| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050 |
- /*
- * Copyright 2024-2025 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the Apache License 2.0 (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <openssl/byteorder.h>
- #include <openssl/rand.h>
- #include <openssl/proverr.h>
- #include "crypto/ml_kem.h"
- #include "internal/common.h"
- #include "internal/constant_time.h"
- #include "internal/sha3.h"
- #if defined(OPENSSL_CONSTANT_TIME_VALIDATION)
- #include <valgrind/memcheck.h>
- #endif
- #if ML_KEM_SEED_BYTES != ML_KEM_SHARED_SECRET_BYTES + ML_KEM_RANDOM_BYTES
- # error "ML-KEM keygen seed length != shared secret + random bytes length"
- #endif
- #if ML_KEM_SHARED_SECRET_BYTES != ML_KEM_RANDOM_BYTES
- # error "Invalid unequal lengths of ML-KEM shared secret and random inputs"
- #endif
- #if UINT_MAX < UINT32_MAX
- # error "Unsupported compiler: sizeof(unsigned int) < sizeof(uint32_t)"
- #endif
- /* Handy function-like bit-extraction macros */
- #define bit0(b) ((b) & 1)
- #define bitn(n, b) (((b) >> n) & 1)
- /*
- * 12 bits are sufficient to losslessly represent values in [0, q-1].
- * INVERSE_DEGREE is (n/2)^-1 mod q; used in inverse NTT.
- */
- #define DEGREE ML_KEM_DEGREE
- #define INVERSE_DEGREE (ML_KEM_PRIME - 2 * 13)
- #define LOG2PRIME 12
- #define BARRETT_SHIFT (2 * LOG2PRIME)
- #ifdef SHA3_BLOCKSIZE
- # define SHAKE128_BLOCKSIZE SHA3_BLOCKSIZE(128)
- #endif
- /*
- * Return whether a value that can only be 0 or 1 is non-zero, in constant time
- * in practice! The return value is a mask that is all ones if true, and all
- * zeros otherwise (twos-complement arithmentic assumed for unsigned values).
- *
- * Although this is used in constant-time selects, we omit a value barrier
- * here. Value barriers impede auto-vectorization (likely because it forces
- * the value to transit through a general-purpose register). On AArch64, this
- * is a difference of 2x.
- *
- * We usually add value barriers to selects because Clang turns consecutive
- * selects with the same condition into a branch instead of CMOV/CSEL. This
- * condition does not occur in Kyber, so omitting it seems to be safe so far,
- * but see |cbd_2|, |cbd_3|, where reduction needs to be specialised to the
- * sign of the input, rather than adding |q| in advance, and using the generic
- * |reduce_once|. (David Benjamin, Chromium)
- */
- #if 0
- # define constish_time_non_zero(b) (~constant_time_is_zero(b));
- #else
- # define constish_time_non_zero(b) (0u - (b))
- #endif
- /*
- * The scalar rejection-sampling buffer size needs to be a multiple of 12, but
- * is otherwise arbitrary, the preferred block size matches the internal buffer
- * size of SHAKE128, avoiding internal buffering and copying in SHAKE128. That
- * block size of (1600 - 256)/8 bytes, or 168, just happens to divide by 12!
- *
- * If the blocksize is unknown, or is not divisible by 12, 168 is used as a
- * fallback.
- */
- #if defined(SHAKE128_BLOCKSIZE) && (SHAKE128_BLOCKSIZE) % 12 == 0
- # define SCALAR_SAMPLING_BUFSIZE (SHAKE128_BLOCKSIZE)
- #else
- # define SCALAR_SAMPLING_BUFSIZE 168
- #endif
- /*
- * Structure of keys
- */
- typedef struct ossl_ml_kem_scalar_st {
- /* On every function entry and exit, 0 <= c[i] < ML_KEM_PRIME. */
- uint16_t c[ML_KEM_DEGREE];
- } scalar;
- /* Key material allocation layout */
- #define DECLARE_ML_KEM_KEYDATA(name, rank, private_sz) \
- struct name##_alloc { \
- /* Public vector |t| */ \
- scalar tbuf[(rank)]; \
- /* Pre-computed matrix |m| (FIPS 203 |A| transpose) */ \
- scalar mbuf[(rank)*(rank)] \
- /* optional private key data */ \
- private_sz \
- }
- /* Declare variant-specific public and private storage */
- #define DECLARE_ML_KEM_VARIANT_KEYDATA(bits) \
- DECLARE_ML_KEM_KEYDATA(pubkey_##bits, ML_KEM_##bits##_RANK,;); \
- DECLARE_ML_KEM_KEYDATA(prvkey_##bits, ML_KEM_##bits##_RANK,;\
- scalar sbuf[ML_KEM_##bits##_RANK]; \
- uint8_t zbuf[2 * ML_KEM_RANDOM_BYTES];)
- DECLARE_ML_KEM_VARIANT_KEYDATA(512);
- DECLARE_ML_KEM_VARIANT_KEYDATA(768);
- DECLARE_ML_KEM_VARIANT_KEYDATA(1024);
- #undef DECLARE_ML_KEM_VARIANT_KEYDATA
- #undef DECLARE_ML_KEM_KEYDATA
- typedef __owur
- int (*CBD_FUNC)(scalar *out, uint8_t in[ML_KEM_RANDOM_BYTES + 1],
- EVP_MD_CTX *mdctx, const ML_KEM_KEY *key);
- static void scalar_encode(uint8_t *out, const scalar *s, int bits);
- /*
- * The wire-form of a losslessly encoded vector uses 12-bits per element.
- *
- * The wire-form public key consists of the lossless encoding of the public
- * vector |t|, followed by the public seed |rho|.
- *
- * Our serialised private key concatenates serialisations of the private vector
- * |s|, the public key, the public key hash, and the failure secret |z|.
- */
- #define VECTOR_BYTES(b) ((3 * DEGREE / 2) * ML_KEM_##b##_RANK)
- #define PUBKEY_BYTES(b) (VECTOR_BYTES(b) + ML_KEM_RANDOM_BYTES)
- #define PRVKEY_BYTES(b) (2 * PUBKEY_BYTES(b) + ML_KEM_PKHASH_BYTES)
- /*
- * Encapsulation produces a vector "u" and a scalar "v", whose coordinates
- * (numbers modulo the ML-KEM prime "q") are lossily encoded using as "du" and
- * "dv" bits, respectively. This encoding is the ciphertext input for
- * decapsulation.
- */
- #define U_VECTOR_BYTES(b) ((DEGREE / 8) * ML_KEM_##b##_DU * ML_KEM_##b##_RANK)
- #define V_SCALAR_BYTES(b) ((DEGREE / 8) * ML_KEM_##b##_DV)
- #define CTEXT_BYTES(b) (U_VECTOR_BYTES(b) + V_SCALAR_BYTES(b))
- #if defined(OPENSSL_CONSTANT_TIME_VALIDATION)
- /*
- * CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region
- * of memory as secret. Secret data is tracked as it flows to registers and
- * other parts of a memory. If secret data is used as a condition for a branch,
- * or as a memory index, it will trigger warnings in valgrind.
- */
- # define CONSTTIME_SECRET(ptr, len) VALGRIND_MAKE_MEM_UNDEFINED(ptr, len)
- /*
- * CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that
- * region of memory as public. Public data is not subject to constant-time
- * rules.
- */
- # define CONSTTIME_DECLASSIFY(ptr, len) VALGRIND_MAKE_MEM_DEFINED(ptr, len)
- #else
- # define CONSTTIME_SECRET(ptr, len)
- # define CONSTTIME_DECLASSIFY(ptr, len)
- #endif
- /*
- * Indices of slots in the vinfo tables below
- */
- #define ML_KEM_512_VINFO 0
- #define ML_KEM_768_VINFO 1
- #define ML_KEM_1024_VINFO 2
- /*
- * Per-variant fixed parameters
- */
- static const ML_KEM_VINFO vinfo_map[3] = {
- {
- "ML-KEM-512",
- PRVKEY_BYTES(512),
- sizeof(struct prvkey_512_alloc),
- PUBKEY_BYTES(512),
- sizeof(struct pubkey_512_alloc),
- CTEXT_BYTES(512),
- VECTOR_BYTES(512),
- U_VECTOR_BYTES(512),
- EVP_PKEY_ML_KEM_512,
- ML_KEM_512_BITS,
- ML_KEM_512_RANK,
- ML_KEM_512_DU,
- ML_KEM_512_DV,
- ML_KEM_512_SECBITS
- },
- {
- "ML-KEM-768",
- PRVKEY_BYTES(768),
- sizeof(struct prvkey_768_alloc),
- PUBKEY_BYTES(768),
- sizeof(struct pubkey_768_alloc),
- CTEXT_BYTES(768),
- VECTOR_BYTES(768),
- U_VECTOR_BYTES(768),
- EVP_PKEY_ML_KEM_768,
- ML_KEM_768_BITS,
- ML_KEM_768_RANK,
- ML_KEM_768_DU,
- ML_KEM_768_DV,
- ML_KEM_768_SECBITS
- },
- {
- "ML-KEM-1024",
- PRVKEY_BYTES(1024),
- sizeof(struct prvkey_1024_alloc),
- PUBKEY_BYTES(1024),
- sizeof(struct pubkey_1024_alloc),
- CTEXT_BYTES(1024),
- VECTOR_BYTES(1024),
- U_VECTOR_BYTES(1024),
- EVP_PKEY_ML_KEM_1024,
- ML_KEM_1024_BITS,
- ML_KEM_1024_RANK,
- ML_KEM_1024_DU,
- ML_KEM_1024_DV,
- ML_KEM_1024_SECBITS
- }
- };
- /*
- * Remainders modulo `kPrime`, for sufficiently small inputs, are computed in
- * constant time via Barrett reduction, and a final call to reduce_once(),
- * which reduces inputs that are at most 2*kPrime and is also constant-time.
