e_aes.c 140 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210
  1. /*
  2. * Copyright 2001-2018 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the OpenSSL license (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. #include <openssl/opensslconf.h>
  10. #include <openssl/crypto.h>
  11. #include <openssl/evp.h>
  12. #include <openssl/err.h>
  13. #include <string.h>
  14. #include <assert.h>
  15. #include <openssl/aes.h>
  16. #include "internal/evp_int.h"
  17. #include "modes_lcl.h"
  18. #include <openssl/rand.h>
  19. #include "evp_locl.h"
  20. typedef struct {
  21. union {
  22. double align;
  23. AES_KEY ks;
  24. } ks;
  25. block128_f block;
  26. union {
  27. cbc128_f cbc;
  28. ctr128_f ctr;
  29. } stream;
  30. } EVP_AES_KEY;
  31. typedef struct {
  32. union {
  33. double align;
  34. AES_KEY ks;
  35. } ks; /* AES key schedule to use */
  36. int key_set; /* Set if key initialised */
  37. int iv_set; /* Set if an iv is set */
  38. GCM128_CONTEXT gcm;
  39. unsigned char *iv; /* Temporary IV store */
  40. int ivlen; /* IV length */
  41. int taglen;
  42. int iv_gen; /* It is OK to generate IVs */
  43. int tls_aad_len; /* TLS AAD length */
  44. ctr128_f ctr;
  45. } EVP_AES_GCM_CTX;
  46. typedef struct {
  47. union {
  48. double align;
  49. AES_KEY ks;
  50. } ks1, ks2; /* AES key schedules to use */
  51. XTS128_CONTEXT xts;
  52. void (*stream) (const unsigned char *in,
  53. unsigned char *out, size_t length,
  54. const AES_KEY *key1, const AES_KEY *key2,
  55. const unsigned char iv[16]);
  56. } EVP_AES_XTS_CTX;
  57. typedef struct {
  58. union {
  59. double align;
  60. AES_KEY ks;
  61. } ks; /* AES key schedule to use */
  62. int key_set; /* Set if key initialised */
  63. int iv_set; /* Set if an iv is set */
  64. int tag_set; /* Set if tag is valid */
  65. int len_set; /* Set if message length set */
  66. int L, M; /* L and M parameters from RFC3610 */
  67. int tls_aad_len; /* TLS AAD length */
  68. CCM128_CONTEXT ccm;
  69. ccm128_f str;
  70. } EVP_AES_CCM_CTX;
  71. #ifndef OPENSSL_NO_OCB
  72. typedef struct {
  73. union {
  74. double align;
  75. AES_KEY ks;
  76. } ksenc; /* AES key schedule to use for encryption */
  77. union {
  78. double align;
  79. AES_KEY ks;
  80. } ksdec; /* AES key schedule to use for decryption */
  81. int key_set; /* Set if key initialised */
  82. int iv_set; /* Set if an iv is set */
  83. OCB128_CONTEXT ocb;
  84. unsigned char *iv; /* Temporary IV store */
  85. unsigned char tag[16];
  86. unsigned char data_buf[16]; /* Store partial data blocks */
  87. unsigned char aad_buf[16]; /* Store partial AAD blocks */
  88. int data_buf_len;
  89. int aad_buf_len;
  90. int ivlen; /* IV length */
  91. int taglen;
  92. } EVP_AES_OCB_CTX;
  93. #endif
  94. #define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4))
  95. #ifdef VPAES_ASM
  96. int vpaes_set_encrypt_key(const unsigned char *userKey, int bits,
  97. AES_KEY *key);
  98. int vpaes_set_decrypt_key(const unsigned char *userKey, int bits,
  99. AES_KEY *key);
  100. void vpaes_encrypt(const unsigned char *in, unsigned char *out,
  101. const AES_KEY *key);
  102. void vpaes_decrypt(const unsigned char *in, unsigned char *out,
  103. const AES_KEY *key);
  104. void vpaes_cbc_encrypt(const unsigned char *in,
  105. unsigned char *out,
  106. size_t length,
  107. const AES_KEY *key, unsigned char *ivec, int enc);
  108. #endif
  109. #ifdef BSAES_ASM
  110. void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
  111. size_t length, const AES_KEY *key,
  112. unsigned char ivec[16], int enc);
  113. void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
  114. size_t len, const AES_KEY *key,
  115. const unsigned char ivec[16]);
  116. void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out,
  117. size_t len, const AES_KEY *key1,
  118. const AES_KEY *key2, const unsigned char iv[16]);
  119. void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out,
  120. size_t len, const AES_KEY *key1,
  121. const AES_KEY *key2, const unsigned char iv[16]);
  122. #endif
  123. #ifdef AES_CTR_ASM
  124. void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
  125. size_t blocks, const AES_KEY *key,
  126. const unsigned char ivec[AES_BLOCK_SIZE]);
  127. #endif
  128. #ifdef AES_XTS_ASM
  129. void AES_xts_encrypt(const unsigned char *inp, unsigned char *out, size_t len,
  130. const AES_KEY *key1, const AES_KEY *key2,
  131. const unsigned char iv[16]);
  132. void AES_xts_decrypt(const unsigned char *inp, unsigned char *out, size_t len,
  133. const AES_KEY *key1, const AES_KEY *key2,
  134. const unsigned char iv[16]);
  135. #endif
  136. /* increment counter (64-bit int) by 1 */
  137. static void ctr64_inc(unsigned char *counter)
  138. {
  139. int n = 8;
  140. unsigned char c;
  141. do {
  142. --n;
  143. c = counter[n];
  144. ++c;
  145. counter[n] = c;
  146. if (c)
  147. return;
  148. } while (n);
  149. }
  150. #if defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC))
  151. # include "ppc_arch.h"
  152. # ifdef VPAES_ASM
  153. # define VPAES_CAPABLE (OPENSSL_ppccap_P & PPC_ALTIVEC)
  154. # endif
  155. # define HWAES_CAPABLE (OPENSSL_ppccap_P & PPC_CRYPTO207)
  156. # define HWAES_set_encrypt_key aes_p8_set_encrypt_key
  157. # define HWAES_set_decrypt_key aes_p8_set_decrypt_key
  158. # define HWAES_encrypt aes_p8_encrypt
  159. # define HWAES_decrypt aes_p8_decrypt
  160. # define HWAES_cbc_encrypt aes_p8_cbc_encrypt
  161. # define HWAES_ctr32_encrypt_blocks aes_p8_ctr32_encrypt_blocks
  162. # define HWAES_xts_encrypt aes_p8_xts_encrypt
  163. # define HWAES_xts_decrypt aes_p8_xts_decrypt
  164. #endif
  165. #if defined(AES_ASM) && !defined(I386_ONLY) && ( \
  166. ((defined(__i386) || defined(__i386__) || \
  167. defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \
  168. defined(__x86_64) || defined(__x86_64__) || \
