sshdss.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525
  1. /*
  2. * Digital Signature Standard implementation for PuTTY.
  3. */
  4. #include <stdio.h>
  5. #include <stdlib.h>
  6. #include <assert.h>
  7. #include "ssh.h"
  8. #include "mpint.h"
  9. #include "misc.h"
  10. static void dss_freekey(ssh_key *key); /* forward reference */
  11. static ssh_key *dss_new_pub(const ssh_keyalg *self, ptrlen data)
  12. {
  13. BinarySource src[1];
  14. struct dss_key *dss;
  15. BinarySource_BARE_INIT_PL(src, data);
  16. if (!ptrlen_eq_string(get_string(src), "ssh-dss"))
  17. return NULL;
  18. dss = snew(struct dss_key);
  19. dss->sshk.vt = &ssh_dss;
  20. dss->p = get_mp_ssh2(src);
  21. dss->q = get_mp_ssh2(src);
  22. dss->g = get_mp_ssh2(src);
  23. dss->y = get_mp_ssh2(src);
  24. dss->x = NULL;
  25. if (get_err(src) ||
  26. mp_eq_integer(dss->p, 0) || mp_eq_integer(dss->q, 0)) {
  27. /* Invalid key. */
  28. dss_freekey(&dss->sshk);
  29. return NULL;
  30. }
  31. return &dss->sshk;
  32. }
  33. static void dss_freekey(ssh_key *key)
  34. {
  35. struct dss_key *dss = container_of(key, struct dss_key, sshk);
  36. if (dss->p)
  37. mp_free(dss->p);
  38. if (dss->q)
  39. mp_free(dss->q);
  40. if (dss->g)
  41. mp_free(dss->g);
  42. if (dss->y)
  43. mp_free(dss->y);
  44. if (dss->x)
  45. mp_free(dss->x);
  46. sfree(dss);
  47. }
  48. static void append_hex_to_strbuf(strbuf *sb, mp_int *x)
  49. {
  50. if (sb->len > 0)
  51. put_byte(sb, ',');
  52. put_data(sb, "0x", 2);
  53. { // WINSCP
  54. char *hex = mp_get_hex(x);
  55. size_t hexlen = strlen(hex);
  56. put_data(sb, hex, hexlen);
  57. smemclr(hex, hexlen);
  58. sfree(hex);
  59. } // WINSCP
  60. }
  61. static char *dss_cache_str(ssh_key *key)
  62. {
  63. struct dss_key *dss = container_of(key, struct dss_key, sshk);
  64. strbuf *sb = strbuf_new();
  65. if (!dss->p) {
  66. strbuf_free(sb);
  67. return NULL;
  68. }
  69. append_hex_to_strbuf(sb, dss->p);
  70. append_hex_to_strbuf(sb, dss->q);
  71. append_hex_to_strbuf(sb, dss->g);
  72. append_hex_to_strbuf(sb, dss->y);
  73. return strbuf_to_str(sb);
  74. }
  75. static key_components *dss_components(ssh_key *key)
  76. {
  77. struct dss_key *dss = container_of(key, struct dss_key, sshk);
  78. key_components *kc = key_components_new();
  79. key_components_add_text(kc, "key_type", "DSA");
  80. assert(dss->p);
  81. key_components_add_mp(kc, "p", dss->p);
  82. key_components_add_mp(kc, "q", dss->q);
  83. key_components_add_mp(kc, "g", dss->g);
  84. key_components_add_mp(kc, "public_y", dss->y);
  85. if (dss->x)
  86. key_components_add_mp(kc, "private_x", dss->x);
  87. return kc;
  88. }
  89. static char *dss_invalid(ssh_key *key, unsigned flags)
  90. {
  91. /* No validity criterion will stop us from using a DSA key at all */
  92. return NULL;
  93. }
  94. static bool dss_verify(ssh_key *key, ptrlen sig, ptrlen data)
  95. {
  96. struct dss_key *dss = container_of(key, struct dss_key, sshk);
  97. BinarySource src[1];
  98. unsigned char hash[20];
  99. bool toret;
  100. if (!dss->p)
  101. return false;
  102. BinarySource_BARE_INIT_PL(src, sig);
  103. /*
  104. * Commercial SSH (2.0.13) and OpenSSH disagree over the format
  105. * of a DSA signature. OpenSSH is in line with RFC 4253:
  106. * it uses a string "ssh-dss", followed by a 40-byte string
  107. * containing two 160-bit integers end-to-end. Commercial SSH
  108. * can't be bothered with the header bit, and considers a DSA
  109. * signature blob to be _just_ the 40-byte string containing
  110. * the two 160-bit integers. We tell them apart by measuring
  111. * the length: length 40 means the commercial-SSH bug, anything
  112. * else is assumed to be RFC-compliant.
