uint16_t);
 
-     uint16_t *Bc = snewn(SIZE, uint16_t);
 
-     /* Initialise A to the input, and Ac correspondingly to 1 */
 
-     memcpy(A, in, p*sizeof(uint16_t));
 
-     A[p] = 0;
 
-     Ac[0] = 1;
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 1; i < SIZE; i++)
 
-         Ac[i] = 0;
 
-     } // WINSCP
 
-     /* Initialise B to the quotient polynomial of the ring, x^p-x-1
 
-      * And Bc = 0 */
 
-     B[0] = B[1] = q-1;
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 2; i < p; i++)
 
-         B[i] = 0;
 
-     } // WINSCP
 
-     B[p] = 1;
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 0; i < SIZE; i++)
 
-         Bc[i] = 0;
 
-     } // WINSCP
 
-     /* Run the gcd-finding algorithm. */
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 0; i < STEPS; i++) {
 
-         /*
 
-          * First swap round so that A is the one we'll be dividing by x.
 
-          *
 
-          * In the case where one of the two polys has a zero constant
 
-          * term, it's that one. In the other case, it's the one of
 
-          * smaller degree. We must compute both, and choose between
 
-          * them in a side-channel-safe way.
 
-          */
 
-         unsigned x_divides_A = iszero(A[0]);
 
-         unsigned x_divides_B = iszero(B[0]);
 
-         unsigned B_is_bigger = 0;
 
-         {
 
-             unsigned not_seen_top_term_of_A = 1, not_seen_top_term_of_B = 1;
 
-             { // WINSCP
 
-             size_t j;
 
-             for (j = SIZE; j-- > 0 ;) {
 
-                 not_seen_top_term_of_A &= iszero(A[j]);
 
-                 not_seen_top_term_of_B &= iszero(B[j]);
 
-                 B_is_bigger |= (~not_seen_top_term_of_B &
 
-                                 not_seen_top_term_of_A);
 
-             }
 
-             } // WINSCP
 
-         }
 
-         { // WINSCP
 
-         unsigned need_swap = x_divides_B | (~x_divides_A & B_is_bigger);
 
-         uint16_t swap_mask = (uint64_t)-(int64_t)need_swap; // WINSCP
 
-         { // WINSCP
 
-         size_t j;
 
-         for (j = 0; j < SIZE; j++) {
 
-             uint16_t diff = (A[j] ^ B[j]) & swap_mask;
 
-             A[j] ^= diff;
 
-             B[j] ^= diff;
 
-         }
 
-         } // WINSCP
 
-         { // WINSCP
 
-         size_t j;
 
-         for (j = 0; j < SIZE; j++) {
 
-             uint16_t diff = (Ac[j] ^ Bc[j]) & swap_mask;
 
-             Ac[j] ^= diff;
 
-             Bc[j] ^= diff;
 
-         }
 
-         } // WINSCP
 
-         /*
 
-          * Replace A with a linear combination of both A and B that
 
-          * has constant term zero, which we do by calculating
 
-          *
 
-          *   (constant term of B) * A - (constant term of A) * B
 
-          *
 
-          * In one of the two cases, A's constant term is already zero,
 
-          * so the coefficient of B will be zero too; hence, this will
 
-          * do nothing useful (it will merely scale A by some scalar
 
-          * value), but it will take the same length of time as doing
 
-          * something, which is just what we want.
 
-          */
 
-         { // WINSCP
 
-         uint16_t Amult = B[0], Bmult = q - A[0];
 
-         { // WINSCP
 
-         size_t j; // WINSCP
 
-         for (j = 0; j < SIZE; j++)
 
-             A[j] = REDUCE(Amult * A[j] + Bmult * B[j]);
 
-         } // WINSCP
 
-         /* And do the same transformation to Ac */
 
-         { // WINSCP
 
-         size_t j;
 
-         for (j = 0; j < SIZE; j++)
 
-             Ac[j] = REDUCE(Amult * Ac[j] + Bmult * Bc[j]);
 
-         } // WINSCP
 
-         /*
 
-          * Now divide A by x, and compensate by multiplying Ac by
 
-          * x^{p-1}-1 mod x^p-x-1.
 
-          *
 
-          * That multiplication is particularly easy, precisely because
 
-          * x^{p-1}-1 is the multiplicative inverse of x! Each x^n term
 
-          * for n>0 just moves down to the x^{n-1} term, and only the
 
-          * constant term has to be dealt with in an interesting way.
 
-          */
 
-         { // WINSCP
 
-         size_t j;
 
-         for (j = 1; j < SIZE; j++)
 
-             A[j-1] = A[j];
 
-         } // WINSCP
 
-         A[SIZE-1] = 0;
 
-         { // WINSCP
 
-         uint16_t Ac0 = Ac[0];
 
-         { // WINSCP
 
-         size_t j;
 
-         for (j = 1; j < p; j++)
 
-             Ac[j-1] = Ac[j];
 
-         } // WINSCP
 
-         Ac[p-1] = Ac0;
 
-         Ac[0] = REDUCE(Ac[0] + q - Ac0);
 
-         } // WINSCP
 
-         } // WINSCP
 
-     }
 
-     } // WINSCP
 
-     /*
 
-      * Now we expect that A is 0, and B is a constant. If so, then
 
-      * they are coprime, and we're going to return success. If not,
 
-      * they have a common factor.
 
-      */
 
-     { // WINSCP
 
-     unsigned success = iszero(A[0]) & (1 ^ iszero(B[0]));
 
-     { // WINSCP
 
-     size_t j;
 
-     for (j = 1; j < SIZE; j++)
 
-         success &= iszero(A[j]) & iszero(B[j]);
 
-     } // WINSCP
 
-     /*
 
-      * So we're going to return Bc, but first, scale it by the
 
-      * multiplicative inverse of the constant we ended up with in
 
-      * B[0].
 
-      */
 
-     { // WINSCP
 
-     uint16_t scale = INVERT(B[0]);
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 0; i < p; i++)
 
-         out[i] = REDUCE(scale * Bc[i]);
 
-     } // WINSCP
 
-     smemclr(A, SIZE * sizeof(*A));
 
-     sfree(A);
 
-     smemclr(B, SIZE * sizeof(*B));
 
-     sfree(B);
 
-     smemclr(Ac, SIZE * sizeof(*Ac));
 
-     sfree(Ac);
 
-     smemclr(Bc, SIZE * sizeof(*Bc));
 
-     sfree(Bc);
 
-     return success;
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
- }
 
- /*
 
-  * Given an array of values mod q, convert each one to its
 
-  * minimum-absolute-value representative, and then reduce mod 3.
 
-  *
 
-  * Output values are 0, 1 and 0xFFFF, representing -1.
 
-  *
 
-  * (Normally our arrays of uint16_t are in 'minimal non-negative
 
-  * residue' form, so the output of this function is unusual. But it's
 
-  * useful to have it in this form so that it can be reused by
 
-  * ntru_round3. You can put it back to the usual representation using
 
-  * ntru_normalise, below.)
 
-  */
 
- void ntru_mod3(uint16_t *out, const uint16_t *in, unsigned p, unsigned q)
 
- {
 
-     uint64_t qrecip = reciprocal_for_reduction(q);
 
-     uint64_t recip3 = reciprocal_for_reduction(3);
 
-     unsigned bias = q/2;
 
-     uint16_t adjust = 3 - reduce(bias-1, 3, recip3);
 
-     { // WINSCP
 
-     unsigned i;
 
-     for (i = 0; i < p; i++) {
 
-         uint16_t val = reduce(in[i] + bias, q, qrecip);
 
-         uint16_t residue = reduce(val + adjust, 3, recip3);
 
-         out[i] = residue - 1;
 
-     }
 
-     } // WINSCP
 
- }
 
- /*
 
-  * Given an array of values mod q, round each one to the nearest
 
-  * multiple of 3 to its minimum-absolute-value representative.
 
