pbkdf2.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393
  1. /*
  2. * Copyright 2018-2023 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. /*
  10. * HMAC low level APIs are deprecated for public use, but still ok for internal
  11. * use.
  12. */
  13. #include "internal/deprecated.h"
  14. #include <stdlib.h>
  15. #include <stdarg.h>
  16. #include <string.h>
  17. #include <openssl/hmac.h>
  18. #include <openssl/evp.h>
  19. #include <openssl/kdf.h>
  20. #include <openssl/core_names.h>
  21. #include <openssl/proverr.h>
  22. #include "internal/cryptlib.h"
  23. #include "internal/numbers.h"
  24. #include "crypto/evp.h"
  25. #include "prov/provider_ctx.h"
  26. #include "prov/providercommon.h"
  27. #include "prov/implementations.h"
  28. #include "prov/provider_util.h"
  29. #include "pbkdf2.h"
  30. /* Constants specified in SP800-132 */
  31. #define KDF_PBKDF2_MIN_KEY_LEN_BITS 112
  32. #define KDF_PBKDF2_MAX_KEY_LEN_DIGEST_RATIO 0xFFFFFFFF
  33. #define KDF_PBKDF2_MIN_ITERATIONS 1000
  34. #define KDF_PBKDF2_MIN_SALT_LEN (128 / 8)
  35. static OSSL_FUNC_kdf_newctx_fn kdf_pbkdf2_new;
  36. static OSSL_FUNC_kdf_dupctx_fn kdf_pbkdf2_dup;
  37. static OSSL_FUNC_kdf_freectx_fn kdf_pbkdf2_free;
  38. static OSSL_FUNC_kdf_reset_fn kdf_pbkdf2_reset;
  39. static OSSL_FUNC_kdf_derive_fn kdf_pbkdf2_derive;
  40. static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_pbkdf2_settable_ctx_params;
  41. static OSSL_FUNC_kdf_set_ctx_params_fn kdf_pbkdf2_set_ctx_params;
  42. static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_pbkdf2_gettable_ctx_params;
  43. static OSSL_FUNC_kdf_get_ctx_params_fn kdf_pbkdf2_get_ctx_params;
  44. static int pbkdf2_derive(const char *pass, size_t passlen,
  45. const unsigned char *salt, int saltlen, uint64_t iter,
  46. const EVP_MD *digest, unsigned char *key,
  47. size_t keylen, int extra_checks);
  48. typedef struct {
  49. void *provctx;
  50. unsigned char *pass;
  51. size_t pass_len;
  52. unsigned char *salt;
  53. size_t salt_len;
  54. uint64_t iter;
  55. PROV_DIGEST digest;
  56. int lower_bound_checks;
  57. } KDF_PBKDF2;
  58. static void kdf_pbkdf2_init(KDF_PBKDF2 *ctx);
  59. static void *kdf_pbkdf2_new_no_init(void *provctx)
  60. {
  61. KDF_PBKDF2 *ctx;
  62. if (!ossl_prov_is_running())
  63. return NULL;
  64. ctx = OPENSSL_zalloc(sizeof(*ctx));
  65. if (ctx == NULL)
  66. return NULL;
  67. ctx->provctx = provctx;
  68. return ctx;
  69. }
  70. static void *kdf_pbkdf2_new(void *provctx)
  71. {
  72. KDF_PBKDF2 *ctx = kdf_pbkdf2_new_no_init(provctx);
  73. if (ctx != NULL)
  74. kdf_pbkdf2_init(ctx);
  75. return ctx;
  76. }
  77. static void kdf_pbkdf2_cleanup(KDF_PBKDF2 *ctx)
  78. {
  79. ossl_prov_digest_reset(&ctx->digest);
  80. OPENSSL_free(ctx->salt);
  81. OPENSSL_clear_free(ctx->pass, ctx->pass_len);
  82. memset(ctx, 0, sizeof(*ctx));
  83. }
  84. static void kdf_pbkdf2_free(void *vctx)
  85. {
  86. KDF_PBKDF2 *ctx = (KDF_PBKDF2 *)vctx;
  87. if (ctx != NULL) {
  88. kdf_pbkdf2_cleanup(ctx);
  89. OPENSSL_free(ctx);
  90. }
  91. }
  92. static void kdf_pbkdf2_reset(void *vctx)
  93. {
  94. KDF_PBKDF2 *ctx = (KDF_PBKDF2 *)vctx;
  95. void *provctx = ctx->provctx;