  169. defined(_M_AMD64) || defined(_M_X64) )
  170. extern unsigned int OPENSSL_ia32cap_P[];
  171. # ifdef VPAES_ASM
  172. # define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
  173. # endif
  174. # ifdef BSAES_ASM
  175. # define BSAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
  176. # endif
  177. /*
  178. * AES-NI section
  179. */
  180. # define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32)))
  181. int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
  182. AES_KEY *key);
  183. int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
  184. AES_KEY *key);
  185. void aesni_encrypt(const unsigned char *in, unsigned char *out,
  186. const AES_KEY *key);
  187. void aesni_decrypt(const unsigned char *in, unsigned char *out,
  188. const AES_KEY *key);
  189. void aesni_ecb_encrypt(const unsigned char *in,
  190. unsigned char *out,
  191. size_t length, const AES_KEY *key, int enc);
  192. void aesni_cbc_encrypt(const unsigned char *in,
  193. unsigned char *out,
  194. size_t length,
  195. const AES_KEY *key, unsigned char *ivec, int enc);
  196. void aesni_ctr32_encrypt_blocks(const unsigned char *in,
  197. unsigned char *out,
  198. size_t blocks,
  199. const void *key, const unsigned char *ivec);
  200. void aesni_xts_encrypt(const unsigned char *in,
  201. unsigned char *out,
  202. size_t length,
  203. const AES_KEY *key1, const AES_KEY *key2,
  204. const unsigned char iv[16]);
  205. void aesni_xts_decrypt(const unsigned char *in,
  206. unsigned char *out,
  207. size_t length,
  208. const AES_KEY *key1, const AES_KEY *key2,
  209. const unsigned char iv[16]);
  210. void aesni_ccm64_encrypt_blocks(const unsigned char *in,
  211. unsigned char *out,
  212. size_t blocks,
  213. const void *key,
  214. const unsigned char ivec[16],
  215. unsigned char cmac[16]);
  216. void aesni_ccm64_decrypt_blocks(const unsigned char *in,
  217. unsigned char *out,
  218. size_t blocks,
  219. const void *key,
  220. const unsigned char ivec[16],
  221. unsigned char cmac[16]);
  222. # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
  223. size_t aesni_gcm_encrypt(const unsigned char *in,
  224. unsigned char *out,
  225. size_t len,
  226. const void *key, unsigned char ivec[16], u64 *Xi);
  227. # define AES_gcm_encrypt aesni_gcm_encrypt
  228. size_t aesni_gcm_decrypt(const unsigned char *in,
  229. unsigned char *out,
  230. size_t len,
  231. const void *key, unsigned char ivec[16], u64 *Xi);
  232. # define AES_gcm_decrypt aesni_gcm_decrypt
  233. void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *in,
  234. size_t len);
  235. # define AES_GCM_ASM(gctx) (gctx->ctr==aesni_ctr32_encrypt_blocks && \
  236. gctx->gcm.ghash==gcm_ghash_avx)
  237. # define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \
  238. gctx->gcm.ghash==gcm_ghash_avx)
  239. # undef AES_GCM_ASM2 /* minor size optimization */
  240. # endif
  241. static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  242. const unsigned char *iv, int enc)
  243. {
  244. int ret, mode;
  245. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  246. mode = EVP_CIPHER_CTX_mode(ctx);
  247. if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
  248. && !enc) {
  249. ret = aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  250. &dat->ks.ks);
  251. dat->block = (block128_f) aesni_decrypt;
  252. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  253. (cbc128_f) aesni_cbc_encrypt : NULL;
  254. } else {
  255. ret = aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  256. &dat->ks.ks);
  257. dat->block = (block128_f) aesni_encrypt;
  258. if (mode == EVP_CIPH_CBC_MODE)
  259. dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt;
  260. else if (mode == EVP_CIPH_CTR_MODE)
  261. dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
  262. else
  263. dat->stream.cbc = NULL;
  264. }
  265. if (ret < 0) {
  266. EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
  267. return 0;
  268. }
  269. return 1;
  270. }
  271. static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  272. const unsigned char *in, size_t len)
  273. {
  274. aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
  275. EVP_CIPHER_CTX_iv_noconst(ctx),
  276. EVP_CIPHER_CTX_encrypting(ctx));
  277. return 1;
  278. }
  279. static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  280. const unsigned char *in, size_t len)
  281. {
  282. size_t bl = EVP_CIPHER_CTX_block_size(ctx);
  283. if (len < bl)
  284. return 1;
  285. aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
  286. EVP_CIPHER_CTX_encrypting(ctx));
  287. return 1;
  288. }
  289. # define aesni_ofb_cipher aes_ofb_cipher
  290. static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  291. const unsigned char *in, size_t len);
  292. # define aesni_cfb_cipher aes_cfb_cipher
  293. static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  294. const unsigned char *in, size_t len);
  295. # define aesni_cfb8_cipher aes_cfb8_cipher
  296. static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  297. const unsigned char *in, size_t len);
  298. # define aesni_cfb1_cipher aes_cfb1_cipher
  299. static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  300. const unsigned char *in, size_t len);
  301. # define aesni_ctr_cipher aes_ctr_cipher
  302. static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  303. const unsigned char *in, size_t len);
  304. static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  305. const unsigned char *iv, int enc)
  306. {
  307. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
  308. if (!iv && !key)
  309. return 1;
  310. if (key) {
  311. aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  312. &gctx->ks.ks);
  313. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt);
  314. gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
  315. /*
  316. * If we have an iv can set it directly, otherwise use saved IV.