-  *
 
-  * Output values are signed integers coerced to uint16_t, so again,
 
-  * use ntru_normalise afterwards to put them back to normal.
 
-  */
 
- void ntru_round3(uint16_t *out, const uint16_t *in, unsigned p, unsigned q)
 
- {
 
-     SETUP;
 
-     unsigned bias = q/2;
 
-     ntru_mod3(out, in, p, q);
 
-     { // WINSCP
 
-     unsigned i;
 
-     for (i = 0; i < p; i++)
 
-         out[i] = REDUCE(in[i] + bias) - bias - out[i];
 
-     } // WINSCP
 
- }
 
- /*
 
-  * Given an array of signed integers coerced to uint16_t in the range
 
-  * [-q/2,+q/2], normalise them back to mod q values.
 
-  */
 
- static void ntru_normalise(uint16_t *out, const uint16_t *in,
 
-                            unsigned p, unsigned q)
 
- {
 
-     unsigned i; // WINSCP
 
-     for (i = 0; i < p; i++)
 
-         out[i] = in[i] + q * (in[i] >> 15);
 
- }
 
- /*
 
-  * Given an array of values mod q, add a constant to each one.
 
-  */
 
- void ntru_bias(uint16_t *out, const uint16_t *in, unsigned bias,
 
-                unsigned p, unsigned q)
 
- {
 
-     SETUP;
 
-     unsigned i; // WINSCP
 
-     for (i = 0; i < p; i++)
 
-         out[i] = REDUCE(in[i] + bias);
 
- }
 
- /*
 
-  * Given an array of values mod q, multiply each one by a constant.
 
-  */
 
- void ntru_scale(uint16_t *out, const uint16_t *in, uint16_t scale,
 
-                 unsigned p, unsigned q)
 
- {
 
-     SETUP;
 
-     unsigned i; // WINSCP
 
-     for (i = 0; i < p; i++)
 
-         out[i] = REDUCE(in[i] * scale);
 
- }
 
- /*
 
-  * Given an array of values mod 3, convert them to values mod q in a
 
-  * way that maps -1,0,+1 to -1,0,+1.
 
-  */
 
- static void ntru_expand(
 
-     uint16_t *out, const uint16_t *in, unsigned p, unsigned q)
 
- {
 
-     size_t i; // WINSCP
 
-     for (i = 0; i < p; i++) {
 
-         uint16_t v = in[i];
 
-         /* Map 2 to q-1, and leave 0 and 1 unchanged */
 
-         v += (v >> 1) * (q-3);
 
-         out[i] = v;
 
-     }
 
- }
 
- /* ----------------------------------------------------------------------
 
-  * Implement the binary encoding from ntruprime-20201007.pdf, which is
 
-  * used to encode public keys and ciphertexts (though not plaintexts,
 
-  * which are done in a much simpler way).
 
-  *
 
-  * The general idea is that your encoder takes as input a list of
 
-  * small non-negative integers (r_i), and a sequence of limits (m_i)
 
-  * such that 0 <= r_i < m_i, and emits a sequence of bytes that encode
 
-  * all of these as tightly as reasonably possible.
 
-  *
 
-  * That's more general than is really needed, because in both the
 
-  * actual uses of this encoding, the input m_i are all the same! But
 
-  * the array of (r_i,m_i) pairs evolves during encoding, so they don't
 
-  * _stay_ all the same, so you still have to have all the generality.
 
-  *
 
-  * The encoding process makes a number of passes along the list of
 
-  * inputs. In each step, pairs of adjacent numbers are combined into
 
-  * one larger one by turning (r_i,m_i) and (r_{i+1},m_{i+1}) into the
 
-  * pair (r_i + m_i r_{i+1}, m_i m_{i+1}), i.e. so that the original
 
-  * numbers could be recovered by taking the quotient and remaiinder of
 
-  * the new r value by m_i. Then, if the new m_i is at least 2^14, we
 
-  * emit the low 8 bits of r_i to the output stream and reduce r_i and
 
-  * its limit correspondingly. So at the end of the pass, we've got
 
-  * half as many numbers still to encode, they're all still not too
 
-  * big, and we've emitted some amount of data into the output. Then do
 
-  * another pass, keep going until there's only one number left, and
 
-  * emit it little-endian.
 
-  *
 
-  * That's all very well, but how do you decode it again? DJB exhibits
 
-  * a pair of recursive functions that are supposed to be mutually
 
-  * inverse, but I didn't have any confidence that I'd be able to debug
 
-  * them sensibly if they turned out not to be (or rather, if I
 
-  * implemented one of them wrong). So I came up with my own strategy
 
-  * instead.
 
-  *
 
-  * In my strategy, we start by processing just the (m_i) into an
 
-  * 'encoding schedule' consisting of a sequence of simple
 
-  * instructions. The instructions operate on a FIFO queue of numbers,
 
-  * initialised to the original (r_i). The three instruction types are:
 
-  *
 
-  *  - 'COMBINE': consume two numbers a,b from the head of the queue,
 
-  *    combine them by calculating a + m*b for some specified m, and
 
-  *    push the result on the tail of the queue.
 
-  *
 
-  *  - 'BYTE': divide the tail element of the queue by 2^8 and emit the
 
-  *    low bits into the output stream.
 
-  *
 
-  *  - 'COPY': pop a number from the head of the queue and push it
 
-  *    straight back on the tail. (Used for handling the leftover
 
-  *    element at the end of a pass if the input to the pass was a list
 
-  *    of odd length.)
 
-  *
 
-  * So we effectively implement DJB's encoding process in simulation,
 
-  * and instead of actually processing a set of (r_i), we 'compile' the
 
-  * process into a sequence of instructions that can be handed just the
 
-  * (r_i) later and encode them in the right way. At the end of the
 
-  * instructions, the queue is expected to have been reduced to length
 
-  * 1 and contain the single integer 0.
 
-  *
 
-  * The nice thing about this system is that each of those three
 
-  * instructions is easy to reverse. So you can also use the same
 
-  * instructions for decoding: start with a queue containing 0, and
 
-  * process the instructions in reverse order and reverse sense. So
 
-  * BYTE means to _consume_ a byte from the encoded data (starting from
 
-  * the rightmost end) and use it to make a queue element bigger; and
 
-  * COMBINE run in reverse pops a single element from one end of the
 
-  * queue, divides it by m, and pushes the quotient and remainder on
 
-  * the other end.
 
-  *
 
-  * (So it's easy to debug, because the queue passes through the exact
 
-  * same sequence of states during decoding that it did during
 
-  * encoding, just in reverse order.)
 
-  *
 
-  * Also, the encoding schedule comes with information about the
 
-  * expected size of the encoded data, because you can find that out
 
-  * easily by just counting the BYTE commands.
 
-  */
 
- enum {
 
-     /*
 
-      * Command values appearing in the 'ops' array. ENC_COPY and
 
-      * ENC_BYTE are single values; values of the form
 
-      * (ENC_COMBINE_BASE + m) represent a COMBINE command with
 
-      * parameter m.
 
-      */
 
-     ENC_COPY, ENC_BYTE, ENC_COMBINE_BASE
 
- };
 
- struct NTRUEncodeSchedule {
 
-     /*
 
-      * Object representing a compiled set of encoding instructions.
 