  113. */
  114. if (sig.len != 40) { /* bug not present; read admin fields */
  115. ptrlen type = get_string(src);
  116. sig = get_string(src);
  117. if (get_err(src) || !ptrlen_eq_string(type, "ssh-dss") ||
  118. sig.len != 40)
  119. return false;
  120. }
  121. /* Now we're sitting on a 40-byte string for sure. */
  122. { // WINSCP
  123. mp_int *r = mp_from_bytes_be(make_ptrlen(sig.ptr, 20));
  124. mp_int *s = mp_from_bytes_be(make_ptrlen((const char *)sig.ptr + 20, 20));
  125. if (!r || !s) {
  126. if (r)
  127. mp_free(r);
  128. if (s)
  129. mp_free(s);
  130. return false;
  131. }
  132. /* Basic sanity checks: 0 < r,s < q */
  133. { // WINSCP
  134. unsigned invalid = 0;
  135. invalid |= mp_eq_integer(r, 0);
  136. invalid |= mp_eq_integer(s, 0);
  137. invalid |= mp_cmp_hs(r, dss->q);
  138. invalid |= mp_cmp_hs(s, dss->q);
  139. if (invalid) {
  140. mp_free(r);
  141. mp_free(s);
  142. return false;
  143. }
  144. /*
  145. * Step 1. w <- s^-1 mod q.
  146. */
  147. { // WINSCP
  148. mp_int *w = mp_invert(s, dss->q);
  149. if (!w) {
  150. mp_free(r);
  151. mp_free(s);
  152. return false;
  153. }
  154. /*
  155. * Step 2. u1 <- SHA(message) * w mod q.
  156. */
  157. hash_simple(&ssh_sha1, data, hash);
  158. { // WINSCP
  159. mp_int *sha = mp_from_bytes_be(make_ptrlen(hash, 20));
  160. mp_int *u1 = mp_modmul(sha, w, dss->q);
  161. /*
  162. * Step 3. u2 <- r * w mod q.
  163. */
  164. mp_int *u2 = mp_modmul(r, w, dss->q);
  165. /*
  166. * Step 4. v <- (g^u1 * y^u2 mod p) mod q.
  167. */
  168. mp_int *gu1p = mp_modpow(dss->g, u1, dss->p);
  169. mp_int *yu2p = mp_modpow(dss->y, u2, dss->p);
  170. mp_int *gu1yu2p = mp_modmul(gu1p, yu2p, dss->p);
  171. mp_int *v = mp_mod(gu1yu2p, dss->q);
  172. /*
  173. * Step 5. v should now be equal to r.