  317. */
  318. if (iv == NULL && gctx->iv_set)
  319. iv = gctx->iv;
  320. if (iv) {
  321. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  322. gctx->iv_set = 1;
  323. }
  324. gctx->key_set = 1;
  325. } else {
  326. /* If key set use IV, otherwise copy */
  327. if (gctx->key_set)
  328. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  329. else
  330. memcpy(gctx->iv, iv, gctx->ivlen);
  331. gctx->iv_set = 1;
  332. gctx->iv_gen = 0;
  333. }
  334. return 1;
  335. }
  336. # define aesni_gcm_cipher aes_gcm_cipher
  337. static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  338. const unsigned char *in, size_t len);
  339. static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  340. const unsigned char *iv, int enc)
  341. {
  342. EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
  343. if (!iv && !key)
  344. return 1;
  345. if (key) {
  346. /* key_len is two AES keys */
  347. if (enc) {
  348. aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
  349. &xctx->ks1.ks);
  350. xctx->xts.block1 = (block128_f) aesni_encrypt;
  351. xctx->stream = aesni_xts_encrypt;
  352. } else {
  353. aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
  354. &xctx->ks1.ks);
  355. xctx->xts.block1 = (block128_f) aesni_decrypt;
  356. xctx->stream = aesni_xts_decrypt;
  357. }
  358. aesni_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
  359. EVP_CIPHER_CTX_key_length(ctx) * 4,
  360. &xctx->ks2.ks);
  361. xctx->xts.block2 = (block128_f) aesni_encrypt;
  362. xctx->xts.key1 = &xctx->ks1;
  363. }
  364. if (iv) {
  365. xctx->xts.key2 = &xctx->ks2;
  366. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
  367. }
  368. return 1;
  369. }
  370. # define aesni_xts_cipher aes_xts_cipher
  371. static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  372. const unsigned char *in, size_t len);
  373. static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  374. const unsigned char *iv, int enc)
  375. {
  376. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
  377. if (!iv && !key)
  378. return 1;
  379. if (key) {
  380. aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  381. &cctx->ks.ks);
  382. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  383. &cctx->ks, (block128_f) aesni_encrypt);
  384. cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks :
  385. (ccm128_f) aesni_ccm64_decrypt_blocks;
  386. cctx->key_set = 1;
  387. }
  388. if (iv) {
  389. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
  390. cctx->iv_set = 1;
  391. }
  392. return 1;
  393. }
  394. # define aesni_ccm_cipher aes_ccm_cipher
  395. static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  396. const unsigned char *in, size_t len);
  397. # ifndef OPENSSL_NO_OCB
  398. void aesni_ocb_encrypt(const unsigned char *in, unsigned char *out,
  399. size_t blocks, const void *key,
  400. size_t start_block_num,
  401. unsigned char offset_i[16],
  402. const unsigned char L_[][16],
  403. unsigned char checksum[16]);
  404. void aesni_ocb_decrypt(const unsigned char *in, unsigned char *out,
  405. size_t blocks, const void *key,
  406. size_t start_block_num,
  407. unsigned char offset_i[16],
  408. const unsigned char L_[][16],
  409. unsigned char checksum[16]);
  410. static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  411. const unsigned char *iv, int enc)
  412. {
  413. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
  414. if (!iv && !key)
  415. return 1;
  416. if (key) {
  417. do {
  418. /*
  419. * We set both the encrypt and decrypt key here because decrypt
  420. * needs both. We could possibly optimise to remove setting the
  421. * decrypt for an encryption operation.
  422. */
  423. aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  424. &octx->ksenc.ks);
  425. aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  426. &octx->ksdec.ks);
  427. if (!CRYPTO_ocb128_init(&octx->ocb,
  428. &octx->ksenc.ks, &octx->ksdec.ks,
  429. (block128_f) aesni_encrypt,
  430. (block128_f) aesni_decrypt,
  431. enc ? aesni_ocb_encrypt
  432. : aesni_ocb_decrypt))
  433. return 0;
  434. }
  435. while (0);
  436. /*
  437. * If we have an iv we can set it directly, otherwise use saved IV.