- */
- static const int kPrime = ML_KEM_PRIME;
- static const unsigned int kBarrettShift = BARRETT_SHIFT;
- static const size_t kBarrettMultiplier = (1 << BARRETT_SHIFT) / ML_KEM_PRIME;
- static const uint16_t kHalfPrime = (ML_KEM_PRIME - 1) / 2;
- static const uint16_t kInverseDegree = INVERSE_DEGREE;
- /*
- * Python helper:
- *
- * p = 3329
- * def bitreverse(i):
- * ret = 0
- * for n in range(7):
- * bit = i & 1
- * ret <<= 1
- * ret |= bit
- * i >>= 1
- * return ret
- */
- /*-
- * First precomputed array from Appendix A of FIPS 203, or else Python:
- * kNTTRoots = [pow(17, bitreverse(i), p) for i in range(128)]
- */
- static const uint16_t kNTTRoots[128] = {
- 1, 1729, 2580, 3289, 2642, 630, 1897, 848,
- 1062, 1919, 193, 797, 2786, 3260, 569, 1746,
- 296, 2447, 1339, 1476, 3046, 56, 2240, 1333,
- 1426, 2094, 535, 2882, 2393, 2879, 1974, 821,
- 289, 331, 3253, 1756, 1197, 2304, 2277, 2055,
- 650, 1977, 2513, 632, 2865, 33, 1320, 1915,
- 2319, 1435, 807, 452, 1438, 2868, 1534, 2402,
- 2647, 2617, 1481, 648, 2474, 3110, 1227, 910,
- 17, 2761, 583, 2649, 1637, 723, 2288, 1100,
- 1409, 2662, 3281, 233, 756, 2156, 3015, 3050,
- 1703, 1651, 2789, 1789, 1847, 952, 1461, 2687,
- 939, 2308, 2437, 2388, 733, 2337, 268, 641,
- 1584, 2298, 2037, 3220, 375, 2549, 2090, 1645,
- 1063, 319, 2773, 757, 2099, 561, 2466, 2594,
- 2804, 1092, 403, 1026, 1143, 2150, 2775, 886,
- 1722, 1212, 1874, 1029, 2110, 2935, 885, 2154,
- };
- /*
- * InverseNTTRoots = [pow(17, -bitreverse(i), p) for i in range(128)]
- * Listed in order of use in the inverse NTT loop (index 0 is skipped):
- *
- * 0, 64, 65, ..., 127, 32, 33, ..., 63, 16, 17, ..., 31, 8, 9, ...
- */
- static const uint16_t kInverseNTTRoots[128] = {
- 1, 1175, 2444, 394, 1219, 2300, 1455, 2117,
- 1607, 2443, 554, 1179, 2186, 2303, 2926, 2237,
- 525, 735, 863, 2768, 1230, 2572, 556, 3010,
- 2266, 1684, 1239, 780, 2954, 109, 1292, 1031,
- 1745, 2688, 3061, 992, 2596, 941, 892, 1021,
- 2390, 642, 1868, 2377, 1482, 1540, 540, 1678,
- 1626, 279, 314, 1173, 2573, 3096, 48, 667,
- 1920, 2229, 1041, 2606, 1692, 680, 2746, 568,
- 3312, 2419, 2102, 219, 855, 2681, 1848, 712,
- 682, 927, 1795, 461, 1891, 2877, 2522, 1894,
- 1010, 1414, 2009, 3296, 464, 2697, 816, 1352,
- 2679, 1274, 1052, 1025, 2132, 1573, 76, 2998,
- 3040, 2508, 1355, 450, 936, 447, 2794, 1235,
- 1903, 1996, 1089, 3273, 283, 1853, 1990, 882,
- 3033, 1583, 2760, 69, 543, 2532, 3136, 1410,
- 2267, 2481, 1432, 2699, 687, 40, 749, 1600,
- };
- /*
- * Second precomputed array from Appendix A of FIPS 203 (normalised positive),
- * or else Python:
- * ModRoots = [pow(17, 2*bitreverse(i) + 1, p) for i in range(128)]
- */
- static const uint16_t kModRoots[128] = {
- 17, 3312, 2761, 568, 583, 2746, 2649, 680, 1637, 1692, 723, 2606,
- 2288, 1041, 1100, 2229, 1409, 1920, 2662, 667, 3281, 48, 233, 3096,
- 756, 2573, 2156, 1173, 3015, 314, 3050, 279, 1703, 1626, 1651, 1678,
- 2789, 540, 1789, 1540, 1847, 1482, 952, 2377, 1461, 1868, 2687, 642,
- 939, 2390, 2308, 1021, 2437, 892, 2388, 941, 733, 2596, 2337, 992,
- 268, 3061, 641, 2688, 1584, 1745, 2298, 1031, 2037, 1292, 3220, 109,
- 375, 2954, 2549, 780, 2090, 1239, 1645, 1684, 1063, 2266, 319, 3010,
- 2773, 556, 757, 2572, 2099, 1230, 561, 2768, 2466, 863, 2594, 735,
- 2804, 525, 1092, 2237, 403, 2926, 1026, 2303, 1143, 2186, 2150, 1179,
- 2775, 554, 886, 2443, 1722, 1607, 1212, 2117, 1874, 1455, 1029, 2300,
- 2110, 1219, 2935, 394, 885, 2444, 2154, 1175,
- };
- /*
- * single_keccak hashes |inlen| bytes from |in| and writes |outlen| bytes of
- * output to |out|. If the |md| specifies a fixed-output function, like
- * SHA3-256, then |outlen| must be the correct length for that function.
- */
- static __owur
- int single_keccak(uint8_t *out, size_t outlen, const uint8_t *in, size_t inlen,
- EVP_MD_CTX *mdctx)
- {
- unsigned int sz = (unsigned int) outlen;
- if (!EVP_DigestUpdate(mdctx, in, inlen))
- return 0;
- if (EVP_MD_xof(EVP_MD_CTX_get0_md(mdctx)))
- return EVP_DigestFinalXOF(mdctx, out, outlen);
- return EVP_DigestFinal_ex(mdctx, out, &sz)
- && ossl_assert((size_t) sz == outlen);
- }
- /*
- * FIPS 203, Section 4.1, equation (4.3): PRF. Takes 32+1 input bytes, and uses
- * SHAKE256 to produce the input to SamplePolyCBD_eta: FIPS 203, algorithm 8.
- */
- static __owur
- int prf(uint8_t *out, size_t len, const uint8_t in[ML_KEM_RANDOM_BYTES + 1],
- EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)
- {
- return EVP_DigestInit_ex(mdctx, key->shake256_md, NULL)
- && single_keccak(out, len, in, ML_KEM_RANDOM_BYTES + 1, mdctx);
- }
- /*
- * FIPS 203, Section 4.1, equation (4.4): H. SHA3-256 hash of a variable
- * length input, producing 32 bytes of output.
- */
- static __owur
- int hash_h(uint8_t out[ML_KEM_PKHASH_BYTES], const uint8_t *in, size_t len,
- EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)
- {
- return EVP_DigestInit_ex(mdctx, key->sha3_256_md, NULL)
- && single_keccak(out, ML_KEM_PKHASH_BYTES, in, len, mdctx);
- }
- /* Incremental hash_h of expanded public key */
- static int
- hash_h_pubkey(uint8_t pkhash[ML_KEM_PKHASH_BYTES],
- EVP_MD_CTX *mdctx, ML_KEM_KEY *key)
- {
- const ML_KEM_VINFO *vinfo = key->vinfo;
- const scalar *t = key->t, *end = t + vinfo->rank;
- unsigned int sz;
- if (!EVP_DigestInit_ex(mdctx, key->sha3_256_md, NULL))
- return 0;
- do {
- uint8_t buf[3 * DEGREE / 2];
- scalar_encode(buf, t++, 12);
- if (!EVP_DigestUpdate(mdctx, buf, sizeof(buf)))
- return 0;
- } while (t < end);
- if (!EVP_DigestUpdate(mdctx, key->rho, ML_KEM_RANDOM_BYTES))
- return 0;
- return EVP_DigestFinal_ex(mdctx, pkhash, &sz)
- && ossl_assert(sz == ML_KEM_PKHASH_BYTES);
- }
- /*
- * FIPS 203, Section 4.1, equation (4.5): G. SHA3-512 hash of a variable
- * length input, producing 64 bytes of output, in particular the seeds
- * (d,z) for key generation.
- */
- static __owur
- int hash_g(uint8_t out[ML_KEM_SEED_BYTES], const uint8_t *in, size_t len,
- EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)
- {
- return EVP_DigestInit_ex(mdctx, key->sha3_512_md, NULL)
- && single_keccak(out, ML_KEM_SEED_BYTES, in, len, mdctx);
- }
- /*
- * FIPS 203, Section 4.1, equation (4.4): J. SHAKE256 taking a variable length
- * input to compute a 32-byte implicit rejection shared secret, of the same
- * length as the expected shared secret. (Computed even on success to avoid
- * side-channel leaks).
- */
- static __owur
- int kdf(uint8_t out[ML_KEM_SHARED_SECRET_BYTES],
- const uint8_t z[ML_KEM_RANDOM_BYTES],
- const uint8_t *ctext, size_t len,
- EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)
- {
- return EVP_DigestInit_ex(mdctx, key->shake256_md, NULL)
- && EVP_DigestUpdate(mdctx, z, ML_KEM_RANDOM_BYTES)
- && EVP_DigestUpdate(mdctx, ctext, len)
- && EVP_DigestFinalXOF(mdctx, out, ML_KEM_SHARED_SECRET_BYTES);
- }
- /*
- * FIPS 203, Section 4.2.2, Algorithm 7: "SampleNTT" (steps 3-17, steps 1, 2
- * are performed by the caller). Rejection-samples a Keccak stream to get
- * uniformly distributed elements in the range [0,q). This is used for matrix
- * expansion and only operates on public inputs.
- */
- static __owur
- int sample_scalar(scalar *out, EVP_MD_CTX *mdctx)
- {
- uint16_t *curr = out->c, *endout = curr + DEGREE;
- uint8_t buf[SCALAR_SAMPLING_BUFSIZE], *in;
- uint8_t *endin = buf + sizeof(buf);
- uint16_t d;
- uint8_t b1, b2, b3;
- do {
- if (!EVP_DigestSqueeze(mdctx, in = buf, sizeof(buf)))
- return 0;
- do {
- b1 = *in++;
- b2 = *in++;
- b3 = *in++;
- if (curr >= endout)
- break;
- if ((d = ((b2 & 0x0f) << 8) + b1) < kPrime)
- *curr++ = d;
- if (curr >= endout)
- break;
- if ((d = (b3 << 4) + (b2 >> 4)) < kPrime)
- *curr++ = d;
- } while (in < endin);
- } while (curr < endout);
- return 1;
- }
- /*-
- * reduce_once reduces 0 <= x < 2*kPrime, mod kPrime.