-      *
 
-      * 'nvals' is the number of r_i we expect to encode. 'nops' is the
 
-      * number of encoding commands in the 'ops' list; 'opsize' is the
 
-      * physical size of the array, used during construction.
 
-      *
 
-      * 'endpos' is used to avoid a last-minute faff during decoding.
 
-      * We implement our FIFO of integers as a ring buffer of size
 
-      * 'nvals'. Encoding cycles round it some number of times, and the
 
-      * final 0 element ends up at some random location in the array.
 
-      * If we know _where_ the 0 ends up during encoding, we can put
 
-      * the initial 0 there at the start of decoding, and then when we
 
-      * finish reversing all the instructions, we'll end up with the
 
-      * output numbers already arranged at their correct positions, so
 
-      * that there's no need to rotate the array at the last minute.
 
-      */
 
-     size_t nvals, endpos, nops, opsize;
 
-     uint32_t *ops;
 
- };
 
- static inline void sched_append(NTRUEncodeSchedule *sched, uint16_t op)
 
- {
 
-     /* Helper function to append an operation to the schedule, and
 
-      * update endpos. */
 
-     sgrowarray(sched->ops, sched->opsize, sched->nops);
 
-     sched->ops[sched->nops++] = op;
 
-     if (op != ENC_BYTE)
 
-         sched->endpos = (sched->endpos + 1) % sched->nvals;
 
- }
 
- /*
 
-  * Take in the list of limit values (m_i) and compute the encoding
 
-  * schedule.
 
-  */
 
- NTRUEncodeSchedule *ntru_encode_schedule(const uint16_t *ms_in, size_t n)
 
- {
 
-     NTRUEncodeSchedule *sched = snew(NTRUEncodeSchedule);
 
-     sched->nvals = n;
 
-     sched->endpos = n-1;
 
-     sched->nops = sched->opsize = 0;
 
-     sched->ops = NULL;
 
-     assert(n != 0);
 
-     /*
 
-      * 'ms' is the list of (m_i) on input to the current pass.
 
-      * 'ms_new' is the list output from the current pass. After each
 
-      * pass we swap the arrays round.
 
-      */
 
-     { // WINSCP
 
-     uint32_t *ms = snewn(n, uint32_t);
 
-     uint32_t *msnew = snewn(n, uint32_t);
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 0; i < n; i++)
 
-         ms[i] = ms_in[i];
 
-     } // WINSCP
 
-     while (n > 1) {
 
-         size_t nnew = 0;
 
-         { // WINSCP
 
-         size_t i;
 
-         for (i = 0; i < n; i += 2) {
 
-             if (i+1 == n) {
 
-                 /*
 
-                  * Odd element at the end of the input list: just copy
 
-                  * it unchanged to the output.
 
-                  */
 
-                 sched_append(sched, ENC_COPY);
 
-                 msnew[nnew++] = ms[i];
 
-                 break;
 
-             }
 
-             /*
 
-              * Normal case: consume two elements from the input list
 
-              * and combine them.
 
-              */
 
-             { // WINSCP
 
-             uint32_t m1 = ms[i], m2 = ms[i+1], m = m1*m2;
 
-             sched_append(sched, ENC_COMBINE_BASE + m1);
 
-             /*
 
-              * And then, as long as the combined limit is big enough,
 
-              * emit an output byte from the bottom of it.
 
-              */
 
-             while (m >= (1<<14)) {
 
-                 sched_append(sched, ENC_BYTE);
 
-                 m = (m + 0xFF) >> 8;
 
-             }
 
-             /*
 
-              * Whatever is left after that, we emit into the output
 
-              * list and append to the fifo.
 
-              */
 
-             msnew[nnew++] = m;
 
-             } // WINSCP
 
-         }
 
-         } // WINSCP
 
-         /*
 
-          * End of pass. The output list of (m_i) now becomes the input
 
-          * list.
 
-          */
 
-         { // WINSCP
 
-         uint32_t *tmp = ms;
 
-         ms = msnew;
 
-         n = nnew;
 
-         msnew = tmp;
 
-         } // WINSCP
 
-     }
 
-     /*
 
-      * When that loop terminates, it's because there's exactly one
 
-      * number left to encode. (Or, technically, _at most_ one - but we
 
-      * don't support encoding a completely empty list in this
 
-      * implementation, because what would be the point?) That number
 
-      * is just emitted little-endian until its limit is 1 (meaning its
 
-      * only possible actual value is 0).
 
-      */
 
-     assert(n == 1);
 
-     { // WINSCP
 
-     uint32_t m = ms[0];
 
-     while (m > 1) {
 
-         sched_append(sched, ENC_BYTE);
 
-         m = (m + 0xFF) >> 8;
 
-     }
 
-     sfree(ms);
 
-     sfree(msnew);
 
-     return sched;
 
-     } // WINSCP
 
-     } // WINSCP
 
- }
 
- void ntru_encode_schedule_free(NTRUEncodeSchedule *sched)
 
- {
 
-     sfree(sched->ops);
 
-     sfree(sched);
 
- }
 
- /*
 
-  * Calculate the output length of the encoded data in bytes.
 
-  */
 
- size_t ntru_encode_schedule_length(NTRUEncodeSchedule *sched)
 
- {
 
-     size_t len = 0;
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 0; i < sched->nops; i++)
 
-         if (sched->ops[i] == ENC_BYTE)
 
-             len++;
 
-     return len;
 
-     } // WINSCP
 
- }
 
- /*
 
-  * Retrieve the number of items encoded. (Used by testcrypt.)
 
-  */
 
- size_t ntru_encode_schedule_nvals(NTRUEncodeSchedule *sched)
 
- {
 
-     return sched->nvals;
 
- }
 
- /*
 
-  * Actually encode a sequence of (r_i), emitting the output bytes to
 
-  * an arbitrary BinarySink.
 
-  */
 
- void ntru_encode(NTRUEncodeSchedule *sched, const uint16_t *rs_in,
 
-                  BinarySink *bs)
 
- {
 
-     size_t n = sched->nvals;
 
-     uint32_t *rs = snewn(n, uint32_t);
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 0; i < n; i++)
 
-         rs[i] = rs_in[i];
 
-     } // WINSCP
 
-     /*
 
-      * The head and tail pointers of the queue are both 'full'. That
 
-      * is, rs[head] is the first element actually in the queue, and
 
-      * rs[tail] is the last element.
 
-      *
 
-      * So you append to the queue by first advancing 'tail' and then
 
-      * writing to rs[tail], whereas you consume from the queue by
 
-      * first reading rs[head] and _then_ advancing 'head'.
 
-      *
 
-      * The more normal thing would be to make 'tail' point to the
 
-      * first empty slot instead of the last full one. But then you'd
 
-      * have to faff about with modular arithmetic to find the last
 
-      * full slot for the BYTE command, so in this case, it's easier to
 
-      * do it the less usual way.
 
-      */
 
-     { // WINSCP
 
-     size_t head = 0, tail = n-1;
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 0; i < sched->nops; i++) {
 
-         uint16_t op = sched->ops[i];
 
-         switch (op) {
 
-           case ENC_BYTE:
 
-             put_byte(bs, rs[tail] & 0xFF);
 
-             rs[tail] >>= 8;
 
-             break;
 
-           case ENC_COPY: {
 
-             uint32_t r = rs[head];
 
-             head = (head + 1) % n;
 
-             tail = (tail + 1) % n;
 
-             rs[tail] = r;
 
-             break;
 
-           }
 
-           default: {
 
-             uint32_t r1 = rs[head];
 
-             head = (head + 1) % n;
 
-             { // WINSCP
 
-             uint32_t r2 = rs[head];
 
-             head = (head + 1) % n;
 
-             tail = (tail + 1) % n;
 
-             rs[tail] = r1 + (op - ENC_COMBINE_BASE) * r2;
 
-             break;
 
-             } // WINSCP
 
-           }
 
-         }
 
-     }
 
-     } // WINSCP
 
-     /*
 
-      * Expect that we've ended up with a single zero in the queue, at
 
-      * exactly the position that the setup-time analysis predicted it.
 