  438. */
  439. if (iv == NULL && octx->iv_set)
  440. iv = octx->iv;
  441. if (iv) {
  442. if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
  443. != 1)
  444. return 0;
  445. octx->iv_set = 1;
  446. }
  447. octx->key_set = 1;
  448. } else {
  449. /* If key set use IV, otherwise copy */
  450. if (octx->key_set)
  451. CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
  452. else
  453. memcpy(octx->iv, iv, octx->ivlen);
  454. octx->iv_set = 1;
  455. }
  456. return 1;
  457. }
  458. # define aesni_ocb_cipher aes_ocb_cipher
  459. static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  460. const unsigned char *in, size_t len);
  461. # endif /* OPENSSL_NO_OCB */
  462. # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
  463. static const EVP_CIPHER aesni_##keylen##_##mode = { \
  464. nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
  465. flags|EVP_CIPH_##MODE##_MODE, \
  466. aesni_init_key, \
  467. aesni_##mode##_cipher, \
  468. NULL, \
  469. sizeof(EVP_AES_KEY), \
  470. NULL,NULL,NULL,NULL }; \
  471. static const EVP_CIPHER aes_##keylen##_##mode = { \
  472. nid##_##keylen##_##nmode,blocksize, \
  473. keylen/8,ivlen, \
  474. flags|EVP_CIPH_##MODE##_MODE, \
  475. aes_init_key, \
  476. aes_##mode##_cipher, \
  477. NULL, \
  478. sizeof(EVP_AES_KEY), \
  479. NULL,NULL,NULL,NULL }; \
  480. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  481. { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
  482. # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
  483. static const EVP_CIPHER aesni_##keylen##_##mode = { \
  484. nid##_##keylen##_##mode,blocksize, \
  485. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  486. flags|EVP_CIPH_##MODE##_MODE, \
  487. aesni_##mode##_init_key, \
  488. aesni_##mode##_cipher, \
  489. aes_##mode##_cleanup, \
  490. sizeof(EVP_AES_##MODE##_CTX), \
  491. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  492. static const EVP_CIPHER aes_##keylen##_##mode = { \
  493. nid##_##keylen##_##mode,blocksize, \
  494. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  495. flags|EVP_CIPH_##MODE##_MODE, \
  496. aes_##mode##_init_key, \
  497. aes_##mode##_cipher, \
  498. aes_##mode##_cleanup, \
  499. sizeof(EVP_AES_##MODE##_CTX), \
  500. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  501. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  502. { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
  503. #elif defined(AES_ASM) && (defined(__sparc) || defined(__sparc__))
  504. # include "sparc_arch.h"
  505. extern unsigned int OPENSSL_sparcv9cap_P[];
  506. /*
  507. * Initial Fujitsu SPARC64 X support
  508. */
  509. # define HWAES_CAPABLE (OPENSSL_sparcv9cap_P[0] & SPARCV9_FJAESX)
  510. # define HWAES_set_encrypt_key aes_fx_set_encrypt_key
  511. # define HWAES_set_decrypt_key aes_fx_set_decrypt_key
  512. # define HWAES_encrypt aes_fx_encrypt
  513. # define HWAES_decrypt aes_fx_decrypt
  514. # define HWAES_cbc_encrypt aes_fx_cbc_encrypt
  515. # define HWAES_ctr32_encrypt_blocks aes_fx_ctr32_encrypt_blocks
  516. # define SPARC_AES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_AES)
  517. void aes_t4_set_encrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
  518. void aes_t4_set_decrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
  519. void aes_t4_encrypt(const unsigned char *in, unsigned char *out,
  520. const AES_KEY *key);
  521. void aes_t4_decrypt(const unsigned char *in, unsigned char *out,
  522. const AES_KEY *key);
  523. /*
  524. * Key-length specific subroutines were chosen for following reason.
  525. * Each SPARC T4 core can execute up to 8 threads which share core's
  526. * resources. Loading as much key material to registers allows to
  527. * minimize references to shared memory interface, as well as amount
  528. * of instructions in inner loops [much needed on T4]. But then having
  529. * non-key-length specific routines would require conditional branches
  530. * either in inner loops or on subroutines' entries. Former is hardly
  531. * acceptable, while latter means code size increase to size occupied
  532. * by multiple key-length specific subroutines, so why fight?