- *
- * Subtract |q| if the input is larger, without exposing a side-channel,
- * avoiding the "clangover" attack. See |constish_time_non_zero| for a
- * discussion on why the value barrier is by default omitted.
- */
- static __owur uint16_t reduce_once(uint16_t x)
- {
- const uint16_t subtracted = x - kPrime;
- uint16_t mask = constish_time_non_zero(subtracted >> 15);
- return (mask & x) | (~mask & subtracted);
- }
- /*
- * Constant-time reduce x mod kPrime using Barrett reduction. x must be less
- * than kPrime + 2 * kPrime^2. This is sufficient to reduce a product of
- * two already reduced u_int16 values, in fact it is sufficient for each
- * to be less than 2^12, because (kPrime * (2 * kPrime + 1)) > 2^24.
- */
- static __owur uint16_t reduce(uint32_t x)
- {
- uint64_t product = (uint64_t)x * kBarrettMultiplier;
- uint32_t quotient = (uint32_t)(product >> kBarrettShift);
- uint32_t remainder = x - quotient * kPrime;
- return reduce_once(remainder);
- }
- /* Multiply a scalar by a constant. */
- static void scalar_mult_const(scalar *s, uint16_t a)
- {
- uint16_t *curr = s->c, *end = curr + DEGREE, tmp;
- do {
- tmp = reduce(*curr * a);
- *curr++ = tmp;
- } while (curr < end);
- }
- /*-
- * FIPS 203, Section 4.3, Algoritm 9: "NTT".
- * In-place number theoretic transform of a given scalar. Note that ML-KEM's
- * kPrime 3329 does not have a 512th root of unity, so this transform leaves
- * off the last iteration of the usual FFT code, with the 128 relevant roots of
- * unity being stored in NTTRoots. This means the output should be seen as 128
- * elements in GF(3329^2), with the coefficients of the elements being
- * consecutive entries in |s->c|.
- */
- static void scalar_ntt(scalar *s)
- {
- const uint16_t *roots = kNTTRoots;
- uint16_t *end = s->c + DEGREE;
- int offset = DEGREE / 2;
- do {
- uint16_t *curr = s->c, *peer;
- do {
- uint16_t *pause = curr + offset, even, odd;
- uint32_t zeta = *++roots;
- peer = pause;
- do {
- even = *curr;
- odd = reduce(*peer * zeta);
- *peer++ = reduce_once(even - odd + kPrime);
- *curr++ = reduce_once(odd + even);
- } while (curr < pause);
- } while ((curr = peer) < end);
- } while ((offset >>= 1) >= 2);
- }
- /*-
- * FIPS 203, Section 4.3, Algoritm 10: "NTT^(-1)".
- * In-place inverse number theoretic transform of a given scalar, with pairs of
- * entries of s->v being interpreted as elements of GF(3329^2). Just as with
- * the number theoretic transform, this leaves off the first step of the normal
- * iFFT to account for the fact that 3329 does not have a 512th root of unity,
- * using the precomputed 128 roots of unity stored in InverseNTTRoots.
- */
- static void scalar_inverse_ntt(scalar *s)
- {
- const uint16_t *roots = kInverseNTTRoots;
- uint16_t *end = s->c + DEGREE;
- int offset = 2;
- do {
- uint16_t *curr = s->c, *peer;
- do {
- uint16_t *pause = curr + offset, even, odd;
- uint32_t zeta = *++roots;
- peer = pause;
- do {
- even = *curr;
- odd = *peer;
- *peer++ = reduce(zeta * (even - odd + kPrime));
- *curr++ = reduce_once(odd + even);
- } while (curr < pause);
- } while ((curr = peer) < end);
- } while ((offset <<= 1) < DEGREE);
- scalar_mult_const(s, kInverseDegree);
- }
- /* Addition updating the LHS scalar in-place. */
- static void scalar_add(scalar *lhs, const scalar *rhs)
- {
- int i;
- for (i = 0; i < DEGREE; i++)
- lhs->c[i] = reduce_once(lhs->c[i] + rhs->c[i]);
- }
- /* Subtraction updating the LHS scalar in-place. */
- static void scalar_sub(scalar *lhs, const scalar *rhs)
- {
- int i;
- for (i = 0; i < DEGREE; i++)
- lhs->c[i] = reduce_once(lhs->c[i] - rhs->c[i] + kPrime);
- }
- /*
- * Multiplying two scalars in the number theoretically transformed state. Since
- * 3329 does not have a 512th root of unity, this means we have to interpret
- * the 2*ith and (2*i+1)th entries of the scalar as elements of
- * GF(3329)[X]/(X^2 - 17^(2*bitreverse(i)+1)).
- *
- * The value of 17^(2*bitreverse(i)+1) mod 3329 is stored in the precomputed
- * ModRoots table. Note that our Barrett transform only allows us to multipy
- * two reduced numbers together, so we need some intermediate reduction steps,
- * even if an uint64_t could hold 3 multiplied numbers.
- */
- static void scalar_mult(scalar *out, const scalar *lhs,
- const scalar *rhs)
- {
- uint16_t *curr = out->c, *end = curr + DEGREE;
- const uint16_t *lc = lhs->c, *rc = rhs->c;
- const uint16_t *roots = kModRoots;
- do {
- uint32_t l0 = *lc++, r0 = *rc++;
- uint32_t l1 = *lc++, r1 = *rc++;
- uint32_t zetapow = *roots++;
- *curr++ = reduce(l0 * r0 + reduce(l1 * r1) * zetapow);
- *curr++ = reduce(l0 * r1 + l1 * r0);
- } while (curr < end);
- }
- /* Above, but add the result to an existing scalar */
- static ossl_inline
- void scalar_mult_add(scalar *out, const scalar *lhs,
- const scalar *rhs)
- {
- uint16_t *curr = out->c, *end = curr + DEGREE;
- const uint16_t *lc = lhs->c, *rc = rhs->c;
- const uint16_t *roots = kModRoots;
- do {
- uint32_t l0 = *lc++, r0 = *rc++;
- uint32_t l1 = *lc++, r1 = *rc++;
- uint16_t *c0 = curr++;
- uint16_t *c1 = curr++;
- uint32_t zetapow = *roots++;
- *c0 = reduce(*c0 + l0 * r0 + reduce(l1 * r1) * zetapow);
- *c1 = reduce(*c1 + l0 * r1 + l1 * r0);
- } while (curr < end);
- }
- /*-
- * FIPS 203, Section 4.2.1, Algorithm 5: "ByteEncode_d", for 2<=d<=12.
- * Here |bits| is |d|. For efficiency, we handle the d=1 case separately.
- */
- static void scalar_encode(uint8_t *out, const scalar *s, int bits)
- {
- const uint16_t *curr = s->c, *end = curr + DEGREE;
- uint64_t accum = 0, element;
- int used = 0;
- do {
- element = *curr++;
- if (used + bits < 64) {
- accum |= element << used;
- used += bits;
- } else if (used + bits > 64) {
- out = OPENSSL_store_u64_le(out, accum | (element << used));
- accum = element >> (64 - used);
- used = (used + bits) - 64;
- } else {
- out = OPENSSL_store_u64_le(out, accum | (element << used));
- accum = 0;
- used = 0;
- }
- } while (curr < end);
- }
- /*
- * scalar_encode_1 is |scalar_encode| specialised for |bits| == 1.
- */
- static void scalar_encode_1(uint8_t out[DEGREE / 8], const scalar *s)
- {
- int i, j;
- uint8_t out_byte;
- for (i = 0; i < DEGREE; i += 8) {
- out_byte = 0;
- for (j = 0; j < 8; j++)
- out_byte |= bit0(s->c[i + j]) << j;
- *out = out_byte;
- out++;
- }
- }
- /*-
- * FIPS 203, Section 4.2.1, Algorithm 6: "ByteDecode_d", for 2<=d<12.
- * Here |bits| is |d|. For efficiency, we handle the d=1 and d=12 cases
- * separately.
- *
- * scalar_decode parses |DEGREE * bits| bits from |in| into |DEGREE| values in
- * |out|.
- */
- static void scalar_decode(scalar *out, const uint8_t *in, int bits)
- {
- uint16_t *curr = out->c, *end = curr + DEGREE;
- uint64_t accum = 0;
- int accum_bits = 0, todo = bits;
- uint16_t bitmask = (((uint16_t) 1) << bits) - 1, mask = bitmask;
- uint16_t element = 0;
- do {
- if (accum_bits == 0) {
- in = OPENSSL_load_u64_le(&accum, in);
- accum_bits = 64;
- }
- if (todo == bits && accum_bits >= bits) {
- /* No partial "element", and all the required bits available */
- *curr++ = ((uint16_t) accum) & mask;
- accum >>= bits;
- accum_bits -= bits;
- } else if (accum_bits >= todo) {
- /* A partial "element", and all the required bits available */
- *curr++ = element | ((((uint16_t) accum) & mask) << (bits - todo));
- accum >>= todo;
- accum_bits -= todo;
- element = 0;
- todo = bits;
- mask = bitmask;
- } else {
- /*
- * Only some of the requisite bits accumulated, store |accum_bits|
- * of these in |element|. The accumulated bitcount becomes 0, but
- * as soon as we have more bits we'll want to merge accum_bits
- * fewer of them into the final |element|.
- *
- * Note that with a 64-bit accumulator and |bits| always 12 or
- * less, if we're here, the previous iteration had all the
- * requisite bits, and so there are no kept bits in |element|.
- */
- element = ((uint16_t) accum) & mask;
- todo -= accum_bits;
- mask = bitmask >> accum_bits;
- accum_bits = 0;
- }
- } while (curr < end);
- }
- static __owur
- int scalar_decode_12(scalar *out, const uint8_t in[3 * DEGREE / 2])
- {
- int i;
- uint16_t *c = out->c;
- for (i = 0; i < DEGREE / 2; ++i) {
- uint8_t b1 = *in++;
- uint8_t b2 = *in++;
- uint8_t b3 = *in++;
- int outOfRange1 = (*c++ = b1 | ((b2 & 0x0f) << 8)) >= kPrime;
- int outOfRange2 = (*c++ = (b2 >> 4) | (b3 << 4)) >= kPrime;
- if (outOfRange1 | outOfRange2)
- return 0;
- }
- return 1;
- }
- /*-
- * scalar_decode_decompress_add is a combination of decoding and decompression
- * both specialised for |bits| == 1, with the result added (and sum reduced) to
- * the output scalar.