-      */
 
-     assert(head == sched->endpos);
 
-     assert(tail == sched->endpos);
 
-     assert(rs[head] == 0);
 
-     smemclr(rs, n * sizeof(*rs));
 
-     sfree(rs);
 
-     } // WINSCP
 
- }
 
- /*
 
-  * Decode a ptrlen of binary data into a sequence of (r_i). The data
 
-  * is expected to be of exactly the right length (on pain of assertion
 
-  * failure).
 
-  */
 
- void ntru_decode(NTRUEncodeSchedule *sched, uint16_t *rs_out, ptrlen data)
 
- {
 
-     size_t n = sched->nvals;
 
-     const uint8_t *base = (const uint8_t *)data.ptr;
 
-     const uint8_t *pos = base + data.len;
 
-     /*
 
-      * Initialise the queue to a single zero, at the 'endpos' position
 
-      * that will mean the final output is correctly aligned.
 
-      *
 
-      * 'head' and 'tail' have the same meanings as in encoding. So
 
-      * 'tail' is the location that BYTE modifies and COPY and COMBINE
 
-      * consume from, and 'head' is the location that COPY and COMBINE
 
-      * push on to. As in encoding, they both point at the extremal
 
-      * full slots in the array.
 
-      */
 
-     uint32_t *rs = snewn(n, uint32_t);
 
-     size_t head = sched->endpos, tail = head;
 
-     rs[tail] = 0;
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = sched->nops; i-- > 0 ;) {
 
-         uint16_t op = sched->ops[i];
 
-         switch (op) {
 
-           case ENC_BYTE: {
 
-             assert(pos > base);
 
-             { // WINSCP
 
-             uint8_t byte = *--pos;
 
-             rs[tail] = (rs[tail] << 8) | byte;
 
-             break;
 
-             } // WINSCP
 
-           }
 
-           case ENC_COPY: {
 
-             uint32_t r = rs[tail];
 
-             tail = (tail + n - 1) % n;
 
-             head = (head + n - 1) % n;
 
-             rs[head] = r;
 
-             break;
 
-           }
 
-           default: {
 
-             uint32_t r = rs[tail];
 
-             tail = (tail + n - 1) % n;
 
-             { // WINSCP
 
-             uint32_t m = op - ENC_COMBINE_BASE;
 
-             uint64_t mrecip = reciprocal_for_reduction(m);
 
-             uint32_t r1, r2;
 
-             r1 = reduce_with_quot(r, &r2, m, mrecip);
 
-             head = (head + n - 1) % n;
 
-             rs[head] = r2;
 
-             head = (head + n - 1) % n;
 
-             rs[head] = r1;
 
-             break;
 
-             } // WINSCP
 
-           }
 
-         }
 
-     }
 
-     } // WINSCP
 
-     assert(pos == base);
 
-     assert(head == 0);
 
-     assert(tail == n-1);
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 0; i < n; i++)
 
-         rs_out[i] = rs[i];
 
-     } // WINSCP
 
-     smemclr(rs, n * sizeof(*rs));
 
-     sfree(rs);
 
- }
 
- /* ----------------------------------------------------------------------
 
-  * The actual public-key cryptosystem.
 
-  */
 
- struct NTRUKeyPair {
 
-     unsigned p, q, w;
 
-     uint16_t *h;                       /* public key */
 
-     uint16_t *f3, *ginv;               /* private key */
 
-     uint16_t *rho;                     /* for implicit rejection */
 
- };
 
- /* Helper function to free an array of uint16_t containing a ring
 
-  * element, clearing it on the way since some of them are sensitive. */
 
- static void ring_free(uint16_t *val, unsigned p)
 
- {
 
-     smemclr(val, p*sizeof(*val));
 
-     sfree(val);
 
- }
 
- void ntru_keypair_free(NTRUKeyPair *keypair)
 
- {
 
-     ring_free(keypair->h, keypair->p);
 
-     ring_free(keypair->f3, keypair->p);
 
-     ring_free(keypair->ginv, keypair->p);
 
-     ring_free(keypair->rho, keypair->p);
 
-     sfree(keypair);
 
- }
 
- /* Trivial accessors used by test programs. */
 
- unsigned ntru_keypair_p(NTRUKeyPair *keypair) { return keypair->p; }
 
- const uint16_t *ntru_pubkey(NTRUKeyPair *keypair) { return keypair->h; }
 
- /*
 
-  * Generate a value of the class DJB describes as 'Short': it consists
 
-  * of p terms that are all either 0 or +1 or -1, and exactly w of them
 
-  * are not zero.
 
-  *
 
-  * Values of this kind are used for several purposes: part of the
 
-  * private key, a plaintext, and the 'rho' fake-plaintext value used
 
-  * for deliberately returning a duff but non-revealing session hash if
 
-  * things go wrong.
 
-  *
 
-  * -1 is represented as 2 in the output array. So if you want these
 
-  * numbers mod 3, then they come out already in the right form.
 
-  * Otherwise, use ntru_expand.
 
-  */
 
- void ntru_gen_short(uint16_t *v, unsigned p, unsigned w)
 
- {
 
-     /*
 
-      * Get enough random data to generate a polynomial all of whose p
 
-      * terms are in {0,+1,-1}, and exactly w of them are nonzero.
 
-      * We'll do this by making up a completely random sequence of
 
-      * {+1,-1} and then setting a random subset of them to 0.
 
-      *
 
-      * So we'll need p random bits to choose the nonzero values, and
 
-      * then (doing it the simplest way) log2(p!) bits to shuffle them,
 
-      * plus say 128 bits to ensure any fluctuations in uniformity are
 
-      * negligible.
 
-      *
 
-      * log2(p!) is a pain to calculate, so we'll bound it above by
 
-      * p*log2(p), which we bound in turn by p*16.
 
-      */
 
-     size_t randbitpos = 17 * p + 128;
 
-     mp_int *randdata = mp_resize(mp_random_bits(randbitpos), randbitpos + 32);
 
-     /*
 
-      * Initial value before zeroing out some terms: p randomly chosen
 
-      * values in {1,2}.
 
-      */
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 0; i < p; i++)
 
-         v[i] = 1 + mp_get_bit(randdata, --randbitpos);
 
-     } // WINSCP
 
-     /*
 
-      * Hereafter we're going to extract random bits by multiplication,
 
-      * treating randdata as a large fixed-point number.
 
-      */
 
-     mp_reduce_mod_2to(randdata, randbitpos);
 
-     /*
 
-      * Zero out some terms, leaving a randomly selected w of them
 
-      * nonzero.
 
-      */
 
-     { // WINSCP
 
-     uint32_t nonzeros_left = w;
 
-     mp_int *x = mp_new(64);
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = p; i-- > 0 ;) {
 
-         /*
 
-          * Pick a random number out of the number of terms remaning.
 
-          */
 
-         mp_mul_integer_into(randdata, randdata, i+1);
 
-         mp_rshift_fixed_into(x, randdata, randbitpos);
 
-         mp_reduce_mod_2to(randdata, randbitpos);
 
-         { // WINSCP
 
-         size_t j = mp_get_integer(x);
 
-         /*
 
-          * If that's less than nonzeros_left, then we're leaving this
 
-          * number nonzero. Otherwise we're zeroing it out.
 