  96. kdf_pbkdf2_cleanup(ctx);
  97. ctx->provctx = provctx;
  98. kdf_pbkdf2_init(ctx);
  99. }
  100. static void *kdf_pbkdf2_dup(void *vctx)
  101. {
  102. const KDF_PBKDF2 *src = (const KDF_PBKDF2 *)vctx;
  103. KDF_PBKDF2 *dest;
  104. /* We need a new PBKDF2 object but uninitialised since we're filling it */
  105. dest = kdf_pbkdf2_new_no_init(src->provctx);
  106. if (dest != NULL) {
  107. if (!ossl_prov_memdup(src->salt, src->salt_len,
  108. &dest->salt, &dest->salt_len)
  109. || !ossl_prov_memdup(src->pass, src->pass_len,
  110. &dest->pass, &dest->pass_len)
  111. || !ossl_prov_digest_copy(&dest->digest, &src->digest))
  112. goto err;
  113. dest->iter = src->iter;
  114. dest->lower_bound_checks = src->lower_bound_checks;
  115. }
  116. return dest;
  117. err:
  118. kdf_pbkdf2_free(dest);
  119. return NULL;
  120. }
  121. static void kdf_pbkdf2_init(KDF_PBKDF2 *ctx)
  122. {
  123. OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
  124. OSSL_LIB_CTX *provctx = PROV_LIBCTX_OF(ctx->provctx);
  125. params[0] = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST,
  126. SN_sha1, 0);
  127. if (!ossl_prov_digest_load_from_params(&ctx->digest, params, provctx))
  128. /* This is an error, but there is no way to indicate such directly */
  129. ossl_prov_digest_reset(&ctx->digest);
  130. ctx->iter = PKCS5_DEFAULT_ITER;
  131. ctx->lower_bound_checks = ossl_kdf_pbkdf2_default_checks;
  132. }
  133. static int pbkdf2_set_membuf(unsigned char **buffer, size_t *buflen,
  134. const OSSL_PARAM *p)
  135. {
  136. OPENSSL_clear_free(*buffer, *buflen);
  137. *buffer = NULL;
  138. *buflen = 0;
  139. if (p->data_size == 0) {
  140. if ((*buffer = OPENSSL_malloc(1)) == NULL)
  141. return 0;
  142. } else if (p->data != NULL) {
  143. if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen))
  144. return 0;
  145. }
  146. return 1;
  147. }
  148. static int kdf_pbkdf2_derive(void *vctx, unsigned char *key, size_t keylen,
  149. const OSSL_PARAM params[])
  150. {
  151. KDF_PBKDF2 *ctx = (KDF_PBKDF2 *)vctx;
  152. const EVP_MD *md;
  153. if (!ossl_prov_is_running() || !kdf_pbkdf2_set_ctx_params(ctx, params))
  154. return 0;
  155. if (ctx->pass == NULL) {
  156. ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS);
  157. return 0;
  158. }
  159. if (ctx->salt == NULL) {
  160. ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
  161. return 0;
  162. }
  163. md = ossl_prov_digest_md(&ctx->digest);
  164. return pbkdf2_derive((char *)ctx->pass, ctx->pass_len,
  165. ctx->salt, ctx->salt_len, ctx->iter,
  166. md, key, keylen, ctx->lower_bound_checks);
  167. }
  168. static int kdf_pbkdf2_set_ctx_params(void *vctx, const OSSL_PARAM params[])
  169. {
  170. const OSSL_PARAM *p;
  171. KDF_PBKDF2 *ctx = vctx;
  172. OSSL_LIB_CTX *provctx = PROV_LIBCTX_OF(ctx->provctx);
  173. int pkcs5;
  174. uint64_t iter, min_iter;
  175. if (params == NULL)
  176. return 1;
  177. if (!ossl_prov_digest_load_from_params(&ctx->digest, params, provctx))
  178. return 0;
  179. if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PKCS5)) != NULL) {
  180. if (!OSSL_PARAM_get_int(p, &pkcs5))
  181. return 0;
  182. ctx->lower_bound_checks = pkcs5 == 0;
  183. }