  533. */
  534. void aes128_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
  535. size_t len, const AES_KEY *key,
  536. unsigned char *ivec);
  537. void aes128_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
  538. size_t len, const AES_KEY *key,
  539. unsigned char *ivec);
  540. void aes192_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
  541. size_t len, const AES_KEY *key,
  542. unsigned char *ivec);
  543. void aes192_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
  544. size_t len, const AES_KEY *key,
  545. unsigned char *ivec);
  546. void aes256_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
  547. size_t len, const AES_KEY *key,
  548. unsigned char *ivec);
  549. void aes256_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
  550. size_t len, const AES_KEY *key,
  551. unsigned char *ivec);
  552. void aes128_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
  553. size_t blocks, const AES_KEY *key,
  554. unsigned char *ivec);
  555. void aes192_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
  556. size_t blocks, const AES_KEY *key,
  557. unsigned char *ivec);
  558. void aes256_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
  559. size_t blocks, const AES_KEY *key,
  560. unsigned char *ivec);
  561. void aes128_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
  562. size_t blocks, const AES_KEY *key1,
  563. const AES_KEY *key2, const unsigned char *ivec);
  564. void aes128_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
  565. size_t blocks, const AES_KEY *key1,
  566. const AES_KEY *key2, const unsigned char *ivec);
  567. void aes256_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
  568. size_t blocks, const AES_KEY *key1,
  569. const AES_KEY *key2, const unsigned char *ivec);
  570. void aes256_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
  571. size_t blocks, const AES_KEY *key1,
  572. const AES_KEY *key2, const unsigned char *ivec);
  573. static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  574. const unsigned char *iv, int enc)
  575. {
  576. int ret, mode, bits;
  577. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  578. mode = EVP_CIPHER_CTX_mode(ctx);
  579. bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
  580. if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
  581. && !enc) {
  582. ret = 0;
  583. aes_t4_set_decrypt_key(key, bits, &dat->ks.ks);
  584. dat->block = (block128_f) aes_t4_decrypt;
  585. switch (bits) {
  586. case 128:
  587. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  588. (cbc128_f) aes128_t4_cbc_decrypt : NULL;
  589. break;
  590. case 192:
  591. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  592. (cbc128_f) aes192_t4_cbc_decrypt : NULL;
  593. break;
  594. case 256:
  595. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  596. (cbc128_f) aes256_t4_cbc_decrypt : NULL;
  597. break;
  598. default:
  599. ret = -1;
  600. }
  601. } else {
  602. ret = 0;
  603. aes_t4_set_encrypt_key(key, bits, &dat->ks.ks);
  604. dat->block = (block128_f) aes_t4_encrypt;
  605. switch (bits) {
  606. case 128:
  607. if (mode == EVP_CIPH_CBC_MODE)
  608. dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt;
  609. else if (mode == EVP_CIPH_CTR_MODE)
  610. dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
  611. else
  612. dat->stream.cbc = NULL;
  613. break;
  614. case 192:
  615. if (mode == EVP_CIPH_CBC_MODE)
  616. dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt;
  617. else if (mode == EVP_CIPH_CTR_MODE)
  618. dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
  619. else
  620. dat->stream.cbc = NULL;
  621. break;
  622. case 256:
  623. if (mode == EVP_CIPH_CBC_MODE)
  624. dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt;
  625. else if (mode == EVP_CIPH_CTR_MODE)
  626. dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
  627. else
  628. dat->stream.cbc = NULL;
  629. break;
  630. default:
  631. ret = -1;
  632. }
  633. }
  634. if (ret < 0) {
  635. EVPerr(EVP_F_AES_T4_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
  636. return 0;
  637. }
  638. return 1;
  639. }
  640. # define aes_t4_cbc_cipher aes_cbc_cipher
  641. static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  642. const unsigned char *in, size_t len);
  643. # define aes_t4_ecb_cipher aes_ecb_cipher
  644. static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  645. const unsigned char *in, size_t len);
  646. # define aes_t4_ofb_cipher aes_ofb_cipher
  647. static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  648. const unsigned char *in, size_t len);
  649. # define aes_t4_cfb_cipher aes_cfb_cipher
  650. static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  651. const unsigned char *in, size_t len);
  652. # define aes_t4_cfb8_cipher aes_cfb8_cipher
  653. static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  654. const unsigned char *in, size_t len);
  655. # define aes_t4_cfb1_cipher aes_cfb1_cipher
  656. static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  657. const unsigned char *in, size_t len);
  658. # define aes_t4_ctr_cipher aes_ctr_cipher
  659. static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  660. const unsigned char *in, size_t len);
  661. static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  662. const unsigned char *iv, int enc)
  663. {
  664. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
  665. if (!iv && !key)
  666. return 1;
  667. if (key) {
  668. int bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
  669. aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks);
  670. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  671. (block128_f) aes_t4_encrypt);
  672. switch (bits) {
  673. case 128:
  674. gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
  675. break;
  676. case 192:
  677. gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
  678. break;
  679. case 256:
  680. gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
  681. break;
  682. default:
  683. return 0;
  684. }
  685. /*
  686. * If we have an iv can set it directly, otherwise use saved IV.