-          */
 
-         uint32_t keep = (uint32_t)(j - nonzeros_left) >> 31;
 
-         v[i] &= (uint32_t)-(int32_t)keep;            /* clear this field if keep == 0 */ // WINSCP
 
-         nonzeros_left -= keep;    /* decrement counter if keep == 1 */
 
-         } // WINSCP
 
-     }
 
-     } // WINSCP
 
-     mp_free(x);
 
-     mp_free(randdata);
 
-     } // WINSCP
 
- }
 
- /*
 
-  * Make a single attempt at generating a key pair. This involves
 
-  * inventing random elements of both our quotient rings and hoping
 
-  * they're both invertible.
 
-  *
 
-  * They may not be, if you're unlucky. The element of Z_q/<x^p-x-1>
 
-  * will _almost_ certainly be invertible, because that is a field, so
 
-  * invertibility can only fail if you were so unlucky as to choose the
 
-  * all-0s element. But the element of Z_3/<x^p-x-1> may fail to be
 
-  * invertible because it has a common factor with x^p-x-1 (which, over
 
-  * Z_3, is not irreducible).
 
-  *
 
-  * So we can't guarantee to generate a key pair in constant time,
 
-  * because there's no predicting how many retries we'll need. However,
 
-  * this isn't a failure of side-channel safety, because we completely
 
-  * discard all the random numbers and state from each failed attempt.
 
-  * So if there were a side-channel leakage from a failure, the only
 
-  * thing it would give away would be a bunch of random numbers that
 
-  * turned out not to be used anyway.
 
-  *
 
-  * But a _successful_ call to this function should execute in a
 
-  * secret-independent manner, and this 'make a single attempt'
 
-  * function is exposed in the API so that 'testsc' can check that.
 
-  */
 
- NTRUKeyPair *ntru_keygen_attempt(unsigned p, unsigned q, unsigned w)
 
- {
 
-     /*
 
-      * First invent g, which is the one more likely to fail to invert.
 
-      * This is simply a uniformly random polynomial with p terms over
 
-      * Z_3. So we need p*log2(3) random bits for it, plus 128 for
 
-      * uniformity. It's easiest to bound log2(3) above by 2.
 
-      */
 
-     size_t randbitpos = 2 * p + 128;
 
-     mp_int *randdata = mp_resize(mp_random_bits(randbitpos), randbitpos + 32);
 
-     /*
 
-      * Select p random values from {0,1,2}.
 
-      */
 
-     uint16_t *g = snewn(p, uint16_t);
 
-     mp_int *x = mp_new(64);
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 0; i < p; i++) {
 
-         mp_mul_integer_into(randdata, randdata, 3);
 
-         mp_rshift_fixed_into(x, randdata, randbitpos);
 
-         mp_reduce_mod_2to(randdata, randbitpos);
 
-         g[i] = mp_get_integer(x);
 
-     }
 
-     } // WINSCP
 
-     mp_free(x);
 
-     mp_free(randdata);
 
-     /*
 
-      * Try to invert g over Z_3, and fail if it isn't invertible.
 
-      */
 
-     { // WINSCP
 
-     uint16_t *ginv = snewn(p, uint16_t);
 
-     if (!ntru_ring_invert(ginv, g, p, 3)) {
 
-         ring_free(g, p);
 
-         ring_free(ginv, p);
 
-         return NULL;
 
-     }
 
-     /*
 
-      * Fine; we have g. Now make up an f, and convert it to a
 
-      * polynomial over q.
 
-      */
 
-     { // WINSCP
 
-     uint16_t *f = snewn(p, uint16_t);
 
-     ntru_gen_short(f, p, w);
 
-     ntru_expand(f, f, p, q);
 
-     /*
 
-      * Multiply f by 3.
 
-      */
 
-     { // WINSCP
 
-     uint16_t *f3 = snewn(p, uint16_t);
 
-     ntru_scale(f3, f, 3, p, q);
 
-     /*
 
-      * Invert 3*f over Z_q. This is guaranteed to succeed, since
 
-      * Z_q/<x^p-x-1> is a field, so the only non-invertible value is
 
-      * 0. And f is nonzero because it came from ntru_gen_short (hence,
 
-      * w of its components are nonzero), hence so is 3*f.
 
-      */
 
-     { // WINSCP
 
-     uint16_t *f3inv = snewn(p, uint16_t);
 
-     bool expect_always_success = ntru_ring_invert(f3inv, f3, p, q);
 
-     assert(expect_always_success);
 
-     /*
 
-      * Make the public key, by converting g to a polynomial over q and
 
-      * then multiplying by f3inv.
 
-      */
 
-     { // WINSCP
 
-     uint16_t *g_q = snewn(p, uint16_t);
 
-     ntru_expand(g_q, g, p, q);
 
-     { // WINSCP
 
-     uint16_t *h = snewn(p, uint16_t);
 
-     ntru_ring_multiply(h, g_q, f3inv, p, q);
 
-     /*
 
-      * Make up rho, used to substitute for the plaintext in the
 
-      * session hash in case of confirmation failure.
 
-      */
 
-     { // WINSCP
 
-     uint16_t *rho = snewn(p, uint16_t);
 
-     ntru_gen_short(rho, p, w);
 
-     /*
 
-      * And we're done! Free everything except the pieces we're
 
-      * returning.
 
-      */
 
-     { // WINSCP
 
-     NTRUKeyPair *keypair = snew(NTRUKeyPair);
 
-     keypair->p = p;
 
-     keypair->q = q;
 
-     keypair->w = w;
 
-     keypair->h = h;
 
-     keypair->f3 = f3;
 
-     keypair->ginv = ginv;
 
-     keypair->rho = rho;
 
-     ring_free(f, p);
 
-     ring_free(f3inv, p);
 
-     ring_free(g, p);
 
-     ring_free(g_q, p);
 
-     return keypair;
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
- }
 
- /*
 
-  * The top-level key generation function for real use (as opposed to
 
-  * testsc): keep trying to make a key until you succeed.
 
-  */
 
- NTRUKeyPair *ntru_keygen(unsigned p, unsigned q, unsigned w)
 
- {
 
-     while (1) {
 
-         NTRUKeyPair *keypair = ntru_keygen_attempt(p, q, w);
 
-         if (keypair)
 
-             return keypair;
 
-     }
 
- }
 
- /*
 
-  * Public-key encryption.
 
-  */
 
- void ntru_encrypt(uint16_t *ciphertext, const uint16_t *plaintext,
 
-                   uint16_t *pubkey, unsigned p, unsigned q)
 
- {
 
-     uint16_t *r_q = snewn(p, uint16_t);
 
-     ntru_expand(r_q, plaintext, p, q);
 
-     { // WINSCP
 
-     uint16_t *unrounded = snewn(p, uint16_t);
 
-     ntru_ring_multiply(unrounded, r_q, pubkey, p, q);
 
-     ntru_round3(ciphertext, unrounded, p, q);
 
-     ntru_normalise(ciphertext, ciphertext, p, q);
 
-     ring_free(r_q, p);
 
-     ring_free(unrounded, p);
 
-     } // WINSCP
 
- }
 
- /*
 
-  * Public-key decryption.
 