  184. if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL)
  185. if (!pbkdf2_set_membuf(&ctx->pass, &ctx->pass_len, p))
  186. return 0;
  187. if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL) {
  188. if (ctx->lower_bound_checks != 0
  189. && p->data_size < KDF_PBKDF2_MIN_SALT_LEN) {
  190. ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH);
  191. return 0;
  192. }
  193. if (!pbkdf2_set_membuf(&ctx->salt, &ctx->salt_len, p))
  194. return 0;
  195. }
  196. if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_ITER)) != NULL) {
  197. if (!OSSL_PARAM_get_uint64(p, &iter))
  198. return 0;
  199. min_iter = ctx->lower_bound_checks != 0 ? KDF_PBKDF2_MIN_ITERATIONS : 1;
  200. if (iter < min_iter) {
  201. ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_ITERATION_COUNT);
  202. return 0;
  203. }
  204. ctx->iter = iter;
  205. }
  206. return 1;
  207. }
  208. static const OSSL_PARAM *kdf_pbkdf2_settable_ctx_params(ossl_unused void *ctx,
  209. ossl_unused void *p_ctx)
  210. {
  211. static const OSSL_PARAM known_settable_ctx_params[] = {
  212. OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
  213. OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0),
  214. OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
  215. OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
  216. OSSL_PARAM_uint64(OSSL_KDF_PARAM_ITER, NULL),
  217. OSSL_PARAM_int(OSSL_KDF_PARAM_PKCS5, NULL),
  218. OSSL_PARAM_END
  219. };
  220. return known_settable_ctx_params;
  221. }
  222. static int kdf_pbkdf2_get_ctx_params(void *vctx, OSSL_PARAM params[])
  223. {
  224. OSSL_PARAM *p;
  225. if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
  226. return OSSL_PARAM_set_size_t(p, SIZE_MAX);
  227. return -2;
  228. }
  229. static const OSSL_PARAM *kdf_pbkdf2_gettable_ctx_params(ossl_unused void *ctx,
  230. ossl_unused void *p_ctx)
  231. {
  232. static const OSSL_PARAM known_gettable_ctx_params[] = {
  233. OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
  234. OSSL_PARAM_END
  235. };
  236. return known_gettable_ctx_params;
  237. }
  238. const OSSL_DISPATCH ossl_kdf_pbkdf2_functions[] = {
  239. { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_pbkdf2_new },
  240. { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_pbkdf2_dup },
  241. { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_pbkdf2_free },
  242. { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_pbkdf2_reset },
  243. { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_pbkdf2_derive },
  244. { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
  245. (void(*)(void))kdf_pbkdf2_settable_ctx_params },
  246. { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_pbkdf2_set_ctx_params },
  247. { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
  248. (void(*)(void))kdf_pbkdf2_gettable_ctx_params },
  249. { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_pbkdf2_get_ctx_params },
  250. OSSL_DISPATCH_END
  251. };
  252. /*
  253. * This is an implementation of PKCS#5 v2.0 password based encryption key
  254. * derivation function PBKDF2. SHA1 version verified against test vectors
  255. * posted by Peter Gutmann to the PKCS-TNG mailing list.