  174. */
  175. toret = mp_cmp_eq(v, r);
  176. mp_free(w);
  177. mp_free(sha);
  178. mp_free(u1);
  179. mp_free(u2);
  180. mp_free(gu1p);
  181. mp_free(yu2p);
  182. mp_free(gu1yu2p);
  183. mp_free(v);
  184. mp_free(r);
  185. mp_free(s);
  186. } // WINSCP
  187. } // WINSCP
  188. } // WINSCP
  189. } // WINSCP
  190. return toret;
  191. }
  192. static void dss_public_blob(ssh_key *key, BinarySink *bs)
  193. {
  194. struct dss_key *dss = container_of(key, struct dss_key, sshk);
  195. put_stringz(bs, "ssh-dss");
  196. put_mp_ssh2(bs, dss->p);
  197. put_mp_ssh2(bs, dss->q);
  198. put_mp_ssh2(bs, dss->g);
  199. put_mp_ssh2(bs, dss->y);
  200. }
  201. static void dss_private_blob(ssh_key *key, BinarySink *bs)
  202. {
  203. struct dss_key *dss = container_of(key, struct dss_key, sshk);
  204. put_mp_ssh2(bs, dss->x);
  205. }
  206. static ssh_key *dss_new_priv(const ssh_keyalg *self, ptrlen pub, ptrlen priv)
  207. {
  208. BinarySource src[1];
  209. ssh_key *sshk;
  210. struct dss_key *dss;
  211. ptrlen hash;
  212. unsigned char digest[20];
  213. mp_int *ytest;
  214. sshk = dss_new_pub(self, pub);
  215. if (!sshk)
  216. return NULL;
  217. dss = container_of(sshk, struct dss_key, sshk);
  218. BinarySource_BARE_INIT_PL(src, priv);
  219. dss->x = get_mp_ssh2(src);
  220. if (get_err(src)) {
  221. dss_freekey(&dss->sshk);
  222. return NULL;
  223. }
  224. /*
  225. * Check the obsolete hash in the old DSS key format.
  226. */
  227. hash = get_string(src);
  228. if (hash.len == 20) {
  229. ssh_hash *h = ssh_hash_new(&ssh_sha1);
  230. put_mp_ssh2(h, dss->p);
  231. put_mp_ssh2(h, dss->q);
  232. put_mp_ssh2(h, dss->g);
  233. ssh_hash_final(h, digest);
  234. if (!smemeq(hash.ptr, digest, 20)) {
  235. dss_freekey(&dss->sshk);
  236. return NULL;
  237. }
  238. }
  239. /*
  240. * Now ensure g^x mod p really is y.
  241. */
  242. ytest = mp_modpow(dss->g, dss->x, dss->p);
  243. if (!mp_cmp_eq(ytest, dss->y)) {
  244. mp_free(ytest);
  245. dss_freekey(&dss->sshk);
  246. return NULL;
  247. }
  248. mp_free(ytest);
  249. return &dss->sshk;
  250. }
  251. static ssh_key *dss_new_priv_openssh(const ssh_keyalg *self,
  252. BinarySource *src)
  253. {
  254. struct dss_key *dss;
  255. dss = snew(struct dss_key);
  256. dss->sshk.vt = &ssh_dss;
  257. dss->p = get_mp_ssh2(src);
  258. dss->q = get_mp_ssh2(src);
  259. dss->g = get_mp_ssh2(src);
  260. dss->y = get_mp_ssh2(src);
  261. dss->x = get_mp_ssh2(src);
  262. if (get_err(src) ||
  263. mp_eq_integer(dss->q, 0) || mp_eq_integer(dss->p, 0)) {
  264. /* Invalid key. */
  265. dss_freekey(&dss->sshk);
  266. return NULL;
  267. }
  268. return &dss->sshk;
  269. }
  270. static void dss_openssh_blob(ssh_key *key, BinarySink *bs)
  271. {
  272. struct dss_key *dss = container_of(key, struct dss_key, sshk);
  273. put_mp_ssh2(bs, dss->p);
  274. put_mp_ssh2(bs, dss->q);
  275. put_mp_ssh2(bs, dss->g);
  276. put_mp_ssh2(bs, dss->y);
  277. put_mp_ssh2(bs, dss->x);
  278. }
  279. static int dss_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
  280. {
  281. ssh_key *sshk;
  282. struct dss_key *dss;
  283. int ret;
  284. sshk = dss_new_pub(self, pub);
  285. if (!sshk)
  286. return -1;
  287. dss = container_of(sshk, struct dss_key, sshk);
  288. ret = mp_get_nbits(dss->p);
  289. dss_freekey(&dss->sshk);
  290. return ret;
  291. }
  292. mp_int *dss_gen_k(const char *id_string, mp_int *modulus,
  293. mp_int *private_key,
  294. unsigned char *digest, int digest_len)
  295. {
  296. /*
  297. * The basic DSS signing algorithm is:
  298. *
  299. * - invent a random k between 1 and q-1 (exclusive).