-  */
 
- void ntru_decrypt(uint16_t *plaintext, const uint16_t *ciphertext,
 
-                   NTRUKeyPair *keypair)
 
- {
 
-     unsigned p = keypair->p, q = keypair->q, w = keypair->w;
 
-     uint16_t *tmp = snewn(p, uint16_t);
 
-     ntru_ring_multiply(tmp, ciphertext, keypair->f3, p, q);
 
-     ntru_mod3(tmp, tmp, p, q);
 
-     ntru_normalise(tmp, tmp, p, 3);
 
-     ntru_ring_multiply(plaintext, tmp, keypair->ginv, p, 3);
 
-     ring_free(tmp, p);
 
-     /*
 
-      * With luck, this should have recovered exactly the original
 
-      * plaintext. But, as per the spec, we check whether it has
 
-      * exactly w nonzero coefficients, and if not, then something has
 
-      * gone wrong - and in that situation we time-safely substitute a
 
-      * different output.
 
-      *
 
-      * (I don't know exactly why we do this, but I assume it's because
 
-      * otherwise the mis-decoded output could be made to disgorge a
 
-      * secret about the private key in some way.)
 
-      */
 
-     { // WINSCP
 
-     unsigned weight = p;
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 0; i < p; i++)
 
-         weight -= iszero(plaintext[i]);
 
-     } // WINSCP
 
-     { // WINSCP
 
-     unsigned ok = iszero(weight ^ w);
 
-     /*
 
-      * The default failure return value consists of w 1s followed by
 
-      * 0s.
 
-      */
 
-     unsigned mask = ok - 1;
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 0; i < w; i++) {
 
-         uint16_t diff = (1 ^ plaintext[i]) & mask;
 
-         plaintext[i] ^= diff;
 
-     }
 
-     } // WINSCP
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = w; i < p; i++) {
 
-         uint16_t diff = (0 ^ plaintext[i]) & mask;
 
-         plaintext[i] ^= diff;
 
-     }
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
- }
 
- /* ----------------------------------------------------------------------
 
-  * Encode and decode public keys, ciphertexts and plaintexts.
 
-  *
 
-  * Public keys and ciphertexts use the complicated binary encoding
 
-  * system implemented above. In both cases, the inputs are regarded as
 
-  * symmetric about zero, and are first biased to map their most
 
-  * negative permitted value to 0, so that they become non-negative and
 
-  * hence suitable as inputs to the encoding system. In the case of a
 
-  * ciphertext, where the input coefficients have also been coerced to
 
-  * be multiples of 3, we divide by 3 as well, saving space by reducing
 
-  * the upper bounds (m_i) on all the encoded numbers.
 
-  */
 
- /*
 
-  * Compute the encoding schedule for a public key.
 
-  */
 
- static NTRUEncodeSchedule *ntru_encode_pubkey_schedule(unsigned p, unsigned q)
 
- {
 
-     uint16_t *ms = snewn(p, uint16_t);
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 0; i < p; i++)
 
-         ms[i] = q;
 
-     } // WINSCP
 
-     { // WINSCP
 
-     NTRUEncodeSchedule *sched = ntru_encode_schedule(ms, p);
 
-     sfree(ms);
 
-     return sched;
 
-     } // WINSCP
 
- }
 
- /*
 
-  * Encode a public key.
 
-  */
 
- void ntru_encode_pubkey(const uint16_t *pubkey, unsigned p, unsigned q,
 
-                         BinarySink *bs)
 
- {
 
-     /* Compute the biased version for encoding */
 
-     uint16_t *biased_pubkey = snewn(p, uint16_t);
 
-     ntru_bias(biased_pubkey, pubkey, q / 2, p, q);
 
-     /* Encode it */
 
-     { // WINSCP
 
-     NTRUEncodeSchedule *sched = ntru_encode_pubkey_schedule(p, q);
 
-     ntru_encode(sched, biased_pubkey, bs);
 
-     ntru_encode_schedule_free(sched);
 
-     ring_free(biased_pubkey, p);
 
-     } // WINSCP
 
- }
 
- /*
 
-  * Decode a public key and write it into 'pubkey'. We also return a
 
-  * ptrlen pointing at the chunk of data we removed from the
 
-  * BinarySource.
 
-  */
 
- ptrlen ntru_decode_pubkey(uint16_t *pubkey, unsigned p, unsigned q,
 
-                           BinarySource *src)
 
- {
 
-     NTRUEncodeSchedule *sched = ntru_encode_pubkey_schedule(p, q);
 
-     /* Retrieve the right number of bytes from the source */
 
-     size_t len = ntru_encode_schedule_length(sched);
 
-     ptrlen encoded = get_data(src, len);
 
-     if (get_err(src)) {
 
-         /* If there wasn't enough data, give up and return all-zeroes
 
-          * purely for determinism. But that value should never be
 
-          * used, because the caller will also check get_err(src). */
 
-         memset(pubkey, 0, p*sizeof(*pubkey));
 
-     } else {
 
-         /* Do the decoding */
 
-         ntru_decode(sched, pubkey, encoded);
 
-         /* Unbias the coefficients */
 
-         ntru_bias(pubkey, pubkey, q-q/2, p, q);
 
-     }
 
-     ntru_encode_schedule_free(sched);
 
-     return encoded;
 
- }
 
- /*
 
-  * For ciphertext biasing: work out the largest absolute value a
 
-  * ciphertext element can take, which is given by taking q/2 and
 
-  * rounding it to the nearest multiple of 3.
 
-  */
 
- static inline unsigned ciphertext_bias(unsigned q)
 
- {
 
-     return (q/2+1) / 3;
 
- }
 
- /*
 
-  * The number of possible values of a ciphertext coefficient (for use
 
-  * as the m_i in encoding) ranges from +ciphertext_bias(q) to
 
-  * -ciphertext_bias(q) inclusive.
 
-  */
 
- static inline unsigned ciphertext_m(unsigned q)
 
- {
 
-     return 1 + 2 * ciphertext_bias(q);
 
- }
 
- /*
 
-  * Compute the encoding schedule for a ciphertext.
 
-  */
 
- static NTRUEncodeSchedule *ntru_encode_ciphertext_schedule(
 
-     unsigned p, unsigned q)
 
- {
 
-     unsigned m = ciphertext_m(q);
 
-     uint16_t *ms = snewn(p, uint16_t);
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 0; i < p; i++)
 
-         ms[i] = m;
 
-     } // WINSCP
 
-     { // WINSCP
 
-     NTRUEncodeSchedule *sched = ntru_encode_schedule(ms, p);
 
-     sfree(ms);
 
-     return sched;
 
-     } // WINSCP
 
- }
 
- /*
 
-  * Encode a ciphertext.
 
-  */
 
- void ntru_encode_ciphertext(const uint16_t *ciphertext, unsigned p, unsigned q,
 
-                             BinarySink *bs)
 
- {
 
-     SETUP;
 
-     /*
 
-      * Bias the ciphertext, and scale down by 1/3, which we do by
 
-      * modular multiplication by the inverse of 3 mod q. (That only
 
-      * works if we know the inputs are all _exact_ multiples of 3
 
-      * - but we do!)
 
-      */
 
-     uint16_t *biased_ciphertext = snewn(p, uint16_t);
 
-     ntru_bias(biased_ciphertext, ciphertext, 3 * ciphertext_bias(q), p, q);
 
-     ntru_scale(biased_ciphertext, biased_ciphertext, INVERT(3), p, q);
 
-     /* Encode. */
 
-     { // WINSCP
 
-     NTRUEncodeSchedule *sched = ntru_encode_ciphertext_schedule(p, q);
 
-     ntru_encode(sched, biased_ciphertext, bs);
 
-     ntru_encode_schedule_free(sched);
 
-     ring_free(biased_ciphertext, p);
 
-     } // WINSCP
 
- }
 
- ptrlen ntru_decode_ciphertext(uint16_t *ct, NTRUKeyPair *keypair,
 
-                               BinarySource *src)
 
- {
 
-     unsigned p = keypair->p, q = keypair->q;
 
-     NTRUEncodeSchedule *sched = ntru_encode_ciphertext_schedule(p, q);
 
-     /* Retrieve the right number of bytes from the source */
 
-     size_t len = ntru_encode_schedule_length(sched);
 
-     ptrlen encoded = get_data(src, len);
 
-     if (get_err(src)) {
 
-         /* As above, return deterministic nonsense on failure */
 
-         memset(ct, 0, p*sizeof(*ct));
 
-     } else {
 
-         /* Do the decoding */
 
-         ntru_decode(sched, ct, encoded);
 
-         /* Undo the scaling and bias */
 
-         ntru_scale(ct, ct, 3, p, q);
 
-         ntru_bias(ct, ct, q - 3 * ciphertext_bias(q), p, q);
 
-     }
 
-     ntru_encode_schedule_free(sched);
 
-     return encoded;        /* also useful to the caller, optionally */
 
- }
 
- /*
 
-  * Encode a plaintext.
 
