rsa_oaep.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233
  1. /* crypto/rsa/rsa_oaep.c */
  2. /* Written by Ulf Moeller. This software is distributed on an "AS IS"
  3. basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. */
  4. /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */
  5. /* See Victor Shoup, "OAEP reconsidered," Nov. 2000,
  6. * <URL: http://www.shoup.net/papers/oaep.ps.Z>
  7. * for problems with the security proof for the
  8. * original OAEP scheme, which EME-OAEP is based on.
  9. *
  10. * A new proof can be found in E. Fujisaki, T. Okamoto,
  11. * D. Pointcheval, J. Stern, "RSA-OEAP is Still Alive!",
  12. * Dec. 2000, <URL: http://eprint.iacr.org/2000/061/>.
  13. * The new proof has stronger requirements for the
  14. * underlying permutation: "partial-one-wayness" instead
  15. * of one-wayness. For the RSA function, this is
  16. * an equivalent notion.
  17. */
  18. #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA1)
  19. #include <stdio.h>
  20. #include "cryptlib.h"
  21. #include <openssl/bn.h>
  22. #include <openssl/rsa.h>
  23. #include <openssl/evp.h>
  24. #include <openssl/rand.h>
  25. #include <openssl/sha.h>
  26. static int MGF1(unsigned char *mask, long len,
  27. const unsigned char *seed, long seedlen);
  28. int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
  29. const unsigned char *from, int flen,
  30. const unsigned char *param, int plen)
  31. {
  32. int i, emlen = tlen - 1;
  33. unsigned char *db, *seed;
  34. unsigned char *dbmask, seedmask[SHA_DIGEST_LENGTH];
  35. if (flen > emlen - 2 * SHA_DIGEST_LENGTH - 1)
  36. {
  37. RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP,
  38. RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
  39. return 0;
  40. }
  41. if (emlen < 2 * SHA_DIGEST_LENGTH + 1)
  42. {
  43. RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, RSA_R_KEY_SIZE_TOO_SMALL);
  44. return 0;
  45. }
  46. to[0] = 0;
  47. seed = to + 1;
  48. db = to + SHA_DIGEST_LENGTH + 1;
  49. EVP_Digest((void *)param, plen, db, NULL, EVP_sha1(), NULL);
  50. memset(db + SHA_DIGEST_LENGTH, 0,
  51. emlen - flen - 2 * SHA_DIGEST_LENGTH - 1);
  52. db[emlen - flen - SHA_DIGEST_LENGTH - 1] = 0x01;
  53. memcpy(db + emlen - flen - SHA_DIGEST_LENGTH, from, (unsigned int) flen);
  54. if (RAND_bytes(seed, SHA_DIGEST_LENGTH) <= 0)
  55. return 0;
  56. #ifdef PKCS_TESTVECT
  57. memcpy(seed,
  58. "\xaa\xfd\x12\xf6\x59\xca\xe6\x34\x89\xb4\x79\xe5\x07\x6d\xde\xc2\xf0\x6c\xb5\x8f",
  59. 20);
  60. #endif
  61. dbmask = OPENSSL_malloc(emlen - SHA_DIGEST_LENGTH);
  62. if (dbmask == NULL)
  63. {
  64. RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP, ERR_R_MALLOC_FAILURE);
  65. return 0;
  66. }
  67. if (MGF1(dbmask, emlen - SHA_DIGEST_LENGTH, seed, SHA_DIGEST_LENGTH) < 0)
  68. return 0;
  69. for (i = 0; i < emlen - SHA_DIGEST_LENGTH; i++)
  70. db[i] ^= dbmask[i];
  71. if (MGF1(seedmask, SHA_DIGEST_LENGTH, db, emlen - SHA_DIGEST_LENGTH) < 0)
  72. return 0;
  73. for (i = 0; i < SHA_DIGEST_LENGTH; i++)
  74. seed[i] ^= seedmask[i];
  75. OPENSSL_free(dbmask);
  76. return 1;
  77. }
  78. int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
  79. const unsigned char *from, int flen, int num,
  80. const unsigned char *param, int plen)
  81. {
  82. int i, dblen, mlen = -1;
  83. const unsigned char *maskeddb;
  84. int lzero;
  85. unsigned char *db = NULL, seed[SHA_DIGEST_LENGTH], phash[SHA_DIGEST_LENGTH];
  86. unsigned char *padded_from;
  87. int bad = 0;
  88. if (--num < 2 * SHA_DIGEST_LENGTH + 1)
  89. /* 'num' is the length of the modulus, i.e. does not depend on the
  90. * particular ciphertext. */