- *
- * NOTE: this function MUST not leak an input-data-depedennt timing signal.
- * A timing leak in a related function in the reference Kyber implementation
- * made the "clangover" attack (CVE-2024-37880) possible, giving key recovery
- * for ML-KEM-512 in minutes, provided the attacker has access to precise
- * timing of a CPU performing chosen-ciphertext decap. Admittedly this is only
- * a risk when private keys are reused (perhaps KEMTLS servers).
- */
- static void
- scalar_decode_decompress_add(scalar *out, const uint8_t in[DEGREE / 8])
- {
- static const uint16_t half_q_plus_1 = (ML_KEM_PRIME >> 1) + 1;
- uint16_t *curr = out->c, *end = curr + DEGREE;
- uint16_t mask;
- uint8_t b;
- /*
- * Add |half_q_plus_1| if the bit is set, without exposing a side-channel,
- * avoiding the "clangover" attack. See |constish_time_non_zero| for a
- * discussion on why the value barrier is by default omitted.
- */
- #define decode_decompress_add_bit \
- mask = constish_time_non_zero(bit0(b)); \
- *curr = reduce_once(*curr + (mask & half_q_plus_1)); \
- curr++; \
- b >>= 1
- /* Unrolled to process each byte in one iteration */
- do {
- b = *in++;
- decode_decompress_add_bit;
- decode_decompress_add_bit;
- decode_decompress_add_bit;
- decode_decompress_add_bit;
- decode_decompress_add_bit;
- decode_decompress_add_bit;
- decode_decompress_add_bit;
- decode_decompress_add_bit;
- } while (curr < end);
- #undef decode_decompress_add_bit
- }
- /*
- * FIPS 203, Section 4.2.1, Equation (4.7): Compress_d.
- *
- * Compresses (lossily) an input |x| mod 3329 into |bits| many bits by grouping
- * numbers close to each other together. The formula used is
- * round(2^|bits|/kPrime*x) mod 2^|bits|.
- * Uses Barrett reduction to achieve constant time. Since we need both the
- * remainder (for rounding) and the quotient (as the result), we cannot use
- * |reduce| here, but need to do the Barrett reduction directly.
- */
- static __owur uint16_t compress(uint16_t x, int bits)
- {
- uint32_t shifted = (uint32_t)x << bits;
- uint64_t product = (uint64_t)shifted * kBarrettMultiplier;
- uint32_t quotient = (uint32_t)(product >> kBarrettShift);
- uint32_t remainder = shifted - quotient * kPrime;
- /*
- * Adjust the quotient to round correctly:
- * 0 <= remainder <= kHalfPrime round to 0
- * kHalfPrime < remainder <= kPrime + kHalfPrime round to 1
- * kPrime + kHalfPrime < remainder < 2 * kPrime round to 2
- */
- quotient += 1 & constant_time_lt_32(kHalfPrime, remainder);
- quotient += 1 & constant_time_lt_32(kPrime + kHalfPrime, remainder);
- return quotient & ((1 << bits) - 1);
- }
- /*
- * FIPS 203, Section 4.2.1, Equation (4.8): Decompress_d.
- * Decompresses |x| by using a close equi-distant representative. The formula
- * is round(kPrime/2^|bits|*x). Note that 2^|bits| being the divisor allows us
- * to implement this logic using only bit operations.
- */
- static __owur uint16_t decompress(uint16_t x, int bits)
- {
- uint32_t product = (uint32_t)x * kPrime;
- uint32_t power = 1 << bits;
- /* This is |product| % power, since |power| is a power of 2. */
- uint32_t remainder = product & (power - 1);
- /* This is |product| / power, since |power| is a power of 2. */
- uint32_t lower = product >> bits;
- /*
- * The rounding logic works since the first half of numbers mod |power|
- * have a 0 as first bit, and the second half has a 1 as first bit, since
- * |power| is a power of 2. As a 12 bit number, |remainder| is always
- * positive, so we will shift in 0s for a right shift.
- */
- return lower + (remainder >> (bits - 1));
- }
- /*-
- * FIPS 203, Section 4.2.1, Equation (4.7): "Compress_d".
- * In-place lossy rounding of scalars to 2^d bits.
- */
- static void scalar_compress(scalar *s, int bits)
- {
- int i;
- for (i = 0; i < DEGREE; i++)
- s->c[i] = compress(s->c[i], bits);
- }
- /*
- * FIPS 203, Section 4.2.1, Equation (4.8): "Decompress_d".
- * In-place approximate recovery of scalars from 2^d bit compression.
- */
- static void scalar_decompress(scalar *s, int bits)
- {
- int i;
- for (i = 0; i < DEGREE; i++)
- s->c[i] = decompress(s->c[i], bits);
- }
- /* Addition updating the LHS vector in-place. */
- static void vector_add(scalar *lhs, const scalar *rhs, int rank)
- {
- do {
- scalar_add(lhs++, rhs++);
- } while (--rank > 0);
- }
- /*
- * Encodes an entire vector into 32*|rank|*|bits| bytes. Note that since 256
- * (DEGREE) is divisible by 8, the individual vector entries will always fill a
- * whole number of bytes, so we do not need to worry about bit packing here.
- */
- static void vector_encode(uint8_t *out, const scalar *a, int bits, int rank)
- {
- int stride = bits * DEGREE / 8;
- for (; rank-- > 0; out += stride)
- scalar_encode(out, a++, bits);
- }
- /*
- * Decodes 32*|rank|*|bits| bytes from |in| into |out|. It returns early
- * if any parsed value is >= |ML_KEM_PRIME|. The resulting scalars are
- * then decompressed and transformed via the NTT.
- *
- * Note: Used only in decrypt_cpa(), which returns void and so does not check
- * the return value of this function. Side-channels are fine when the input
- * ciphertext to decap() is simply syntactically invalid.
- */
- static void
- vector_decode_decompress_ntt(scalar *out, const uint8_t *in, int bits, int rank)
- {
- int stride = bits * DEGREE / 8;
- for (; rank-- > 0; in += stride, ++out) {
- scalar_decode(out, in, bits);
- scalar_decompress(out, bits);
- scalar_ntt(out);
- }
- }
- /* vector_decode(), specialised to bits == 12. */
- static __owur
- int vector_decode_12(scalar *out, const uint8_t in[3 * DEGREE / 2], int rank)
- {
- int stride = 3 * DEGREE / 2;
- for (; rank-- > 0; in += stride)
- if (!scalar_decode_12(out++, in))
- return 0;
- return 1;
- }
- /* In-place compression of each scalar component */
- static void vector_compress(scalar *a, int bits, int rank)
- {
- do {
- scalar_compress(a++, bits);
- } while (--rank > 0);
- }
- /* The output scalar must not overlap with the inputs */
- static void inner_product(scalar *out, const scalar *lhs, const scalar *rhs,
- int rank)
- {
- scalar_mult(out, lhs, rhs);
- while (--rank > 0)
- scalar_mult_add(out, ++lhs, ++rhs);
- }
- /*
- * Here, the output vector must not overlap with the inputs, the result is
- * directly subjected to inverse NTT.
- */
- static void
- matrix_mult_intt(scalar *out, const scalar *m, const scalar *a, int rank)
- {
- const scalar *ar;
- int i, j;
- for (i = rank; i-- > 0; ++out) {
- scalar_mult(out, m++, ar = a);
- for (j = rank - 1; j > 0; --j)
- scalar_mult_add(out, m++, ++ar);
- scalar_inverse_ntt(out);
- }
- }
- /* Here, the output vector must not overlap with the inputs */
- static void
- matrix_mult_transpose_add(scalar *out, const scalar *m, const scalar *a, int rank)
- {
- const scalar *mc = m, *mr, *ar;
- int i, j;
- for (i = rank; i-- > 0; ++out) {
- scalar_mult_add(out, mr = mc++, ar = a);
- for (j = rank; --j > 0; )
- scalar_mult_add(out, (mr += rank), ++ar);
- }
- }
- /*-
- * Expands the matrix from a seed for key generation and for encaps-CPA.
- * NOTE: FIPS 203 matrix "A" is the transpose of this matrix, computed
- * by appending the (i,j) indices to the seed in the opposite order!
- *
- * Where FIPS 203 computes t = A * s + e, we use the transpose of "m".
- */
- static __owur
- int matrix_expand(EVP_MD_CTX *mdctx, ML_KEM_KEY *key)
- {
- scalar *out = key->m;
- uint8_t input[ML_KEM_RANDOM_BYTES + 2];
- int rank = key->vinfo->rank;
- int i, j;
- memcpy(input, key->rho, ML_KEM_RANDOM_BYTES);
- for (i = 0; i < rank; i++) {
- for (j = 0; j < rank; j++) {
- input[ML_KEM_RANDOM_BYTES] = i;
- input[ML_KEM_RANDOM_BYTES + 1] = j;
- if (!EVP_DigestInit_ex(mdctx, key->shake128_md, NULL)
- || !EVP_DigestUpdate(mdctx, input, sizeof(input))
- || !sample_scalar(out++, mdctx))
- return 0;
- }
- }
- return 1;
- }
- /*
- * Algorithm 7 from the spec, with eta fixed to two and the PRF call
- * included. Creates binominally distributed elements by sampling 2*|eta| bits,
- * and setting the coefficient to the count of the first bits minus the count of
- * the second bits, resulting in a centered binomial distribution. Since eta is
- * two this gives -2/2 with a probability of 1/16, -1/1 with probability 1/4,
- * and 0 with probability 3/8.
- */
- static __owur
- int cbd_2(scalar *out, uint8_t in[ML_KEM_RANDOM_BYTES + 1],
- EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)
- {
- uint16_t *curr = out->c, *end = curr + DEGREE;
- uint8_t randbuf[4 * DEGREE / 8], *r = randbuf; /* 64 * eta slots */
- uint16_t value, mask;
- uint8_t b;
- if (!prf(randbuf, sizeof(randbuf), in, mdctx, key))
- return 0;
- do {
- b = *r++;
- /*
- * Add |kPrime| if |value| underflowed. See |constish_time_non_zero|
- * for a discussion on why the value barrier is by default omitted.