  300. * - Compute r = (g^k mod p) mod q.
  301. * - Compute s = k^-1 * (hash + x*r) mod q.
  302. *
  303. * This has the dangerous properties that:
  304. *
  305. * - if an attacker in possession of the public key _and_ the
  306. * signature (for example, the host you just authenticated
  307. * to) can guess your k, he can reverse the computation of s
  308. * and work out x = r^-1 * (s*k - hash) mod q. That is, he
  309. * can deduce the private half of your key, and masquerade
  310. * as you for as long as the key is still valid.
  311. *
  312. * - since r is a function purely of k and the public key, if
  313. * the attacker only has a _range of possibilities_ for k
  314. * it's easy for him to work through them all and check each
  315. * one against r; he'll never be unsure of whether he's got
  316. * the right one.
  317. *
  318. * - if you ever sign two different hashes with the same k, it
  319. * will be immediately obvious because the two signatures
  320. * will have the same r, and moreover an attacker in
  321. * possession of both signatures (and the public key of
  322. * course) can compute k = (hash1-hash2) * (s1-s2)^-1 mod q,
  323. * and from there deduce x as before.
  324. *
  325. * - the Bleichenbacher attack on DSA makes use of methods of
  326. * generating k which are significantly non-uniformly
  327. * distributed; in particular, generating a 160-bit random
  328. * number and reducing it mod q is right out.
  329. *
  330. * For this reason we must be pretty careful about how we
  331. * generate our k. Since this code runs on Windows, with no
  332. * particularly good system entropy sources, we can't trust our
  333. * RNG itself to produce properly unpredictable data. Hence, we
  334. * use a totally different scheme instead.
  335. *
  336. * What we do is to take a SHA-512 (_big_) hash of the private
  337. * key x, and then feed this into another SHA-512 hash that
  338. * also includes the message hash being signed. That is:
  339. *
  340. * proto_k = SHA512 ( SHA512(x) || SHA160(message) )
  341. *
  342. * This number is 512 bits long, so reducing it mod q won't be
  343. * noticeably non-uniform. So
  344. *
  345. * k = proto_k mod q
  346. *
  347. * This has the interesting property that it's _deterministic_:
  348. * signing the same hash twice with the same key yields the
  349. * same signature.
  350. *
  351. * Despite this determinism, it's still not predictable to an
  352. * attacker, because in order to repeat the SHA-512
  353. * construction that created it, the attacker would have to
  354. * know the private key value x - and by assumption he doesn't,
  355. * because if he knew that he wouldn't be attacking k!
  356. *
  357. * (This trick doesn't, _per se_, protect against reuse of k.
  358. * Reuse of k is left to chance; all it does is prevent
  359. * _excessively high_ chances of reuse of k due to entropy
  360. * problems.)
  361. *
  362. * Thanks to Colin Plumb for the general idea of using x to
  363. * ensure k is hard to guess, and to the Cambridge University
  364. * Computer Security Group for helping to argue out all the
  365. * fine details.
  366. */
  367. ssh_hash *h;
  368. unsigned char digest512[64];
  369. /*
  370. * Hash some identifying text plus x.
  371. */
  372. h = ssh_hash_new(&ssh_sha512);
  373. put_asciz(h, id_string);
  374. put_mp_ssh2(h, private_key);
  375. ssh_hash_digest(h, digest512);
  376. /*
  377. * Now hash that digest plus the message hash.