  256. *
  257. * The constraints specified by SP800-132 have been added i.e.
  258. * - Check the range of the key length.
  259. * - Minimum iteration count of 1000.
  260. * - Randomly-generated portion of the salt shall be at least 128 bits.
  261. */
  262. static int pbkdf2_derive(const char *pass, size_t passlen,
  263. const unsigned char *salt, int saltlen, uint64_t iter,
  264. const EVP_MD *digest, unsigned char *key,
  265. size_t keylen, int lower_bound_checks)
  266. {
  267. int ret = 0;
  268. unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4];
  269. int cplen, k, tkeylen, mdlen;
  270. uint64_t j;
  271. unsigned long i = 1;
  272. HMAC_CTX *hctx_tpl = NULL, *hctx = NULL;
  273. mdlen = EVP_MD_get_size(digest);
  274. if (mdlen <= 0)
  275. return 0;
  276. /*
  277. * This check should always be done because keylen / mdlen >= (2^32 - 1)
  278. * results in an overflow of the loop counter 'i'.
  279. */
  280. if ((keylen / mdlen) >= KDF_PBKDF2_MAX_KEY_LEN_DIGEST_RATIO) {
  281. ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH);
  282. return 0;
  283. }
  284. if (lower_bound_checks) {
  285. if ((keylen * 8) < KDF_PBKDF2_MIN_KEY_LEN_BITS) {
  286. ERR_raise(ERR_LIB_PROV, PROV_R_KEY_SIZE_TOO_SMALL);
  287. return 0;
  288. }
  289. if (saltlen < KDF_PBKDF2_MIN_SALT_LEN) {
  290. ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH);
  291. return 0;
  292. }
  293. if (iter < KDF_PBKDF2_MIN_ITERATIONS) {
  294. ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_ITERATION_COUNT);
  295. return 0;
  296. }
  297. }
  298. hctx_tpl = HMAC_CTX_new();
  299. if (hctx_tpl == NULL)
  300. return 0;
  301. p = key;
  302. tkeylen = keylen;
  303. if (!HMAC_Init_ex(hctx_tpl, pass, passlen, digest, NULL))
  304. goto err;
  305. hctx = HMAC_CTX_new();
  306. if (hctx == NULL)
  307. goto err;
  308. while (tkeylen) {
  309. if (tkeylen > mdlen)
  310. cplen = mdlen;
  311. else
  312. cplen = tkeylen;
  313. /*
  314. * We are unlikely to ever use more than 256 blocks (5120 bits!) but
  315. * just in case...
  316. */
  317. itmp[0] = (unsigned char)((i >> 24) & 0xff);
  318. itmp[1] = (unsigned char)((i >> 16) & 0xff);
  319. itmp[2] = (unsigned char)((i >> 8) & 0xff);
  320. itmp[3] = (unsigned char)(i & 0xff);
  321. if (!HMAC_CTX_copy(hctx, hctx_tpl))
  322. goto err;
  323. if (!HMAC_Update(hctx, salt, saltlen)
  324. || !HMAC_Update(hctx, itmp, 4)
  325. || !HMAC_Final(hctx, digtmp, NULL))
  326. goto err;
  327. memcpy(p, digtmp, cplen);
  328. for (j = 1; j < iter; j++) {
  329. if (!HMAC_CTX_copy(hctx, hctx_tpl))
  330. goto err;
  331. if (!HMAC_Update(hctx, digtmp, mdlen)
  332. || !HMAC_Final(hctx, digtmp, NULL))
  333. goto err;
  334. for (k = 0; k < cplen; k++)
  335. p[k] ^= digtmp[k];
  336. }
  337. tkeylen -= cplen;
  338. i++;
  339. p += cplen;
  340. }
  341. ret = 1;
  342. err:
  343. HMAC_CTX_free(hctx);
  344. HMAC_CTX_free(hctx_tpl);
  345. return ret;
  346. }