- * While this could have been written reduce_once(value + kPrime), this
- * is one extra addition and small range of |value| tempts some
- * versions of Clang to emit a branch.
- */
- value = bit0(b) + bitn(1, b);
- value -= bitn(2, b) + bitn(3, b);
- mask = constish_time_non_zero(value >> 15);
- *curr++ = value + (kPrime & mask);
- value = bitn(4, b) + bitn(5, b);
- value -= bitn(6, b) + bitn(7, b);
- mask = constish_time_non_zero(value >> 15);
- *curr++ = value + (kPrime & mask);
- } while (curr < end);
- return 1;
- }
- /*
- * Algorithm 7 from the spec, with eta fixed to three and the PRF call
- * included. Creates binominally distributed elements by sampling 3*|eta| bits,
- * and setting the coefficient to the count of the first bits minus the count of
- * the second bits, resulting in a centered binomial distribution.
- */
- static __owur
- int cbd_3(scalar *out, uint8_t in[ML_KEM_RANDOM_BYTES + 1],
- EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)
- {
- uint16_t *curr = out->c, *end = curr + DEGREE;
- uint8_t randbuf[6 * DEGREE / 8], *r = randbuf; /* 64 * eta slots */
- uint8_t b1, b2, b3;
- uint16_t value, mask;
- if (!prf(randbuf, sizeof(randbuf), in, mdctx, key))
- return 0;
- do {
- b1 = *r++;
- b2 = *r++;
- b3 = *r++;
- /*
- * Add |kPrime| if |value| underflowed. See |constish_time_non_zero|
- * for a discussion on why the value barrier is by default omitted.
- * While this could have been written reduce_once(value + kPrime), this
- * is one extra addition and small range of |value| tempts some
- * versions of Clang to emit a branch.
- */
- value = bit0(b1) + bitn(1, b1) + bitn(2, b1);
- value -= bitn(3, b1) + bitn(4, b1) + bitn(5, b1);
- mask = constish_time_non_zero(value >> 15);
- *curr++ = value + (kPrime & mask);
- value = bitn(6, b1) + bitn(7, b1) + bit0(b2);
- value -= bitn(1, b2) + bitn(2, b2) + bitn(3, b2);
- mask = constish_time_non_zero(value >> 15);
- *curr++ = value + (kPrime & mask);
- value = bitn(4, b2) + bitn(5, b2) + bitn(6, b2);
- value -= bitn(7, b2) + bit0(b3) + bitn(1, b3);
- mask = constish_time_non_zero(value >> 15);
- *curr++ = value + (kPrime & mask);
- value = bitn(2, b3) + bitn(3, b3) + bitn(4, b3);
- value -= bitn(5, b3) + bitn(6, b3) + bitn(7, b3);
- mask = constish_time_non_zero(value >> 15);
- *curr++ = value + (kPrime & mask);
- } while (curr < end);
- return 1;
- }
- /*
- * Generates a secret vector by using |cbd| with the given seed to generate
- * scalar elements and incrementing |counter| for each slot of the vector.
- */
- static __owur
- int gencbd_vector(scalar *out, CBD_FUNC cbd, uint8_t *counter,
- const uint8_t seed[ML_KEM_RANDOM_BYTES], int rank,
- EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)
- {
- uint8_t input[ML_KEM_RANDOM_BYTES + 1];
- memcpy(input, seed, ML_KEM_RANDOM_BYTES);
- do {
- input[ML_KEM_RANDOM_BYTES] = (*counter)++;
- if (!cbd(out++, input, mdctx, key))
- return 0;
- } while (--rank > 0);
- return 1;
- }
- /*
- * As above plus NTT transform.
- */
- static __owur
- int gencbd_vector_ntt(scalar *out, CBD_FUNC cbd, uint8_t *counter,
- const uint8_t seed[ML_KEM_RANDOM_BYTES], int rank,
- EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)
- {
- uint8_t input[ML_KEM_RANDOM_BYTES + 1];
- memcpy(input, seed, ML_KEM_RANDOM_BYTES);
- do {
- input[ML_KEM_RANDOM_BYTES] = (*counter)++;
- if (!cbd(out, input, mdctx, key))
- return 0;
- scalar_ntt(out++);
- } while (--rank > 0);
- return 1;
- }
- /* The |ETA1| value for ML-KEM-512 is 3, the rest and all ETA2 values are 2. */
- #define CBD1(evp_type) ((evp_type) == EVP_PKEY_ML_KEM_512 ? cbd_3 : cbd_2)
- /*
- * FIPS 203, Section 5.2, Algorithm 14: K-PKE.Encrypt.
- *
- * Encrypts a message with given randomness to the ciphertext in |out|. Without
- * applying the Fujisaki-Okamoto transform this would not result in a CCA
- * secure scheme, since lattice schemes are vulnerable to decryption failure
- * oracles.
- *
- * The steps are re-ordered to make more efficient/localised use of storage.
- *
- * Note also that the input public key is assumed to hold a precomputed matrix
- * |A| (our key->m, with the public key holding an expanded (16-bit per scalar
- * coefficient) key->t vector).
- *
- * Caller passes storage in |tmp| for for two temporary vectors.
- */
- static __owur
- int encrypt_cpa(uint8_t out[ML_KEM_SHARED_SECRET_BYTES],
- const uint8_t message[DEGREE / 8],
- const uint8_t r[ML_KEM_RANDOM_BYTES], scalar *tmp,
- EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)
- {
- const ML_KEM_VINFO *vinfo = key->vinfo;
- CBD_FUNC cbd_1 = CBD1(vinfo->evp_type);
- int rank = vinfo->rank;
- /* We can use tmp[0..rank-1] as storage for |y|, then |e1|, ... */
- scalar *y = &tmp[0], *e1 = y, *e2 = y;
- /* We can use tmp[rank]..tmp[2*rank - 1] for |u| */
- scalar *u = &tmp[rank];
- scalar v;
- uint8_t input[ML_KEM_RANDOM_BYTES + 1];
- uint8_t counter = 0;
- int du = vinfo->du;
- int dv = vinfo->dv;
- /* FIPS 203 "y" vector */
- if (!gencbd_vector_ntt(y, cbd_1, &counter, r, rank, mdctx, key))
- return 0;
- /* FIPS 203 "v" scalar */
- inner_product(&v, key->t, y, rank);
- scalar_inverse_ntt(&v);
- /* FIPS 203 "u" vector */
- matrix_mult_intt(u, key->m, y, rank);
- /* All done with |y|, now free to reuse tmp[0] for FIPS 203 |e1| */
- if (!gencbd_vector(e1, cbd_2, &counter, r, rank, mdctx, key))
- return 0;
- vector_add(u, e1, rank);
- vector_compress(u, du, rank);
- vector_encode(out, u, du, rank);
- /* All done with |e1|, now free to reuse tmp[0] for FIPS 203 |e2| */
- memcpy(input, r, ML_KEM_RANDOM_BYTES);
- input[ML_KEM_RANDOM_BYTES] = counter;
- if (!cbd_2(e2, input, mdctx, key))
- return 0;
- scalar_add(&v, e2);
- /* Combine message with |v| */
- scalar_decode_decompress_add(&v, message);
- scalar_compress(&v, dv);
- scalar_encode(out + vinfo->u_vector_bytes, &v, dv);
- return 1;
- }
- /*
- * FIPS 203, Section 5.3, Algorithm 15: K-PKE.Decrypt.
- */
- static void
- decrypt_cpa(uint8_t out[ML_KEM_SHARED_SECRET_BYTES],
- const uint8_t *ctext, scalar *u, const ML_KEM_KEY *key)
- {
- const ML_KEM_VINFO *vinfo = key->vinfo;
- scalar v, mask;
- int rank = vinfo->rank;
- int du = vinfo->du;
- int dv = vinfo->dv;
- vector_decode_decompress_ntt(u, ctext, du, rank);
- scalar_decode(&v, ctext + vinfo->u_vector_bytes, dv);
- scalar_decompress(&v, dv);
- inner_product(&mask, key->s, u, rank);
- scalar_inverse_ntt(&mask);
- scalar_sub(&v, &mask);
- scalar_compress(&v, 1);
- scalar_encode_1(out, &v);
- }
- /*-
- * FIPS 203, Section 7.1, Algorithm 19: "ML-KEM.KeyGen".
- * FIPS 203, Section 7.2, Algorithm 20: "ML-KEM.Encaps".
- *
- * Fills the |out| buffer with the |ek| output of "ML-KEM.KeyGen", or,
- * equivalently, the |ek| input of "ML-KEM.Encaps", i.e. returns the
- * wire-format of an ML-KEM public key.
- */
- static void encode_pubkey(uint8_t *out, const ML_KEM_KEY *key)
- {
- const uint8_t *rho = key->rho;
- const ML_KEM_VINFO *vinfo = key->vinfo;
- vector_encode(out, key->t, 12, vinfo->rank);
- memcpy(out + vinfo->vector_bytes, rho, ML_KEM_RANDOM_BYTES);
- }
- /*-
- * FIPS 203, Section 7.1, Algorithm 19: "ML-KEM.KeyGen".
- *
- * Fills the |out| buffer with the |dk| output of "ML-KEM.KeyGen".
- * This matches the input format of parse_prvkey() below.
- */
- static void encode_prvkey(uint8_t *out, const ML_KEM_KEY *key)
- {
- const ML_KEM_VINFO *vinfo = key->vinfo;
- vector_encode(out, key->s, 12, vinfo->rank);
- out += vinfo->vector_bytes;
- encode_pubkey(out, key);
- out += vinfo->pubkey_bytes;
- memcpy(out, key->pkhash, ML_KEM_PKHASH_BYTES);
- out += ML_KEM_PKHASH_BYTES;
- memcpy(out, key->z, ML_KEM_RANDOM_BYTES);
- }
- /*-
- * FIPS 203, Section 7.1, Algorithm 19: "ML-KEM.KeyGen".
- * FIPS 203, Section 7.2, Algorithm 20: "ML-KEM.Encaps".
- *
- * This function parses the |in| buffer as the |ek| output of "ML-KEM.KeyGen",
- * or, equivalently, the |ek| input of "ML-KEM.Encaps", i.e. decodes the
- * wire-format of the ML-KEM public key.