  687. */
  688. if (iv == NULL && gctx->iv_set)
  689. iv = gctx->iv;
  690. if (iv) {
  691. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  692. gctx->iv_set = 1;
  693. }
  694. gctx->key_set = 1;
  695. } else {
  696. /* If key set use IV, otherwise copy */
  697. if (gctx->key_set)
  698. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  699. else
  700. memcpy(gctx->iv, iv, gctx->ivlen);
  701. gctx->iv_set = 1;
  702. gctx->iv_gen = 0;
  703. }
  704. return 1;
  705. }
  706. # define aes_t4_gcm_cipher aes_gcm_cipher
  707. static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  708. const unsigned char *in, size_t len);
  709. static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  710. const unsigned char *iv, int enc)
  711. {
  712. EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
  713. if (!iv && !key)
  714. return 1;
  715. if (key) {
  716. int bits = EVP_CIPHER_CTX_key_length(ctx) * 4;
  717. xctx->stream = NULL;
  718. /* key_len is two AES keys */
  719. if (enc) {
  720. aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks);
  721. xctx->xts.block1 = (block128_f) aes_t4_encrypt;
  722. switch (bits) {
  723. case 128:
  724. xctx->stream = aes128_t4_xts_encrypt;
  725. break;
  726. case 256:
  727. xctx->stream = aes256_t4_xts_encrypt;
  728. break;
  729. default:
  730. return 0;
  731. }
  732. } else {
  733. aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
  734. &xctx->ks1.ks);
  735. xctx->xts.block1 = (block128_f) aes_t4_decrypt;
  736. switch (bits) {
  737. case 128:
  738. xctx->stream = aes128_t4_xts_decrypt;
  739. break;
  740. case 256:
  741. xctx->stream = aes256_t4_xts_decrypt;
  742. break;
  743. default:
  744. return 0;
  745. }
  746. }
  747. aes_t4_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
  748. EVP_CIPHER_CTX_key_length(ctx) * 4,
  749. &xctx->ks2.ks);
  750. xctx->xts.block2 = (block128_f) aes_t4_encrypt;
  751. xctx->xts.key1 = &xctx->ks1;
  752. }
  753. if (iv) {
  754. xctx->xts.key2 = &xctx->ks2;
  755. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
  756. }
  757. return 1;
  758. }
  759. # define aes_t4_xts_cipher aes_xts_cipher
  760. static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  761. const unsigned char *in, size_t len);
  762. static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  763. const unsigned char *iv, int enc)
  764. {
  765. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
  766. if (!iv && !key)
  767. return 1;
  768. if (key) {
  769. int bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
  770. aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks);
  771. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  772. &cctx->ks, (block128_f) aes_t4_encrypt);
  773. cctx->str = NULL;
  774. cctx->key_set = 1;
  775. }
  776. if (iv) {
  777. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
  778. cctx->iv_set = 1;
  779. }
  780. return 1;
  781. }
  782. # define aes_t4_ccm_cipher aes_ccm_cipher
  783. static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  784. const unsigned char *in, size_t len);
  785. # ifndef OPENSSL_NO_OCB
  786. static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  787. const unsigned char *iv, int enc)
  788. {
  789. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
  790. if (!iv && !key)
  791. return 1;
  792. if (key) {
  793. do {
  794. /*
  795. * We set both the encrypt and decrypt key here because decrypt
  796. * needs both. We could possibly optimise to remove setting the
  797. * decrypt for an encryption operation.
  798. */
  799. aes_t4_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  800. &octx->ksenc.ks);
  801. aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  802. &octx->ksdec.ks);
  803. if (!CRYPTO_ocb128_init(&octx->ocb,
  804. &octx->ksenc.ks, &octx->ksdec.ks,
  805. (block128_f) aes_t4_encrypt,
  806. (block128_f) aes_t4_decrypt,
  807. NULL))
  808. return 0;
  809. }
  810. while (0);
  811. /*
  812. * If we have an iv we can set it directly, otherwise use saved IV.
  813. */
  814. if (iv == NULL && octx->iv_set)
  815. iv = octx->iv;
  816. if (iv) {
  817. if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
  818. != 1)
  819. return 0;
  820. octx->iv_set = 1;
  821. }
  822. octx->key_set = 1;
  823. } else {
  824. /* If key set use IV, otherwise copy */
  825. if (octx->key_set)
  826. CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
  827. else
  828. memcpy(octx->iv, iv, octx->ivlen);
  829. octx->iv_set = 1;
  830. }
  831. return 1;
  832. }
  833. # define aes_t4_ocb_cipher aes_ocb_cipher
  834. static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  835. const unsigned char *in, size_t len);
  836. # endif /* OPENSSL_NO_OCB */
  837. # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
  838. static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
  839. nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
  840. flags|EVP_CIPH_##MODE##_MODE, \
  841. aes_t4_init_key, \
  842. aes_t4_##mode##_cipher, \
  843. NULL, \
  844. sizeof(EVP_AES_KEY), \
  845. NULL,NULL,NULL,NULL }; \
  846. static const EVP_CIPHER aes_##keylen##_##mode = { \
  847. nid##_##keylen##_##nmode,blocksize, \
  848. keylen/8,ivlen, \
  849. flags|EVP_CIPH_##MODE##_MODE, \
  850. aes_init_key, \
  851. aes_##mode##_cipher, \
  852. NULL, \
  853. sizeof(EVP_AES_KEY), \
  854. NULL,NULL,NULL,NULL }; \
