| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817 | /* * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License").  You may not use * this file except in compliance with the License.  You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */#ifndef _GNU_SOURCE# define _GNU_SOURCE#endif#include "e_os.h"#include <stdio.h>#include "internal/cryptlib.h"#include <openssl/rand.h>#include <openssl/crypto.h>#include "rand_lcl.h"#include "internal/rand_int.h"#include <stdio.h>#include "internal/dso.h"#ifdef __linux# include <sys/syscall.h># ifdef DEVRANDOM_WAIT#  include <sys/shm.h>#  include <sys/utsname.h># endif#endif#if defined(__FreeBSD__) && !defined(OPENSSL_SYS_UEFI)# include <sys/types.h># include <sys/sysctl.h># include <sys/param.h>#endif#if defined(__OpenBSD__) || defined(__NetBSD__)# include <sys/param.h>#endif#if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)# include <sys/types.h># include <sys/stat.h># include <fcntl.h># include <unistd.h># include <sys/time.h>static uint64_t get_time_stamp(void);static uint64_t get_timer_bits(void);/* Macro to convert two thirty two bit values into a sixty four bit one */# define TWO32TO64(a, b) ((((uint64_t)(a)) << 32) + (b))/* * Check for the existence and support of POSIX timers.  The standard * says that the _POSIX_TIMERS macro will have a positive value if they * are available. * * However, we want an additional constraint: that the timer support does * not require an extra library dependency.  Early versions of glibc * require -lrt to be specified on the link line to access the timers, * so this needs to be checked for. * * It is worse because some libraries define __GLIBC__ but don't * support the version testing macro (e.g. uClibc).  This means * an extra check is needed. * * The final condition is: *      "have posix timers and either not glibc or glibc without -lrt" * * The nested #if sequences are required to avoid using a parameterised * macro that might be undefined. */# undef OSSL_POSIX_TIMER_OKAY# if defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0#  if defined(__GLIBC__)#   if defined(__GLIBC_PREREQ)#    if __GLIBC_PREREQ(2, 17)#     define OSSL_POSIX_TIMER_OKAY#    endif#   endif#  else#   define OSSL_POSIX_TIMER_OKAY#  endif# endif#endif /* defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) */#if defined(OPENSSL_RAND_SEED_NONE)/* none means none. this simplifies the following logic */# undef OPENSSL_RAND_SEED_OS# undef OPENSSL_RAND_SEED_GETRANDOM# undef OPENSSL_RAND_SEED_LIBRANDOM# undef OPENSSL_RAND_SEED_DEVRANDOM# undef OPENSSL_RAND_SEED_RDTSC# undef OPENSSL_RAND_SEED_RDCPU# undef OPENSSL_RAND_SEED_EGD#endif#if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \        !defined(OPENSSL_RAND_SEED_NONE)# error "UEFI and VXWorks only support seeding NONE"#endif#if defined(OPENSSL_SYS_VXWORKS)/* empty implementation */int rand_pool_init(void){    return 1;}void rand_pool_cleanup(void){}void rand_pool_keep_random_devices_open(int keep){}size_t rand_pool_acquire_entropy(RAND_POOL *pool){    return rand_pool_entropy_available(pool);}#endif#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \    || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \    || defined(OPENSSL_SYS_UEFI))# if defined(OPENSSL_SYS_VOS)#  ifndef OPENSSL_RAND_SEED_OS#   error "Unsupported seeding method configured; must be os"#  endif#  if defined(OPENSSL_SYS_VOS_HPPA) && defined(OPENSSL_SYS_VOS_IA32)#   error "Unsupported HP-PA and IA32 at the same time."#  endif#  if !defined(OPENSSL_SYS_VOS_HPPA) && !defined(OPENSSL_SYS_VOS_IA32)#   error "Must have one of HP-PA or IA32"#  endif/* * The following algorithm repeatedly samples the real-time clock (RTC) to * generate a sequence of unpredictable data.  