- */
- static int parse_pubkey(const uint8_t *in, EVP_MD_CTX *mdctx, ML_KEM_KEY *key)
- {
- const ML_KEM_VINFO *vinfo = key->vinfo;
- /* Decode and check |t| */
- if (!vector_decode_12(key->t, in, vinfo->rank)) {
- ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY,
- "%s invalid public 't' vector",
- vinfo->algorithm_name);
- return 0;
- }
- /* Save the matrix |m| recovery seed |rho| */
- memcpy(key->rho, in + vinfo->vector_bytes, ML_KEM_RANDOM_BYTES);
- /*
- * Pre-compute the public key hash, needed for both encap and decap.
- * Also pre-compute the matrix expansion, stored with the public key.
- */
- if (!hash_h(key->pkhash, in, vinfo->pubkey_bytes, mdctx, key)
- || !matrix_expand(mdctx, key)) {
- ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR,
- "internal error while parsing %s public key",
- vinfo->algorithm_name);
- return 0;
- }
- return 1;
- }
- /*
- * FIPS 203, Section 7.1, Algorithm 19: "ML-KEM.KeyGen".
- *
- * Parses the |in| buffer as a |dk| output of "ML-KEM.KeyGen".
- * This matches the output format of encode_prvkey() above.
- */
- static int parse_prvkey(const uint8_t *in, EVP_MD_CTX *mdctx, ML_KEM_KEY *key)
- {
- const ML_KEM_VINFO *vinfo = key->vinfo;
- /* Decode and check |s|. */
- if (!vector_decode_12(key->s, in, vinfo->rank)) {
- ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY,
- "%s invalid private 's' vector",
- vinfo->algorithm_name);
- return 0;
- }
- in += vinfo->vector_bytes;
- if (!parse_pubkey(in, mdctx, key))
- return 0;
- in += vinfo->pubkey_bytes;
- /* Check public key hash. */
- if (memcmp(key->pkhash, in, ML_KEM_PKHASH_BYTES) != 0) {
- ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_KEY,
- "%s public key hash mismatch",
- vinfo->algorithm_name);
- return 0;
- }
- in += ML_KEM_PKHASH_BYTES;
- memcpy(key->z, in, ML_KEM_RANDOM_BYTES);
- return 1;
- }
- /*
- * FIPS 203, Section 6.1, Algorithm 16: "ML-KEM.KeyGen_internal".
- *
- * The implementation of Section 5.1, Algorithm 13, "K-PKE.KeyGen(d)" is
- * inlined.
- *
- * The caller MUST pass a pre-allocated digest context that is not shared with
- * any concurrent computation.
- *
- * This function optionally outputs the serialised wire-form |ek| public key
- * into the provided |pubenc| buffer, and generates the content of the |rho|,
- * |pkhash|, |t|, |m|, |s| and |z| components of the private |key| (which must
- * have preallocated space for these).
- *
- * Keys are computed from a 32-byte random |d| plus the 1 byte rank for
- * domain separation. These are concatenated and hashed to produce a pair of
- * 32-byte seeds public "rho", used to generate the matrix, and private "sigma",
- * used to generate the secret vector |s|.
- *
- * The second random input |z| is copied verbatim into the Fujisaki-Okamoto
- * (FO) transform "implicit-rejection" secret (the |z| component of the private
- * key), which thwarts chosen-ciphertext attacks, provided decap() runs in
- * constant time, with no side channel leaks, on all well-formed (valid length,
- * and correctly encoded) ciphertext inputs.
- */
- static __owur
- int genkey(const uint8_t seed[ML_KEM_SEED_BYTES],
- EVP_MD_CTX *mdctx, uint8_t *pubenc, ML_KEM_KEY *key)
- {
- uint8_t hashed[2 * ML_KEM_RANDOM_BYTES];
- const uint8_t *const sigma = hashed + ML_KEM_RANDOM_BYTES;
- uint8_t augmented_seed[ML_KEM_RANDOM_BYTES + 1];
- const ML_KEM_VINFO *vinfo = key->vinfo;
- CBD_FUNC cbd_1 = CBD1(vinfo->evp_type);
- int rank = vinfo->rank;
- uint8_t counter = 0;
- int ret = 0;
- /*
- * Use the "d" seed salted with the rank to derive the public and private
- * seeds rho and sigma.
- */
- memcpy(augmented_seed, seed, ML_KEM_RANDOM_BYTES);
- augmented_seed[ML_KEM_RANDOM_BYTES] = (uint8_t) rank;
- if (!hash_g(hashed, augmented_seed, sizeof(augmented_seed), mdctx, key))
- goto end;
- memcpy(key->rho, hashed, ML_KEM_RANDOM_BYTES);
- /* The |rho| matrix seed is public */
- CONSTTIME_DECLASSIFY(key->rho, ML_KEM_RANDOM_BYTES);
- /* FIPS 203 |e| vector is initial value of key->t */
- if (!matrix_expand(mdctx, key)
- || !gencbd_vector_ntt(key->s, cbd_1, &counter, sigma, rank, mdctx, key)
- || !gencbd_vector_ntt(key->t, cbd_1, &counter, sigma, rank, mdctx, key))
- goto end;
- /* To |e| we now add the product of transpose |m| and |s|, giving |t|. */
- matrix_mult_transpose_add(key->t, key->m, key->s, rank);
- /* The |t| vector is public */
- CONSTTIME_DECLASSIFY(key->t, vinfo->rank * sizeof(scalar));
- if (pubenc == NULL) {
- /* Incremental digest of public key without in-full serialisation. */
- if (!hash_h_pubkey(key->pkhash, mdctx, key))
- goto end;
- } else {
- encode_pubkey(pubenc, key);
- if (!hash_h(key->pkhash, pubenc, vinfo->pubkey_bytes, mdctx, key))
- goto end;
- }
- /* Save |z| portion of seed for "implicit rejection" on failure. */
- memcpy(key->z, seed + ML_KEM_RANDOM_BYTES, ML_KEM_RANDOM_BYTES);
- /* Optionally save the |d| portion of the seed */
- key->d = key->z + ML_KEM_RANDOM_BYTES;
- if (key->prov_flags & ML_KEM_KEY_RETAIN_SEED) {
- memcpy(key->d, seed, ML_KEM_RANDOM_BYTES);
- } else {
- OPENSSL_cleanse(key->d, ML_KEM_RANDOM_BYTES);
- key->d = NULL;
- }
- ret = 1;
- end:
- OPENSSL_cleanse((void *)augmented_seed, ML_KEM_RANDOM_BYTES);
- OPENSSL_cleanse((void *)sigma, ML_KEM_RANDOM_BYTES);
- if (ret == 0) {
- ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR,
- "internal error while generating %s private key",
- vinfo->algorithm_name);
- }
- return ret;
- }
- /*-
- * FIPS 203, Section 6.2, Algorithm 17: "ML-KEM.Encaps_internal".
- * This is the deterministic version with randomness supplied externally.
- *
- * The caller must pass space for two vectors in |tmp|.
- * The |ctext| buffer have space for the ciphertext of the ML-KEM variant
- * of the provided key.
- */
- static
- int encap(uint8_t *ctext, uint8_t secret[ML_KEM_SHARED_SECRET_BYTES],
- const uint8_t entropy[ML_KEM_RANDOM_BYTES],
- scalar *tmp, EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)
- {
- uint8_t input[ML_KEM_RANDOM_BYTES + ML_KEM_PKHASH_BYTES];
- uint8_t Kr[ML_KEM_SHARED_SECRET_BYTES + ML_KEM_RANDOM_BYTES];
- uint8_t *r = Kr + ML_KEM_SHARED_SECRET_BYTES;
- int ret;
- memcpy(input, entropy, ML_KEM_RANDOM_BYTES);
- memcpy(input + ML_KEM_RANDOM_BYTES, key->pkhash, ML_KEM_PKHASH_BYTES);
- ret = hash_g(Kr, input, sizeof(input), mdctx, key)
- && encrypt_cpa(ctext, entropy, r, tmp, mdctx, key);
- OPENSSL_cleanse((void *)input, sizeof(input));
- if (ret)
- memcpy(secret, Kr, ML_KEM_SHARED_SECRET_BYTES);
- else
- ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR,
- "internal error while performing %s encapsulation",
- key->vinfo->algorithm_name);
- return ret;
- }
- /*
- * FIPS 203, Section 6.3, Algorithm 18: ML-KEM.Decaps_internal
- *
- * Barring failure of the supporting SHA3/SHAKE primitives, this is fully
- * deterministic, the randomness for the FO transform is extracted during
- * private key generation.
- *
- * The caller must pass space for two vectors in |tmp|.
- * The |ctext| and |tmp_ctext| buffers must each have space for the ciphertext
- * of the key's ML-KEM variant.
- */
- static
- int decap(uint8_t secret[ML_KEM_SHARED_SECRET_BYTES],
- const uint8_t *ctext, uint8_t *tmp_ctext, scalar *tmp,
- EVP_MD_CTX *mdctx, const ML_KEM_KEY *key)
- {
- uint8_t decrypted[ML_KEM_SHARED_SECRET_BYTES + ML_KEM_PKHASH_BYTES];
- uint8_t failure_key[ML_KEM_RANDOM_BYTES];
- uint8_t Kr[ML_KEM_SHARED_SECRET_BYTES + ML_KEM_RANDOM_BYTES];
- uint8_t *r = Kr + ML_KEM_SHARED_SECRET_BYTES;
- const uint8_t *pkhash = key->pkhash;
- const ML_KEM_VINFO *vinfo = key->vinfo;
- int i;
- uint8_t mask;
- /*
- * If our KDF is unavailable, fail early! Otherwise, keep going ignoring
- * any further errors, returning success, and whatever we got for a shared
- * secret. The decrypt_cpa() function is just arithmetic on secret data,
- * so should not be subject to failure that makes its output predictable.
- *
- * We guard against "should never happen" catastrophic failure of the
- * "pure" function |hash_g| by overwriting the shared secret with the
- * content of the failure key and returning early, if nevertheless hash_g
- * fails. This is not constant-time, but a failure of |hash_g| already
- * implies loss of side-channel resistance.