-  *
 
-  * This is a much simpler encoding than the NTRUEncodeSchedule system:
 
-  * since elements of a plaintext are mod 3, we just encode each one in
 
-  * 2 bits, applying the usual bias so that {-1,0,+1} map to {0,1,2}
 
-  * respectively.
 
-  *
 
-  * There's no corresponding decode function, because plaintexts are
 
-  * never transmitted on the wire (the whole point is that they're too
 
-  * secret!). Plaintexts are only encoded in order to put them into
 
-  * hash preimages.
 
-  */
 
- void ntru_encode_plaintext(const uint16_t *plaintext, unsigned p,
 
-                            BinarySink *bs)
 
- {
 
-     unsigned byte = 0, bitpos = 0;
 
-     { // WINSCP
 
-     size_t i;
 
-     for (i = 0; i < p; i++) {
 
-         unsigned encoding = (plaintext[i] + 1) * iszero(plaintext[i] >> 1);
 
-         byte |= encoding << bitpos;
 
-         bitpos += 2;
 
-         if (bitpos == 8 || i+1 == p) {
 
-             put_byte(bs, byte);
 
-             byte = 0;
 
-             bitpos = 0;
 
-         }
 
-     }
 
-     } // WINSCP
 
- }
 
- /* ----------------------------------------------------------------------
 
-  * Compute the hashes required by the key exchange layer of NTRU Prime.
 
-  *
 
-  * There are two of these. The 'confirmation hash' is sent by the
 
-  * server along with the ciphertext, and the client can recalculate it
 
-  * to check whether the ciphertext was decrypted correctly. Then, the
 
-  * 'session hash' is the actual output of key exchange, and if the
 
-  * confirmation hash doesn't match, it gets deliberately corrupted.
 
-  */
 
- /*
 
-  * Make the confirmation hash, whose inputs are the plaintext and the
 
-  * public key.
 
-  *
 
-  * This is defined as H(2 || H(3 || r) || H(4 || K)), where r is the
 
-  * plaintext and K is the public key (as encoded by the above
 
-  * functions), and the constants 2,3,4 are single bytes. The choice of
 
-  * hash function (H itself) is SHA-512 truncated to 256 bits.
 
-  *
 
-  * (To be clear: that is _not_ the thing that FIPS 180-4 6.7 defines
 
-  * as "SHA-512/256", which varies the initialisation vector of the
 
-  * SHA-512 algorithm as well as truncating the output. _This_
 
-  * algorithm uses the standard SHA-512 IV, and _just_ truncates the
 
-  * output, in the manner suggested by FIPS 180-4 section 7.)
 
-  *
 
-  * 'out' should therefore expect to receive 32 bytes of data.
 
-  */
 
- static void ntru_confirmation_hash(
 
-     uint8_t *out, const uint16_t *plaintext,
 
-     const uint16_t *pubkey, unsigned p, unsigned q)
 
- {
 
-     /* The outer hash object */
 
-     ssh_hash *hconfirm = ssh_hash_new(&ssh_sha512);
 
-     put_byte(hconfirm, 2);             /* initial byte 2 */
 
-     { // WINSCP
 
-     uint8_t hashdata[64];
 
-     /* Compute H(3 || r) and add it to the main hash */
 
-     ssh_hash *h3r = ssh_hash_new(&ssh_sha512);
 
-     put_byte(h3r, 3);
 
-     ntru_encode_plaintext(plaintext, p, BinarySink_UPCAST(h3r));
 
-     ssh_hash_final(h3r, hashdata);
 
-     put_data(hconfirm, hashdata, 32);
 
-     /* Compute H(4 || K) and add it to the main hash */
 
-     { // WINSCP
 
-     ssh_hash *h4K = ssh_hash_new(&ssh_sha512);
 
-     put_byte(h4K, 4);
 
-     ntru_encode_pubkey(pubkey, p, q, BinarySink_UPCAST(h4K));
 
-     ssh_hash_final(h4K, hashdata);
 
-     put_data(hconfirm, hashdata, 32);
 
-     /* Compute the full output of the main SHA-512 hash */
 
-     ssh_hash_final(hconfirm, hashdata);
 
-     /* And copy the first 32 bytes into the caller's output array */
 
-     memcpy(out, hashdata, 32);
 
-     smemclr(hashdata, sizeof(hashdata));
 
-     } // WINSCP
 
-     } // WINSCP
 
- }
 
- /*
 
-  * Make the session hash, whose inputs are the plaintext, the
 
-  * ciphertext, and the confirmation hash (hence, transitively, a
 
-  * dependence on the public key as well).
 
-  *
 
-  * As computed by the server, and by the client if the confirmation
 
-  * hash matched, this is defined as
 
-  *
 
-  *   H(1 || H(3 || r) || ciphertext || confirmation hash)
 
-  *
 
-  * but if the confirmation hash _didn't_ match, then the plaintext r
 
-  * is replaced with the dummy plaintext-shaped value 'rho' we invented
 
-  * during key generation (presumably to avoid leaking any information
 
-  * about our secrets), and the initial byte 1 is replaced with 0 (to
 
-  * ensure that the resulting hash preimage can't match any legitimate
 
-  * preimage). So in that case, you instead get
 
-  *
 
-  *   H(0 || H(3 || rho) || ciphertext || confirmation hash)
 
-  *
 
-  * The inputs to this function include 'ok', which is the value to use
 
-  * as the initial byte (1 on success, 0 on failure), and 'plaintext'
 
-  * which should already have been substituted with rho in case of
 
-  * failure.
 
-  *
 
-  * The ciphertext is provided in already-encoded form.
 
-  */
 
- static void ntru_session_hash(
 
-     uint8_t *out, unsigned ok, const uint16_t *plaintext,
 
-     unsigned p, ptrlen ciphertext, ptrlen confirmation_hash)
 
- {
 
-     /* The outer hash object */
 
-     ssh_hash *hsession = ssh_hash_new(&ssh_sha512);
 
-     put_byte(hsession, ok);            /* initial byte 1 or 0 */
 
-     { // WINSCP
 
-     uint8_t hashdata[64];
 
-     /* Compute H(3 || r), or maybe H(3 || rho), and add it to the main hash */
 
-     ssh_hash *h3r = ssh_hash_new(&ssh_sha512);
 
-     put_byte(h3r, 3);
 
-     ntru_encode_plaintext(plaintext, p, BinarySink_UPCAST(h3r));
 
-     ssh_hash_final(h3r, hashdata);
 
-     put_data(hsession, hashdata, 32);
 
-     /* Put the ciphertext and confirmation hash in */
 
-     put_datapl(hsession, ciphertext);
 
-     put_datapl(hsession, confirmation_hash);
 
-     /* Compute the full output of the main SHA-512 hash */
 
-     ssh_hash_final(hsession, hashdata);
 
-     /* And copy the first 32 bytes into the caller's output array */
 
-     memcpy(out, hashdata, 32);
 
-     smemclr(hashdata, sizeof(hashdata));
 
-     } // WINSCP
 
- }
 
- /* ----------------------------------------------------------------------
 
-  * Top-level KEM functions.
 