  378. */
  379. ssh_hash_reset(h);
  380. put_data(h, digest512, sizeof(digest512));
  381. put_data(h, digest, digest_len);
  382. ssh_hash_final(h, digest512);
  383. /*
  384. * Now convert the result into a bignum, and coerce it to the
  385. * range [2,q), which we do by reducing it mod q-2 and adding 2.
  386. */
  387. { // WINSCP
  388. mp_int *modminus2 = mp_copy(modulus);
  389. mp_sub_integer_into(modminus2, modminus2, 2);
  390. { // WINSCP
  391. mp_int *proto_k = mp_from_bytes_be(make_ptrlen(digest512, 64));
  392. mp_int *k = mp_mod(proto_k, modminus2);
  393. mp_free(proto_k);
  394. mp_free(modminus2);
  395. mp_add_integer_into(k, k, 2);
  396. smemclr(digest512, sizeof(digest512));
  397. return k;
  398. } // WINSCP
  399. } // WINSCP
  400. }
  401. static void dss_sign(ssh_key *key, ptrlen data, unsigned flags, BinarySink *bs)
  402. {
  403. struct dss_key *dss = container_of(key, struct dss_key, sshk);
  404. unsigned char digest[20];
  405. int i;
  406. hash_simple(&ssh_sha1, data, digest);
  407. { // WINSCP
  408. mp_int *k = dss_gen_k("DSA deterministic k generator", dss->q, dss->x,
  409. digest, sizeof(digest));
  410. mp_int *kinv = mp_invert(k, dss->q); /* k^-1 mod q */
  411. /*
  412. * Now we have k, so just go ahead and compute the signature.
  413. */
  414. mp_int *gkp = mp_modpow(dss->g, k, dss->p); /* g^k mod p */
  415. mp_int *r = mp_mod(gkp, dss->q); /* r = (g^k mod p) mod q */
  416. mp_free(gkp);
  417. { // WINSCP
  418. mp_int *hash = mp_from_bytes_be(make_ptrlen(digest, 20));
  419. mp_int *xr = mp_mul(dss->x, r);
  420. mp_int *hxr = mp_add(xr, hash); /* hash + x*r */
  421. { // WINSCP
  422. mp_int *s = mp_modmul(kinv, hxr, dss->q); /* s = k^-1 * (hash+x*r) mod q */
  423. mp_free(hxr);
  424. mp_free(xr);
  425. mp_free(kinv);
  426. mp_free(k);
  427. mp_free(hash);
  428. put_stringz(bs, "ssh-dss");
  429. put_uint32(bs, 40);
  430. for (i = 0; i < 20; i++)
  431. put_byte(bs, mp_get_byte(r, 19 - i));
  432. for (i = 0; i < 20; i++)
  433. put_byte(bs, mp_get_byte(s, 19 - i));
  434. mp_free(r);
  435. mp_free(s);
  436. } // WINSCP
  437. } // WINSCP
  438. } // WINSCP
  439. }
  440. const ssh_keyalg ssh_dss = {
  441. // WINSCP
  442. /*.new_pub =*/ dss_new_pub,
  443. /*.new_priv =*/ dss_new_priv,
  444. /*.new_priv_openssh =*/ dss_new_priv_openssh,
  445. /*.freekey =*/ dss_freekey,
  446. /*.invalid =*/ dss_invalid,
  447. /*.sign =*/ dss_sign,
  448. /*.verify =*/ dss_verify,
  449. /*.public_blob =*/ dss_public_blob,
  450. /*.private_blob =*/ dss_private_blob,
  451. /*.openssh_blob =*/ dss_openssh_blob,
  452. /*.cache_str =*/ dss_cache_str,
  453. /*.components =*/ dss_components,
  454. /*.pubkey_bits =*/ dss_pubkey_bits,
  455. /*.ssh_id =*/ "ssh-dss",
  456. /*.cache_id =*/ "dss",
  457. NULL, NULL,
  458. };