- *
- * The same action is taken, if also |encrypt_cpa| should catastrophically
- * fail, due to failure of the |PRF| underlying the CBD functions.
- */
- if (!kdf(failure_key, key->z, ctext, vinfo->ctext_bytes, mdctx, key)) {
- ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR,
- "internal error while performing %s decapsulation",
- vinfo->algorithm_name);
- return 0;
- }
- decrypt_cpa(decrypted, ctext, tmp, key);
- memcpy(decrypted + ML_KEM_SHARED_SECRET_BYTES, pkhash, ML_KEM_PKHASH_BYTES);
- if (!hash_g(Kr, decrypted, sizeof(decrypted), mdctx, key)
- || !encrypt_cpa(tmp_ctext, decrypted, r, tmp, mdctx, key)) {
- memcpy(secret, failure_key, ML_KEM_SHARED_SECRET_BYTES);
- OPENSSL_cleanse(decrypted, ML_KEM_SHARED_SECRET_BYTES);
- return 1;
- }
- mask = constant_time_eq_int_8(0,
- CRYPTO_memcmp(ctext, tmp_ctext, vinfo->ctext_bytes));
- for (i = 0; i < ML_KEM_SHARED_SECRET_BYTES; i++)
- secret[i] = constant_time_select_8(mask, Kr[i], failure_key[i]);
- OPENSSL_cleanse(decrypted, ML_KEM_SHARED_SECRET_BYTES);
- OPENSSL_cleanse(Kr, sizeof(Kr));
- return 1;
- }
- /*
- * After allocating storage for public or private key data, update the key
- * component pointers to reference that storage.
- */
- static __owur
- int add_storage(scalar *p, int private, ML_KEM_KEY *key)
- {
- int rank = key->vinfo->rank;
- if (p == NULL)
- return 0;
- /*
- * We're adding key material, the seed buffer will now hold |rho| and
- * |pkhash|.
- */
- memset(key->seedbuf, 0, sizeof(key->seedbuf));
- key->rho = key->seedbuf;
- key->pkhash = key->seedbuf + ML_KEM_RANDOM_BYTES;
- key->d = key->z = NULL;
- /* A public key needs space for |t| and |m| */
- key->m = (key->t = p) + rank;
- /*
- * A private key also needs space for |s| and |z|.
- * The |z| buffer always includes additional space for |d|, but a key's |d|
- * pointer is left NULL when parsed from the NIST format, which omits that
- * information. Only keys generated from a (d, z) seed pair will have a
- * non-NULL |d| pointer.
- */
- if (private)
- key->z = (uint8_t *)(rank + (key->s = key->m + rank * rank));
- return 1;
- }
- /*
- * After freeing the storage associated with a key that failed to be
- * constructed, reset the internal pointers back to NULL.
- */
- void
- ossl_ml_kem_key_reset(ML_KEM_KEY *key)
- {
- if (key->t == NULL)
- return;
- /*-
- * Cleanse any sensitive data:
- * - The private vector |s| is immediately followed by the FO failure
- * secret |z|, and seed |d|, we can cleanse all three in one call.
- *
- * - Otherwise, when key->d is set, cleanse the stashed seed.
- */
- if (ossl_ml_kem_have_prvkey(key))
- OPENSSL_cleanse(key->s,
- key->vinfo->rank * sizeof(scalar) + 2 * ML_KEM_RANDOM_BYTES);
- OPENSSL_free(key->t);
- key->d = key->z = (uint8_t *)(key->s = key->m = key->t = NULL);
- }
- /*
- * ----- API exported to the provider
- *
- * Parameters with an implicit fixed length in the internal static API of each
- * variant have an explicit checked length argument at this layer.
- */
- /* Retrieve the parameters of one of the ML-KEM variants */
- const ML_KEM_VINFO *ossl_ml_kem_get_vinfo(int evp_type)
- {
- switch (evp_type) {
- case EVP_PKEY_ML_KEM_512:
- return &vinfo_map[ML_KEM_512_VINFO];
- case EVP_PKEY_ML_KEM_768:
- return &vinfo_map[ML_KEM_768_VINFO];
- case EVP_PKEY_ML_KEM_1024:
- return &vinfo_map[ML_KEM_1024_VINFO];
- }
- return NULL;
- }
- ML_KEM_KEY *ossl_ml_kem_key_new(OSSL_LIB_CTX *libctx, const char *properties,
- int evp_type)
- {
- const ML_KEM_VINFO *vinfo = ossl_ml_kem_get_vinfo(evp_type);
- ML_KEM_KEY *key;
- if (vinfo == NULL) {
- ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_PASSED_INVALID_ARGUMENT,
- "unsupported ML-KEM key type: %d", evp_type);
- return NULL;
- }
- if ((key = OPENSSL_malloc(sizeof(*key))) == NULL)
- return NULL;
- key->vinfo = vinfo;
- key->libctx = libctx;
- key->prov_flags = ML_KEM_KEY_PROV_FLAGS_DEFAULT;
- key->shake128_md = EVP_MD_fetch(libctx, "SHAKE128", properties);
- key->shake256_md = EVP_MD_fetch(libctx, "SHAKE256", properties);
- key->sha3_256_md = EVP_MD_fetch(libctx, "SHA3-256", properties);
- key->sha3_512_md = EVP_MD_fetch(libctx, "SHA3-512", properties);
- key->d = key->z = key->rho = key->pkhash = key->encoded_dk = NULL;
- key->s = key->m = key->t = NULL;
- if (key->shake128_md != NULL
- && key->shake256_md != NULL
- && key->sha3_256_md != NULL
- && key->sha3_512_md != NULL)
- return key;
- ossl_ml_kem_key_free(key);
- ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR,
- "missing SHA3 digest algorithms while creating %s key",
- vinfo->algorithm_name);
- return NULL;
- }
- ML_KEM_KEY *ossl_ml_kem_key_dup(const ML_KEM_KEY *key, int selection)
- {
- int ok = 0;
- ML_KEM_KEY *ret;
- /*
- * Partially decoded keys, not yet imported or loaded, should never be
- * duplicated.
- */
- if (ossl_ml_kem_decoded_key(key))
- return NULL;
- if (key == NULL
- || (ret = OPENSSL_memdup(key, sizeof(*key))) == NULL)
- return NULL;
- ret->d = ret->z = ret->rho = ret->pkhash = NULL;
- ret->s = ret->m = ret->t = NULL;
- /* Clear selection bits we can't fulfill */
- if (!ossl_ml_kem_have_pubkey(key))
- selection = 0;
- else if (!ossl_ml_kem_have_prvkey(key))
- selection &= ~OSSL_KEYMGMT_SELECT_PRIVATE_KEY;
- switch (selection & OSSL_KEYMGMT_SELECT_KEYPAIR) {
- case 0:
- ok = 1;
- break;
- case OSSL_KEYMGMT_SELECT_PUBLIC_KEY:
- ok = add_storage(OPENSSL_memdup(key->t, key->vinfo->puballoc), 0, ret);
- ret->rho = ret->seedbuf;
- ret->pkhash = ret->rho + ML_KEM_RANDOM_BYTES;
- break;
- case OSSL_KEYMGMT_SELECT_PRIVATE_KEY:
- ok = add_storage(OPENSSL_memdup(key->t, key->vinfo->prvalloc), 1, ret);
- /* Duplicated keys retain |d|, if available */
- if (key->d != NULL)
- ret->d = ret->z + ML_KEM_RANDOM_BYTES;
- break;
- }
- if (!ok) {
- OPENSSL_free(ret);
- return NULL;
- }
- EVP_MD_up_ref(ret->shake128_md);
- EVP_MD_up_ref(ret->shake256_md);
- EVP_MD_up_ref(ret->sha3_256_md);
- EVP_MD_up_ref(ret->sha3_512_md);
- return ret;
- }
- void ossl_ml_kem_key_free(ML_KEM_KEY *key)
- {
- if (key == NULL)
- return;
- EVP_MD_free(key->shake128_md);
- EVP_MD_free(key->shake256_md);
- EVP_MD_free(key->sha3_256_md);
- EVP_MD_free(key->sha3_512_md);
- if (ossl_ml_kem_decoded_key(key)) {
- OPENSSL_cleanse(key->seedbuf, sizeof(key->seedbuf));
- if (ossl_ml_kem_have_dkenc(key)) {
- OPENSSL_cleanse(key->encoded_dk, key->vinfo->prvkey_bytes);
- OPENSSL_free(key->encoded_dk);
- }
- }
- ossl_ml_kem_key_reset(key);
- OPENSSL_free(key);
- }
- /* Serialise the public component of an ML-KEM key */
- int ossl_ml_kem_encode_public_key(uint8_t *out, size_t len,
- const ML_KEM_KEY *key)
- {
- if (!ossl_ml_kem_have_pubkey(key)
- || len != key->vinfo->pubkey_bytes)
- return 0;
- encode_pubkey(out, key);
- return 1;
- }
- /* Serialise an ML-KEM private key */
- int ossl_ml_kem_encode_private_key(uint8_t *out, size_t len,
- const ML_KEM_KEY *key)
- {
- if (!ossl_ml_kem_have_prvkey(key)
- || len != key->vinfo->prvkey_bytes)
- return 0;
- encode_prvkey(out, key);
- return 1;
- }
- int ossl_ml_kem_encode_seed(uint8_t *out, size_t len,
- const ML_KEM_KEY *key)
- {
- if (key == NULL || key->d == NULL || len != ML_KEM_SEED_BYTES)
- return 0;
- /*
- * Both in the seed buffer, and in the allocated storage, the |d| component
- * of the seed is stored last, so we must copy each separately.
- */
- memcpy(out, key->d, ML_KEM_RANDOM_BYTES);
- out += ML_KEM_RANDOM_BYTES;
- memcpy(out, key->z, ML_KEM_RANDOM_BYTES);
- return 1;
- }
- /*
- * Stash the seed without (yet) performing a keygen, used during decoding, to
- * avoid an extra keygen if we're only going to export the key again to load
- * into another provider.
- */
- ML_KEM_KEY *ossl_ml_kem_set_seed(const uint8_t *seed, size_t seedlen, ML_KEM_KEY *key)
- {
- if (key == NULL
- || ossl_ml_kem_have_pubkey(key)
- || ossl_ml_kem_have_seed(key)
- || seedlen != ML_KEM_SEED_BYTES)
- return NULL;
- /*
- * With no public or private key material on hand, we can use the seed
- * buffer for |z| and |d|, in that order.