-  */
 
- /*
 
-  * The parameters p,q,w for the system. There are other choices of
 
-  * these, but OpenSSH only specifies this set. (If that ever changes,
 
-  * we'll need to turn these into elements of the state structures.)
 
-  */
 
- #define p_LIVE 761
 
- #define q_LIVE 4591
 
- #define w_LIVE 286
 
- struct ntru_dk {
 
-     NTRUKeyPair *keypair;
 
-     strbuf *encoded;
 
-     pq_kem_dk dk;
 
- };
 
- static pq_kem_dk *ntru_vt_keygen(const pq_kemalg *alg, BinarySink *ek)
 
- {
 
-     struct ntru_dk *ndk = snew(struct ntru_dk);
 
-     ndk->dk.vt = alg;
 
-     ndk->encoded = strbuf_new_nm();
 
-     ndk->keypair = ntru_keygen(p_LIVE, q_LIVE, w_LIVE);
 
-     ntru_encode_pubkey(ndk->keypair->h, p_LIVE, q_LIVE, ek);
 
-     return &ndk->dk;
 
- }
 
- static bool ntru_vt_encaps(const pq_kemalg *alg, BinarySink *c, BinarySink *k,
 
-                            ptrlen ek)
 
- {
 
-     BinarySource src[1];
 
-     BinarySource_BARE_INIT_PL(src, ek);
 
-     { // WINSCP
 
-     uint16_t *pubkey = snewn(p_LIVE, uint16_t);
 
-     ntru_decode_pubkey(pubkey, p_LIVE, q_LIVE, src);
 
-     if (get_err(src) || get_avail(src)) {
 
-         /* Hard-fail if the input wasn't exactly the right length */ 
 
-         ring_free(pubkey, p_LIVE);
 
-         return false;
 
-     }
 
-     /* Invent a valid NTRU plaintext. */
 
-     { // WINSCP
 
-     uint16_t *plaintext = snewn(p_LIVE, uint16_t);
 
-     ntru_gen_short(plaintext, p_LIVE, w_LIVE);
 
-     /* Encrypt the plaintext, and encode the ciphertext into a strbuf,
 
-      * so we can reuse it for both the session hash and sending to the
 
-      * client. */
 
-     { // WINSCP
 
-     uint16_t *ciphertext = snewn(p_LIVE, uint16_t);
 
-     ntru_encrypt(ciphertext, plaintext, pubkey, p_LIVE, q_LIVE);
 
-     { // WINSCP
 
-     strbuf *ciphertext_encoded = strbuf_new_nm();
 
-     ntru_encode_ciphertext(ciphertext, p_LIVE, q_LIVE,
 
-                            BinarySink_UPCAST(ciphertext_encoded));
 
-     put_datapl(c, ptrlen_from_strbuf(ciphertext_encoded));
 
-     /* Compute the confirmation hash, and append that to the data sent
 
-      * to the other side. */
 
-     { // WINSCP
 
-     uint8_t confhash[32];
 
-     ntru_confirmation_hash(confhash, plaintext, pubkey, p_LIVE, q_LIVE);
 
-     put_data(c, confhash, 32);
 
-     /* Compute the session hash, i.e. the output shared secret. */
 
-     { // WINSCP
 
-     uint8_t sesshash[32];
 
-     ntru_session_hash(sesshash, 1, plaintext, p_LIVE,
 
-                       ptrlen_from_strbuf(ciphertext_encoded),
 
-                       make_ptrlen(confhash, 32));
 
-     put_data(k, sesshash, 32);
 
-     ring_free(pubkey, p_LIVE);
 
-     ring_free(plaintext, p_LIVE);
 
-     ring_free(ciphertext, p_LIVE);
 
-     strbuf_free(ciphertext_encoded);
 
-     smemclr(confhash, sizeof(confhash));
 
-     smemclr(sesshash, sizeof(sesshash));
 
-     return true;
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
- }
 
- static bool ntru_vt_decaps(pq_kem_dk *dk, BinarySink *k, ptrlen c)
 
- {
 
-     struct ntru_dk *ndk = container_of(dk, struct ntru_dk, dk);
 
-     /* Expect a string containing a ciphertext and a confirmation hash. */
 
-     BinarySource src[1];
 
-     BinarySource_BARE_INIT_PL(src, c);
 
-     { // WINSCP
 
-     uint16_t *ciphertext = snewn(p_LIVE, uint16_t);
 
-     ptrlen ciphertext_encoded = ntru_decode_ciphertext(
 
-         ciphertext, ndk->keypair, src);
 
-     ptrlen confirmation_hash = get_data(src, 32);
 
-     if (get_err(src) || get_avail(src)) {
 
-         /* Hard-fail if the input wasn't exactly the right length */
 
-         ring_free(ciphertext, p_LIVE);
 
-         return false;
 
-     }
 
-     /* Decrypt the ciphertext to recover the sender's plaintext */
 
-     { // WINSCP
 
-     uint16_t *plaintext = snewn(p_LIVE, uint16_t);
 
-     ntru_decrypt(plaintext, ciphertext, ndk->keypair);
 
-     /* Make the confirmation hash */
 
-     { // WINSCP
 
-     uint8_t confhash[32];
 
-     ntru_confirmation_hash(confhash, plaintext, ndk->keypair->h,
 
-                            p_LIVE, q_LIVE);
 
-     /* Check it matches the one the server sent */
 
-     { // WINSCP
 
-     unsigned ok = smemeq(confhash, confirmation_hash.ptr, 32);
 
-     /* If not, substitute in rho for the plaintext in the session hash */
 
-     unsigned mask = ok-1;
 
-     size_t i; // WINSCP
 
-     for (i = 0; i < p_LIVE; i++)
 
-         plaintext[i] ^= mask & (plaintext[i] ^ ndk->keypair->rho[i]);
 
-     /* Compute the session hash, whether or not we did that */
 
-     { // WINSCP
 
-     uint8_t sesshash[32];
 
-     ntru_session_hash(sesshash, ok, plaintext, p_LIVE, ciphertext_encoded,
 
-                       confirmation_hash);
 
-     put_data(k, sesshash, 32);
 
-     ring_free(plaintext, p_LIVE);
 
-     ring_free(ciphertext, p_LIVE);
 
-     smemclr(confhash, sizeof(confhash));
 
-     smemclr(sesshash, sizeof(sesshash));
 
-     return true;
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
-     } // WINSCP
 
- }
 
- static void ntru_vt_free_dk(pq_kem_dk *dk)
 
- {
 
-     struct ntru_dk *ndk = container_of(dk, struct ntru_dk, dk);
 
-     strbuf_free(ndk->encoded);
 
-     ntru_keypair_free(ndk->keypair);
 
-     sfree(ndk);
 
- }
 
- const pq_kemalg ssh_ntru = {
 
-     /*.keygen =*/ ntru_vt_keygen,
 
-     /*.encaps =*/ ntru_vt_encaps,
 
-     /*.decaps =*/ ntru_vt_decaps,
 
-     /*.free_dk =*/ ntru_vt_free_dk,
 
-     NULL, // WINSCP
 
-     /*.description =*/ "NTRU Prime",
 
-     /*.ek_len =*/ 1158,
 
-     /*.c_len =*/ 1039,
 
- };
 
 
  |