  855. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  856. { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
  857. # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
  858. static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
  859. nid##_##keylen##_##mode,blocksize, \
  860. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  861. flags|EVP_CIPH_##MODE##_MODE, \
  862. aes_t4_##mode##_init_key, \
  863. aes_t4_##mode##_cipher, \
  864. aes_##mode##_cleanup, \
  865. sizeof(EVP_AES_##MODE##_CTX), \
  866. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  867. static const EVP_CIPHER aes_##keylen##_##mode = { \
  868. nid##_##keylen##_##mode,blocksize, \
  869. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  870. flags|EVP_CIPH_##MODE##_MODE, \
  871. aes_##mode##_init_key, \
  872. aes_##mode##_cipher, \
  873. aes_##mode##_cleanup, \
  874. sizeof(EVP_AES_##MODE##_CTX), \
  875. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  876. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  877. { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
  878. #elif defined(OPENSSL_CPUID_OBJ) && defined(__s390__)
  879. /*
  880. * IBM S390X support
  881. */
  882. # include "s390x_arch.h"
  883. typedef struct {
  884. union {
  885. double align;
  886. /*-
  887. * KM-AES parameter block - begin
  888. * (see z/Architecture Principles of Operation >= SA22-7832-06)
  889. */
  890. struct {
  891. unsigned char k[32];
  892. } param;
  893. /* KM-AES parameter block - end */
  894. } km;
  895. unsigned int fc;
  896. } S390X_AES_ECB_CTX;
  897. typedef struct {
  898. union {
  899. double align;
  900. /*-
  901. * KMO-AES parameter block - begin
  902. * (see z/Architecture Principles of Operation >= SA22-7832-08)
  903. */
  904. struct {
  905. unsigned char cv[16];
  906. unsigned char k[32];
  907. } param;
  908. /* KMO-AES parameter block - end */
  909. } kmo;
  910. unsigned int fc;
  911. int res;
  912. } S390X_AES_OFB_CTX;
  913. typedef struct {
  914. union {
  915. double align;
  916. /*-
  917. * KMF-AES parameter block - begin
  918. * (see z/Architecture Principles of Operation >= SA22-7832-08)
  919. */
  920. struct {
  921. unsigned char cv[16];
  922. unsigned char k[32];
  923. } param;
  924. /* KMF-AES parameter block - end */
  925. } kmf;
  926. unsigned int fc;
  927. int res;
  928. } S390X_AES_CFB_CTX;
  929. typedef struct {
  930. union {
  931. double align;
  932. /*-
  933. * KMA-GCM-AES parameter block - begin
  934. * (see z/Architecture Principles of Operation >= SA22-7832-11)
  935. */
  936. struct {
  937. unsigned char reserved[12];
  938. union {
  939. unsigned int w;
  940. unsigned char b[4];
  941. } cv;
  942. union {
  943. unsigned long long g[2];
  944. unsigned char b[16];
  945. } t;
  946. unsigned char h[16];
  947. unsigned long long taadl;
  948. unsigned long long tpcl;
  949. union {
  950. unsigned long long g[2];
  951. unsigned int w[4];
  952. } j0;
  953. unsigned char k[32];
  954. } param;
  955. /* KMA-GCM-AES parameter block - end */
  956. } kma;
  957. unsigned int fc;
  958. int key_set;
  959. unsigned char *iv;
  960. int ivlen;
  961. int iv_set;
  962. int iv_gen;
  963. int taglen;
  964. unsigned char ares[16];
  965. unsigned char mres[16];
  966. unsigned char kres[16];
  967. int areslen;
  968. int mreslen;
  969. int kreslen;
  970. int tls_aad_len;
  971. } S390X_AES_GCM_CTX;
  972. typedef struct {
  973. union {
  974. double align;
  975. /*-
  976. * Padding is chosen so that ccm.kmac_param.k overlaps with key.k and
  977. * ccm.fc with key.k.rounds. Remember that on s390x, an AES_KEY's
  978. * rounds field is used to store the function code and that the key
  979. * schedule is not stored (if aes hardware support is detected).
  980. */
  981. struct {
  982. unsigned char pad[16];
  983. AES_KEY k;
  984. } key;
  985. struct {
  986. /*-
  987. * KMAC-AES parameter block - begin
  988. * (see z/Architecture Principles of Operation >= SA22-7832-08)
  989. */
  990. struct {
  991. union {
  992. unsigned long long g[2];
  993. unsigned char b[16];
  994. } icv;
  995. unsigned char k[32];
  996. } kmac_param;
  997. /* KMAC-AES paramater block - end */
  998. union {
  999. unsigned long long g[2];
  1000. unsigned char b[16];
  1001. } nonce;
  1002. union {
  1003. unsigned long long g[2];
  1004. unsigned char b[16];
  1005. } buf;
  1006. unsigned long long blocks;
  1007. int l;
  1008. int m;
  1009. int tls_aad_len;
  1010. int iv_set;
  1011. int tag_set;
  1012. int len_set;
  1013. int key_set;
  1014. unsigned char pad[140];
  1015. unsigned int fc;
  1016. } ccm;
  1017. } aes;
  1018. } S390X_AES_CCM_CTX;
  1019. /* Convert key size to function code: [16,24,32] -> [18,19,20]. */
  1020. # define S390X_AES_FC(keylen) (S390X_AES_128 + ((((keylen) << 3) - 128) >> 6))
  1021. /* Most modes of operation need km for partial block processing. */
  1022. # define S390X_aes_128_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
  1023. S390X_CAPBIT(S390X_AES_128))
  1024. # define S390X_aes_192_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
  1025. S390X_CAPBIT(S390X_AES_192))
  1026. # define S390X_aes_256_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
  1027. S390X_CAPBIT(S390X_AES_256))
  1028. # define s390x_aes_init_key aes_init_key
  1029. static int s390x_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  1030. const unsigned char *iv, int enc);