- */
- key->z = key->seedbuf;
- key->d = key->z + ML_KEM_RANDOM_BYTES;
- memcpy(key->d, seed, ML_KEM_RANDOM_BYTES);
- seed += ML_KEM_RANDOM_BYTES;
- memcpy(key->z, seed, ML_KEM_RANDOM_BYTES);
- return key;
- }
- /* Parse input as a public key */
- int ossl_ml_kem_parse_public_key(const uint8_t *in, size_t len, ML_KEM_KEY *key)
- {
- EVP_MD_CTX *mdctx = NULL;
- const ML_KEM_VINFO *vinfo;
- int ret = 0;
- /* Keys with key material are immutable */
- if (key == NULL
- || ossl_ml_kem_have_pubkey(key)
- || ossl_ml_kem_have_dkenc(key))
- return 0;
- vinfo = key->vinfo;
- if (len != vinfo->pubkey_bytes
- || (mdctx = EVP_MD_CTX_new()) == NULL)
- return 0;
- if (add_storage(OPENSSL_malloc(vinfo->puballoc), 0, key))
- ret = parse_pubkey(in, mdctx, key);
- if (!ret)
- ossl_ml_kem_key_reset(key);
- EVP_MD_CTX_free(mdctx);
- return ret;
- }
- /* Parse input as a new private key */
- int ossl_ml_kem_parse_private_key(const uint8_t *in, size_t len,
- ML_KEM_KEY *key)
- {
- EVP_MD_CTX *mdctx = NULL;
- const ML_KEM_VINFO *vinfo;
- int ret = 0;
- /* Keys with key material are immutable */
- if (key == NULL
- || ossl_ml_kem_have_pubkey(key)
- || ossl_ml_kem_have_dkenc(key))
- return 0;
- vinfo = key->vinfo;
- if (len != vinfo->prvkey_bytes
- || (mdctx = EVP_MD_CTX_new()) == NULL)
- return 0;
- if (add_storage(OPENSSL_malloc(vinfo->prvalloc), 1, key))
- ret = parse_prvkey(in, mdctx, key);
- if (!ret)
- ossl_ml_kem_key_reset(key);
- EVP_MD_CTX_free(mdctx);
- return ret;
- }
- /*
- * Generate a new keypair, either from the saved seed (when non-null), or from
- * the RNG.
- */
- int ossl_ml_kem_genkey(uint8_t *pubenc, size_t publen, ML_KEM_KEY *key)
- {
- uint8_t seed[ML_KEM_SEED_BYTES];
- EVP_MD_CTX *mdctx = NULL;
- const ML_KEM_VINFO *vinfo;
- int ret = 0;
- if (key == NULL
- || ossl_ml_kem_have_pubkey(key)
- || ossl_ml_kem_have_dkenc(key))
- return 0;
- vinfo = key->vinfo;
- if (pubenc != NULL && publen != vinfo->pubkey_bytes)
- return 0;
- if (ossl_ml_kem_have_seed(key)) {
- if (!ossl_ml_kem_encode_seed(seed, sizeof(seed), key))
- return 0;
- key->d = key->z = NULL;
- } else if (RAND_priv_bytes_ex(key->libctx, seed, sizeof(seed),
- key->vinfo->secbits) <= 0) {
- return 0;
- }
- if ((mdctx = EVP_MD_CTX_new()) == NULL)
- return 0;
- /*
- * Data derived from (d, z) defaults secret, and to avoid side-channel
- * leaks should not influence control flow.
- */
- CONSTTIME_SECRET(seed, ML_KEM_SEED_BYTES);
- if (add_storage(OPENSSL_malloc(vinfo->prvalloc), 1, key))
- ret = genkey(seed, mdctx, pubenc, key);
- OPENSSL_cleanse(seed, sizeof(seed));
- /* Declassify secret inputs and derived outputs before returning control */
- CONSTTIME_DECLASSIFY(seed, ML_KEM_SEED_BYTES);
- EVP_MD_CTX_free(mdctx);
- if (!ret) {
- ossl_ml_kem_key_reset(key);
- return 0;
- }
- /* The public components are already declassified */
- CONSTTIME_DECLASSIFY(key->s, vinfo->rank * sizeof(scalar));
- CONSTTIME_DECLASSIFY(key->z, 2 * ML_KEM_RANDOM_BYTES);
- return 1;
- }
- /*
- * FIPS 203, Section 6.2, Algorithm 17: ML-KEM.Encaps_internal
- * This is the deterministic version with randomness supplied externally.
- */
- int ossl_ml_kem_encap_seed(uint8_t *ctext, size_t clen,
- uint8_t *shared_secret, size_t slen,
- const uint8_t *entropy, size_t elen,
- const ML_KEM_KEY *key)
- {
- const ML_KEM_VINFO *vinfo;
- EVP_MD_CTX *mdctx;
- int ret = 0;
- if (key == NULL || !ossl_ml_kem_have_pubkey(key))
- return 0;
- vinfo = key->vinfo;
- if (ctext == NULL || clen != vinfo->ctext_bytes
- || shared_secret == NULL || slen != ML_KEM_SHARED_SECRET_BYTES
- || entropy == NULL || elen != ML_KEM_RANDOM_BYTES
- || (mdctx = EVP_MD_CTX_new()) == NULL)
- return 0;
- /*
- * Data derived from the encap entropy defaults secret, and to avoid
- * side-channel leaks should not influence control flow.
- */
- CONSTTIME_SECRET(entropy, elen);
- /*-
- * This avoids the need to handle allocation failures for two (max 2KB
- * each) vectors, that are never retained on return from this function.
- * We stack-allocate these.
- */
- # define case_encap_seed(bits) \
- case EVP_PKEY_ML_KEM_##bits: \
- { \
- scalar tmp[2 * ML_KEM_##bits##_RANK]; \
- \
- ret = encap(ctext, shared_secret, entropy, tmp, mdctx, key); \
- OPENSSL_cleanse((void *)tmp, sizeof(tmp)); \
- break; \
- }
- switch (vinfo->evp_type) {
- case_encap_seed(512);
- case_encap_seed(768);
- case_encap_seed(1024);
- }
- # undef case_encap_seed
- /* Declassify secret inputs and derived outputs before returning control */
- CONSTTIME_DECLASSIFY(entropy, elen);
- CONSTTIME_DECLASSIFY(ctext, clen);
- CONSTTIME_DECLASSIFY(shared_secret, slen);
- EVP_MD_CTX_free(mdctx);
- return ret;
- }
- int ossl_ml_kem_encap_rand(uint8_t *ctext, size_t clen,
- uint8_t *shared_secret, size_t slen,
- const ML_KEM_KEY *key)
- {
- uint8_t r[ML_KEM_RANDOM_BYTES];
- if (key == NULL)
- return 0;
- if (RAND_bytes_ex(key->libctx, r, ML_KEM_RANDOM_BYTES,
- key->vinfo->secbits) < 1)
- return 0;
- return ossl_ml_kem_encap_seed(ctext, clen, shared_secret, slen,
- r, sizeof(r), key);
- }
- int ossl_ml_kem_decap(uint8_t *shared_secret, size_t slen,
- const uint8_t *ctext, size_t clen,
- const ML_KEM_KEY *key)
- {
- const ML_KEM_VINFO *vinfo;
- EVP_MD_CTX *mdctx;
- int ret = 0;
- #if defined(OPENSSL_CONSTANT_TIME_VALIDATION)
- int classify_bytes;
- #endif
- /* Need a private key here */
- if (!ossl_ml_kem_have_prvkey(key))
- return 0;
- vinfo = key->vinfo;
- if (shared_secret == NULL || slen != ML_KEM_SHARED_SECRET_BYTES
- || ctext == NULL || clen != vinfo->ctext_bytes
- || (mdctx = EVP_MD_CTX_new()) == NULL) {
- (void)RAND_bytes_ex(key->libctx, shared_secret,
- ML_KEM_SHARED_SECRET_BYTES, vinfo->secbits);
- return 0;
- }
- #if defined(OPENSSL_CONSTANT_TIME_VALIDATION)
- /*
- * Data derived from |s| and |z| defaults secret, and to avoid side-channel
- * leaks should not influence control flow.
- */
- classify_bytes = 2 * sizeof(scalar) + ML_KEM_RANDOM_BYTES;
- CONSTTIME_SECRET(key->s, classify_bytes);
- #endif
- /*-
- * This avoids the need to handle allocation failures for two (max 2KB
- * each) vectors and an encoded ciphertext (max 1568 bytes), that are never
- * retained on return from this function.
- * We stack-allocate these.
- */
- # define case_decap(bits) \
- case EVP_PKEY_ML_KEM_##bits: \
- { \
- uint8_t cbuf[CTEXT_BYTES(bits)]; \
- scalar tmp[2 * ML_KEM_##bits##_RANK]; \
- \
- ret = decap(shared_secret, ctext, cbuf, tmp, mdctx, key); \
- OPENSSL_cleanse((void *)tmp, sizeof(tmp)); \
- break; \
- }
- switch (vinfo->evp_type) {
- case_decap(512);
- case_decap(768);
- case_decap(1024);
- }
- /* Declassify secret inputs and derived outputs before returning control */
- CONSTTIME_DECLASSIFY(key->s, classify_bytes);
- CONSTTIME_DECLASSIFY(shared_secret, slen);
- EVP_MD_CTX_free(mdctx);
- return ret;
- # undef case_decap
- }
- int ossl_ml_kem_pubkey_cmp(const ML_KEM_KEY *key1, const ML_KEM_KEY *key2)
- {
- /*
- * This handles any unexpected differences in the ML-KEM variant rank,
- * giving different key component structures, barring SHA3-256 hash
- * collisions, the keys are the same size.
- */
- if (ossl_ml_kem_have_pubkey(key1) && ossl_ml_kem_have_pubkey(key2))
- return memcmp(key1->pkhash, key2->pkhash, ML_KEM_PKHASH_BYTES) == 0;
- /*
- * No match if just one of the public keys is not available, otherwise both
- * are unavailable, and for now such keys are considered equal.
- */
- return (!(ossl_ml_kem_have_pubkey(key1) ^ ossl_ml_kem_have_pubkey(key2)));
- }
|