The algorithm relies upon the * uneven execution speed of the code (due to factors such as cache misses, * interrupts, bus activity, and scheduling) and upon the rather large * relative difference between the speed of the clock and the rate at which * it can be read.  If it is ported to an environment where execution speed * is more constant or where the RTC ticks at a much slower rate, or the * clock can be read with fewer instructions, it is likely that the results * would be far more predictable.  This should only be used for legacy * platforms. * * As a precaution, we assume only 2 bits of entropy per byte. */size_t rand_pool_acquire_entropy(RAND_POOL *pool){    short int code;    int i, k;    size_t bytes_needed;    struct timespec ts;    unsigned char v;#  ifdef OPENSSL_SYS_VOS_HPPA    long duration;    extern void s$sleep(long *_duration, short int *_code);#  else    long long duration;    extern void s$sleep2(long long *_duration, short int *_code);#  endif    bytes_needed = rand_pool_bytes_needed(pool, 4 /*entropy_factor*/);    for (i = 0; i < bytes_needed; i++) {        /*         * burn some cpu; hope for interrupts, cache collisions, bus         * interference, etc.         */        for (k = 0; k < 99; k++)            ts.tv_nsec = random();#  ifdef OPENSSL_SYS_VOS_HPPA        /* sleep for 1/1024 of a second (976 us).  */        duration = 1;        s$sleep(&duration, &code);#  else        /* sleep for 1/65536 of a second (15 us).  */        duration = 1;        s$sleep2(&duration, &code);#  endif        /* Get wall clock time, take 8 bits. */        clock_gettime(CLOCK_REALTIME, &ts);        v = (unsigned char)(ts.tv_nsec & 0xFF);        rand_pool_add(pool, arg, &v, sizeof(v) , 2);    }    return rand_pool_entropy_available(pool);}void rand_pool_cleanup(void){}void rand_pool_keep_random_devices_open(int keep){}# else#  if defined(OPENSSL_RAND_SEED_EGD) && \        (defined(OPENSSL_NO_EGD) || !defined(DEVRANDOM_EGD))#   error "Seeding uses EGD but EGD is turned off or no device given"#  endif#  if defined(OPENSSL_RAND_SEED_DEVRANDOM) && !defined(DEVRANDOM)#   error "Seeding uses urandom but DEVRANDOM is not configured"#  endif#  if defined(OPENSSL_RAND_SEED_OS)#   if !defined(DEVRANDOM)#    error "OS seeding requires DEVRANDOM to be configured"#   endif#   define OPENSSL_RAND_SEED_GETRANDOM#   define OPENSSL_RAND_SEED_DEVRANDOM#  endif#  if defined(OPENSSL_RAND_SEED_LIBRANDOM)#   error "librandom not (yet) supported"#  endif#  if (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)/* * sysctl_random(): Use sysctl() to read a random number from the kernel * Returns the number of bytes returned in buf on success, -1 on failure. */static ssize_t sysctl_random(char *buf, size_t buflen){    int mib[2];    size_t done = 0;    size_t len;    /*     * Note: sign conversion between size_t and ssize_t is safe even     * without a range check, see comment in syscall_random()     */    /*     * On FreeBSD old implementations returned longs, newer versions support     * variable sizes up to 256 byte. The code below would not work properly     * when the sysctl returns long and we want to request something not a     * multiple of longs, which should never be the case.     */    if (!ossl_assert(buflen % sizeof(long) == 0)) {        errno = EINVAL;        return -1;    }    /*     * On NetBSD before 4.0 KERN_ARND was an alias for KERN_URND, and only     * filled in an int, leaving the rest uninitialized. Since NetBSD 4.0     * it returns a variable number of bytes with the current version supporting     * up to 256 bytes.     * Just return an error on older NetBSD versions.     */#if   defined(__NetBSD__) && __NetBSD_Version__ < 400000000    errno = ENOSYS;    return -1;#endif    mib[0] = CTL_KERN;    mib[1] = KERN_ARND;    do {        len = buflen;        if (sysctl(mib, 2, buf, &len, NULL, 0) == -1)            return done > 0 ? done : -1;        done += len;        buf += len;        buflen -= len;    } while (buflen > 0);    return done;}#  endif#  if defined(OPENSSL_RAND_SEED_GETRANDOM)#   if defined(__linux) && !defined(__NR_getrandom)#    if defined(__arm__) && defined(__NR_SYSCALL_BASE)#     define __NR_getrandom    (__NR_SYSCALL_BASE+384)#    elif defined(__i386__)#     define __NR_getrandom    355#    elif defined(__x86_64__) && !defined(__ILP32__)#     define __NR_getrandom    318#    endif#   endif/* * syscall_random(): Try to get random data using a system call * returns the number of bytes returned in buf, or < 0 on error. */static ssize_t syscall_random(void *buf, size_t buflen){    /*     * Note: 'buflen' equals the size of the buffer which is used by the     * get_entropy() callback of the RAND_DRBG. It is roughly bounded by     *     *   2 * RAND_POOL_FACTOR * (RAND_DRBG_STRENGTH / 8) = 2^14     *     * which is way below the OSSL_SSIZE_MAX limit. Therefore sign conversion     * between size_t and ssize_t is safe even without a range check.     */    /*     * Do runtime detection to find getentropy().     *     * Known OSs that should support this:     * - Darwin since 16 (OSX 10.12, IOS 10.0).     * - Solaris since 11.3     * - OpenBSD since 5.6     * - Linux since 3.17 with glibc 2.25     * - FreeBSD since 12.0 (1200061)     */#  if defined(__GNUC__) && __GNUC__>=2 && defined(__ELF__) && !defined(__hpux)    extern int getentropy(void *buffer, size_t length) __attribute__((weak));    if (getentropy != NULL)        return getentropy(buf, buflen) == 0 ? (ssize_t)buflen : -1;#  else    union {        void *p;        int (*f)(void *buffer, size_t length);    } p_getentropy;    /*     * We could cache the result of the lookup, but we normally don't     * call this function often.     */    ERR_set_mark();    p_getentropy.p = DSO_global_lookup("getentropy");    ERR_pop_to_mark();    if (p_getentropy.p != NULL)        return p_getentropy.f(buf, buflen) == 0 ? (ssize_t)buflen : -1;#  endif    /* Linux supports this since version 3.17 */#  if defined(__linux) && defined(__NR_getrandom)    return syscall(__NR_getrandom, buf, buflen, 0);#  elif (defined(__FreeBSD__) || defined(__NetBSD__)) && defined(KERN_ARND)    return sysctl_random(buf, buflen);#  else    errno = ENOSYS;    return -1;#  endif}#  endif    /* defined(OPENSSL_RAND_SEED_GETRANDOM) */#  if defined(OPENSSL_RAND_SEED_DEVRANDOM)static const char *random_device_paths[] = { DEVRANDOM };static struct random_device {    int fd;    dev_t dev;    ino_t ino;    mode_t mode;    dev_t rdev;} random_devices[OSSL_NELEM(random_device_paths)];static int keep_random_devices_open = 1;#   if defined(__linux) && defined(DEVRANDOM_WAIT)static void *shm_addr;static void cleanup_shm(void){    shmdt(shm_addr);}/* * Ensure that the system randomness source has been adequately seeded. * This is done by having the first start of libcrypto, wait until the device * /dev/random becomes able to supply a byte of entropy.  Subsequent starts * of the library and later reseedings do not need to do this. */static int wait_random_seeded(void){    static int seeded = OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID < 0;    static const int kernel_version[] = { DEVRANDOM_SAFE_KERNEL };    int kernel[2];    int shm_id, fd, r;    char c, *p;    struct utsname un;    fd_set fds;    if (!seeded) {        /* See if anything has created the global seeded indication */        if ((shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1, 0)) == -1) {            /*             * Check the kernel's version and fail if it is too recent.             *             * Linux kernels from 4.8 onwards do not guarantee that             * /dev/urandom is properly seeded when /dev/random becomes             * readable.  However, such kernels support the getentropy(2)             * system call and this should always succeed which renders             * this alternative but essentially identical source moot.             */            if (uname(&un) == 0) {                kernel[0] = atoi(un.release);                p = strchr(un.release, '.');                kernel[1] = p == NULL ? 0 : atoi(p + 1);                if (kernel[0] > kernel_version[0]                    || (kernel[0] == kernel_version[0]                        && kernel[1] >= kernel_version[1])) {                    return 0;                }            }            /* Open /dev/random and wait for it to be readable */            if ((fd = open(DEVRANDOM_WAIT, O_RDONLY)) != -1) {                if (DEVRANDM_WAIT_USE_SELECT && fd < FD_SETSIZE) {                    FD_ZERO(&fds);                    FD_SET(fd, &fds);                    while ((r = select(fd + 1, &fds, NULL, NULL, NULL)) < 0                           && errno == EINTR);                } else {                    while ((r = read(fd, &c, 1)) < 0 && errno == EINTR);                }                close(fd);                if (r == 1) {                    seeded = 1;                    /* Create the shared memory indicator */                    shm_id = shmget(OPENSSL_RAND_SEED_DEVRANDOM_SHM_ID, 1,                                    IPC_CREAT | S_IRUSR | S_IRGRP | S_IROTH);                }            }        }        if (shm_id != -1) {            seeded = 1;            /*             * Map the shared memory to prevent its premature destruction.             * If this call fails, it isn't a big problem.             */            shm_addr = shmat(shm_id, NULL, SHM_RDONLY);            if (shm_addr != (void *)-1)                OPENSSL_atexit(&cleanup_shm);        }    }    return seeded;}#   else /* defined __linux */static int wait_random_seeded(void){    return 1;}#   endif/* * Verify that the file descriptor associated with the random source is * still valid. The rationale for doing this is the fact that it is not * uncommon for daemons to close all open file handles when daemonizing. * So the handle might have been closed or even reused for opening * another file. */static int check_random_device(struct random_device * rd){    struct stat st;    return rd->fd != -1           && fstat(rd->fd, &st) != -1           && rd->dev == st.st_dev           && rd->ino == st.st_ino           && ((rd->mode ^ st.st_mode) & ~(S_IRWXU | S_IRWXG | S_IRWXO)) == 0           && rd->rdev == st.st_rdev;}/* * Open a random device if required and return its file descriptor or -1 on error */static int get_random_device(size_t n){    struct stat st;    struct random_device * rd = &random_devices[n];    /* reuse existing file descriptor if it is (still) valid */    if (check_random_device(rd))        return rd->fd;    /* open the random device ... */    if ((rd->fd = open(random_device_paths[n], O_RDONLY)) == -1)        return rd->fd;    /* ... and cache its relevant stat(2) data */    if (fstat(rd->fd, &st) != -1) {        rd->dev = st.st_dev;        rd->ino = st.st_ino;        rd->mode = st.st_mode;        rd->rdev = st.st_rdev;    } else {        close(rd->fd);        rd->fd = -1;    }    return rd->fd;}/* * Close a random device making sure it is a random device */static void close_random_device(size_t n){    struct random_device * rd = &random_devices[n];    if (check_random_device(rd))        close(rd->fd);    rd->fd = -1;}int rand_pool_init(void){    size_t i;    for (i = 0; i < OSSL_NELEM(random_devices); i++)        random_devices[i].fd = -1;    return 1;}void rand_pool_cleanup(void){    size_t i;    for (i = 0; i < OSSL_NELEM(random_devices); i++)        close_random_device(i);}void rand_pool_keep_random_devices_open(int keep){    if (!keep)        rand_pool_cleanup();    keep_random_devices_open = keep;}#  else     /* !defined(OPENSSL_RAND_SEED_DEVRANDOM) */int rand_pool_init(void){    return 1;}void rand_pool_cleanup(void){}void rand_pool_keep_random_devices_open(int