  91. goto decoding_err;
  92. lzero = num - flen;
  93. if (lzero < 0)
  94. {
  95. /* signalling this error immediately after detection might allow
  96. * for side-channel attacks (e.g. timing if 'plen' is huge
  97. * -- cf. James H. Manger, "A Chosen Ciphertext Attack on RSA Optimal
  98. * Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001),
  99. * so we use a 'bad' flag */
  100. bad = 1;
  101. lzero = 0;
  102. flen = num; /* don't overflow the memcpy to padded_from */
  103. }
  104. dblen = num - SHA_DIGEST_LENGTH;
  105. db = OPENSSL_malloc(dblen + num);
  106. if (db == NULL)
  107. {
  108. RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, ERR_R_MALLOC_FAILURE);
  109. return -1;
  110. }
  111. /* Always do this zero-padding copy (even when lzero == 0)
  112. * to avoid leaking timing info about the value of lzero. */
  113. padded_from = db + dblen;
  114. memset(padded_from, 0, lzero);
  115. memcpy(padded_from + lzero, from, flen);
  116. maskeddb = padded_from + SHA_DIGEST_LENGTH;
  117. if (MGF1(seed, SHA_DIGEST_LENGTH, maskeddb, dblen))
  118. return -1;
  119. for (i = 0; i < SHA_DIGEST_LENGTH; i++)
  120. seed[i] ^= padded_from[i];
  121. if (MGF1(db, dblen, seed, SHA_DIGEST_LENGTH))
  122. return -1;
  123. for (i = 0; i < dblen; i++)
  124. db[i] ^= maskeddb[i];
  125. EVP_Digest((void *)param, plen, phash, NULL, EVP_sha1(), NULL);
  126. if (memcmp(db, phash, SHA_DIGEST_LENGTH) != 0 || bad)
  127. goto decoding_err;
  128. else
  129. {
  130. for (i = SHA_DIGEST_LENGTH; i < dblen; i++)
  131. if (db[i] != 0x00)
  132. break;
  133. if (i == dblen || db[i] != 0x01)
  134. goto decoding_err;
  135. else
  136. {
  137. /* everything looks OK */
  138. mlen = dblen - ++i;
  139. if (tlen < mlen)
  140. {
  141. RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, RSA_R_DATA_TOO_LARGE);
  142. mlen = -1;
  143. }
  144. else
  145. memcpy(to, db + i, mlen);
  146. }
  147. }
  148. OPENSSL_free(db);
  149. return mlen;
  150. decoding_err:
  151. /* to avoid chosen ciphertext attacks, the error message should not reveal
  152. * which kind of decoding error happened */
  153. RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP, RSA_R_OAEP_DECODING_ERROR);
  154. if (db != NULL) OPENSSL_free(db);
  155. return -1;
  156. }
  157. int PKCS1_MGF1(unsigned char *mask, long len,
  158. const unsigned char *seed, long seedlen, const EVP_MD *dgst)
  159. {
  160. long i, outlen = 0;
  161. unsigned char cnt[4];
  162. EVP_MD_CTX c;
  163. unsigned char md[EVP_MAX_MD_SIZE];
  164. int mdlen;
  165. int rv = -1;
  166. EVP_MD_CTX_init(&c);
  167. mdlen = EVP_MD_size(dgst);
  168. if (mdlen < 0)
  169. goto err;
  170. for (i = 0; outlen < len; i++)
  171. {
  172. cnt[0] = (unsigned char)((i >> 24) & 255);
  173. cnt[1] = (unsigned char)((i >> 16) & 255);
  174. cnt[2] = (unsigned char)((i >> 8)) & 255;
  175. cnt[3] = (unsigned char)(i & 255);
  176. if (!EVP_DigestInit_ex(&c,dgst, NULL)
  177. || !EVP_DigestUpdate(&c, seed, seedlen)
  178. || !EVP_DigestUpdate(&c, cnt, 4))
  179. goto err;
  180. if (outlen + mdlen <= len)
  181. {
  182. if (!EVP_DigestFinal_ex(&c, mask + outlen, NULL))
  183. goto err;
  184. outlen += mdlen;
  185. }
  186. else
  187. {
  188. if (!EVP_DigestFinal_ex(&c, md, NULL))
  189. goto err;
  190. memcpy(mask + outlen, md, len - outlen);
  191. outlen = len;
  192. }
  193. }
  194. rv = 0;
  195. err:
  196. EVP_MD_CTX_cleanup(&c);
  197. return rv;
  198. }
  199. static int MGF1(unsigned char *mask, long len, const unsigned char *seed,
  200. long seedlen)
  201. {
  202. return PKCS1_MGF1(mask, len, seed, seedlen, EVP_sha1());
  203. }
  204. #endif