keep){}#  endif    /* defined(OPENSSL_RAND_SEED_DEVRANDOM) *//* * Try the various seeding methods in turn, exit when successful. * * TODO(DRBG): If more than one entropy source is available, is it * preferable to stop as soon as enough entropy has been collected * (as favored by @rsalz) or should one rather be defensive and add * more entropy than requested and/or from different sources? * * Currently, the user can select multiple entropy sources in the * configure step, yet in practice only the first available source * will be used. A more flexible solution has been requested, but * currently it is not clear how this can be achieved without * overengineering the problem. There are many parameters which * could be taken into account when selecting the order and amount * of input from the different entropy sources (trust, quality, * possibility of blocking). */size_t rand_pool_acquire_entropy(RAND_POOL *pool){#  if defined(OPENSSL_RAND_SEED_NONE)    return rand_pool_entropy_available(pool);#  else    size_t entropy_available;#   if defined(OPENSSL_RAND_SEED_GETRANDOM)    {        size_t bytes_needed;        unsigned char *buffer;        ssize_t bytes;        /* Maximum allowed number of consecutive unsuccessful attempts */        int attempts = 3;        bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);        while (bytes_needed != 0 && attempts-- > 0) {            buffer = rand_pool_add_begin(pool, bytes_needed);            bytes = syscall_random(buffer, bytes_needed);            if (bytes > 0) {                rand_pool_add_end(pool, bytes, 8 * bytes);                bytes_needed -= bytes;                attempts = 3; /* reset counter after successful attempt */            } else if (bytes < 0 && errno != EINTR) {                break;            }        }    }    entropy_available = rand_pool_entropy_available(pool);    if (entropy_available > 0)        return entropy_available;#   endif#   if defined(OPENSSL_RAND_SEED_LIBRANDOM)    {        /* Not yet implemented. */    }#   endif#   if defined(OPENSSL_RAND_SEED_DEVRANDOM)    if (wait_random_seeded()) {        size_t bytes_needed;        unsigned char *buffer;        size_t i;        bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);        for (i = 0; bytes_needed > 0 && i < OSSL_NELEM(random_device_paths);             i++) {            ssize_t bytes = 0;            /* Maximum number of consecutive unsuccessful attempts */            int attempts = 3;            const int fd = get_random_device(i);            if (fd == -1)                continue;            while (bytes_needed != 0 && attempts-- > 0) {                buffer = rand_pool_add_begin(pool, bytes_needed);                bytes = read(fd, buffer, bytes_needed);                if (bytes > 0) {                    rand_pool_add_end(pool, bytes, 8 * bytes);                    bytes_needed -= bytes;                    attempts = 3; /* reset counter on successful attempt */                } else if (bytes < 0 && errno != EINTR) {                    break;                }            }            if (bytes < 0 || !keep_random_devices_open)                close_random_device(i);            bytes_needed = rand_pool_bytes_needed(pool, 1);        }        entropy_available = rand_pool_entropy_available(pool);        if (entropy_available > 0)            return entropy_available;    }#   endif#   if defined(OPENSSL_RAND_SEED_RDTSC)    entropy_available = rand_acquire_entropy_from_tsc(pool);    if (entropy_available > 0)        return entropy_available;#   endif#   if defined(OPENSSL_RAND_SEED_RDCPU)    entropy_available = rand_acquire_entropy_from_cpu(pool);    if (entropy_available > 0)        return entropy_available;#   endif#   if defined(OPENSSL_RAND_SEED_EGD)    {        static const char *paths[] = { DEVRANDOM_EGD, NULL };        size_t bytes_needed;        unsigned char *buffer;        int i;        bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/);        for (i = 0; bytes_needed > 0 && paths[i] != NULL; i++) {            size_t bytes = 0;            int num;            buffer = rand_pool_add_begin(pool, bytes_needed);            num = RAND_query_egd_bytes(paths[i],                                       buffer, (int)bytes_needed);            if (num == (int)bytes_needed)                bytes = bytes_needed;            rand_pool_add_end(pool, bytes, 8 * bytes);            bytes_needed = rand_pool_bytes_needed(pool, 1);        }        entropy_available = rand_pool_entropy_available(pool);        if (entropy_available > 0)            return entropy_available;    }#   endif    return rand_pool_entropy_available(pool);#  endif}# endif#endif#if defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__)int rand_pool_add_nonce_data(RAND_POOL *pool){    struct {        pid_t pid;        CRYPTO_THREAD_ID tid;        uint64_t time;    } data = { 0 };    /*     * Add process id, thread id, and a high resolution timestamp to     * ensure that the nonce is unique with high probability for     * different process instances.     */    data.pid = getpid();    data.tid = CRYPTO_THREAD_get_current_id();    data.time = get_time_stamp();    return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);}int rand_pool_add_additional_data(RAND_POOL *pool){    struct {        int fork_id;        CRYPTO_THREAD_ID tid;        uint64_t time;    } data = { 0 };    /*     * Add some noise from the thread id and a high resolution timer.     * The fork_id adds some extra fork-safety.     * The thread id adds a little randomness if the drbg is accessed     * concurrently (which is the case for the <master> drbg).     */    data.fork_id = openssl_get_fork_id();    data.tid = CRYPTO_THREAD_get_current_id();    data.time = get_timer_bits();    return rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0);}/* * Get the current time with the highest possible resolution * * The time stamp is added to the nonce, so it is optimized for not repeating. * The current time is ideal for this purpose, provided the computer's clock * is synchronized. */static uint64_t get_time_stamp(void){# if defined(OSSL_POSIX_TIMER_OKAY)    {        struct timespec ts;        if (clock_gettime(CLOCK_REALTIME, &ts) == 0)            return TWO32TO64(ts.tv_sec, ts.tv_nsec);    }# endif# if defined(__unix__) \     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)    {        struct timeval tv;        if (gettimeofday(&tv, NULL) == 0)            return TWO32TO64(tv.tv_sec, tv.tv_usec);    }# endif    return time(NULL);}/* * Get an arbitrary timer value of the highest possible resolution * * The timer value is added as random noise to the additional data, * which is not considered a trusted entropy sourec, so any result * is acceptable. */static uint64_t get_timer_bits(void){    uint64_t res = OPENSSL_rdtsc();    if (res != 0)        return res;# if defined(__sun) || defined(__hpux)    return gethrtime();# elif defined(_AIX)    {        timebasestruct_t t;        read_wall_time(&t, TIMEBASE_SZ);        return TWO32TO64(t.tb_high, t.tb_low);    }# elif defined(OSSL_POSIX_TIMER_OKAY)    {        struct timespec ts;#  ifdef CLOCK_BOOTTIME#   define CLOCK_TYPE CLOCK_BOOTTIME#  elif defined(_POSIX_MONOTONIC_CLOCK)#   define CLOCK_TYPE CLOCK_MONOTONIC#  else#   define CLOCK_TYPE CLOCK_REALTIME#  endif        if (clock_gettime(CLOCK_TYPE, &ts) == 0)            return TWO32TO64(ts.tv_sec, ts.tv_nsec);    }# endif# if defined(__unix__) \     || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)    {        struct timeval tv;        if (gettimeofday(&tv, NULL) == 0)            return TWO32TO64(tv.tv_sec, tv.tv_usec);    }# endif    return time(NULL);}#endif /* defined(OPENSSL_SYS_UNIX) || defined(__DJGPP__) */
 |