  1031. # define S390X_aes_128_cbc_CAPABLE 1 /* checked by callee */
  1032. # define S390X_aes_192_cbc_CAPABLE 1
  1033. # define S390X_aes_256_cbc_CAPABLE 1
  1034. # define S390X_AES_CBC_CTX EVP_AES_KEY
  1035. # define s390x_aes_cbc_init_key aes_init_key
  1036. # define s390x_aes_cbc_cipher aes_cbc_cipher
  1037. static int s390x_aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1038. const unsigned char *in, size_t len);
  1039. # define S390X_aes_128_ecb_CAPABLE S390X_aes_128_CAPABLE
  1040. # define S390X_aes_192_ecb_CAPABLE S390X_aes_192_CAPABLE
  1041. # define S390X_aes_256_ecb_CAPABLE S390X_aes_256_CAPABLE
  1042. static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx,
  1043. const unsigned char *key,
  1044. const unsigned char *iv, int enc)
  1045. {
  1046. S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
  1047. const int keylen = EVP_CIPHER_CTX_key_length(ctx);
  1048. cctx->fc = S390X_AES_FC(keylen);
  1049. if (!enc)
  1050. cctx->fc |= S390X_DECRYPT;
  1051. memcpy(cctx->km.param.k, key, keylen);
  1052. return 1;
  1053. }
  1054. static int s390x_aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1055. const unsigned char *in, size_t len)
  1056. {
  1057. S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
  1058. s390x_km(in, len, out, cctx->fc, &cctx->km.param);
  1059. return 1;
  1060. }
  1061. # define S390X_aes_128_ofb_CAPABLE (S390X_aes_128_CAPABLE && \
  1062. (OPENSSL_s390xcap_P.kmo[0] & \
  1063. S390X_CAPBIT(S390X_AES_128)))
  1064. # define S390X_aes_192_ofb_CAPABLE (S390X_aes_192_CAPABLE && \
  1065. (OPENSSL_s390xcap_P.kmo[0] & \
  1066. S390X_CAPBIT(S390X_AES_192)))
  1067. # define S390X_aes_256_ofb_CAPABLE (S390X_aes_256_CAPABLE && \
  1068. (OPENSSL_s390xcap_P.kmo[0] & \
  1069. S390X_CAPBIT(S390X_AES_256)))
  1070. static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx,
  1071. const unsigned char *key,
  1072. const unsigned char *ivec, int enc)
  1073. {
  1074. S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
  1075. const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
  1076. const int keylen = EVP_CIPHER_CTX_key_length(ctx);
  1077. const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
  1078. memcpy(cctx->kmo.param.cv, iv, ivlen);
  1079. memcpy(cctx->kmo.param.k, key, keylen);
  1080. cctx->fc = S390X_AES_FC(keylen);
  1081. cctx->res = 0;
  1082. return 1;
  1083. }
  1084. static int s390x_aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1085. const unsigned char *in, size_t len)
  1086. {
  1087. S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
  1088. int n = cctx->res;
  1089. int rem;
  1090. while (n && len) {
  1091. *out = *in ^ cctx->kmo.param.cv[n];
  1092. n = (n + 1) & 0xf;
  1093. --len;
  1094. ++in;
  1095. ++out;
  1096. }
  1097. rem = len & 0xf;
  1098. len &= ~(size_t)0xf;
  1099. if (len) {
  1100. s390x_kmo(in, len, out, cctx->fc, &cctx->kmo.param);
  1101. out += len;
  1102. in += len;
  1103. }
  1104. if (rem) {
  1105. s390x_km(cctx->kmo.param.cv, 16, cctx->kmo.param.cv, cctx->fc,
  1106. cctx->kmo.param.k);
  1107. while (rem--) {
  1108. out[n] = in[n] ^ cctx->kmo.param.cv[n];
  1109. ++n;
  1110. }
  1111. }
  1112. cctx->res = n;
  1113. return 1;
  1114. }
  1115. # define S390X_aes_128_cfb_CAPABLE (S390X_aes_128_CAPABLE && \
  1116. (OPENSSL_s390xcap_P.kmf[0] & \
  1117. S390X_CAPBIT(S390X_AES_128)))
  1118. # define S390X_aes_192_cfb_CAPABLE (S390X_aes_192_CAPABLE && \
  1119. (OPENSSL_s390xcap_P.kmf[0] & \
  1120. S390X_CAPBIT(S390X_AES_192)))
  1121. # define S390X_aes_256_cfb_CAPABLE (S390X_aes_256_CAPABLE && \
  1122. (OPENSSL_s390xcap_P.kmf[0] & \
  1123. S390X_CAPBIT(S390X_AES_256)))
  1124. static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx,
  1125. const unsigned char *key,
  1126. const unsigned char *ivec, int enc)
  1127. {
  1128. S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
  1129. const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
  1130. const int keylen = EVP_CIPHER_CTX_key_length(ctx);
  1131. const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
  1132. cctx->fc = S390X_AES_FC(keylen);
  1133. cctx->fc |= 16 << 24; /* 16 bytes cipher feedback */
  1134. if (!enc)
  1135. cctx->fc |= S390X_DECRYPT;
  1136. cctx->res = 0;
  1137. memcpy(cctx->kmf.param.cv, iv, ivlen);
  1138. memcpy(cctx->kmf.param.k, key, keylen);
  1139. return 1;
  1140. }
  1141. static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1142. const unsigned char *in, size_t len)
  1143. {
  1144. S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
  1145. const int keylen = EVP_CIPHER_CTX_key_length(ctx);
  1146. const int enc = EVP_CIPHER_CTX_encrypting(ctx);
  1147. int n = cctx->res;
  1148. int rem;
  1149. unsigned char tmp;
  1150. while (n && len) {
  1151. tmp = *in;
  1152. *out = cctx->kmf.param.cv[n] ^ tmp;
  1153. cctx->kmf.param.cv[n] = enc ? *out : tmp;
  1154. n = (n + 1) & 0xf;
  1155. --len;
  1156. ++in;
  1157. ++out;
  1158. }
  1159. rem = len & 0xf;
  1160. len &= ~(size_t)0xf;
  1161. if (len) {
  1162. s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
  1163. out += len;
  1164. in += len;
  1165. }
  1166. if (rem) {
  1167. s390x_km(cctx->kmf.param.cv, 16, cctx->kmf.param.cv,
  1168. S390X_AES_FC(keylen), cctx->kmf.param.k);
  1169. while (rem--) {
  1170. tmp = in[n];
  1171. out[n] = cctx->kmf.param.cv[n] ^ tmp;
  1172. cctx->kmf.param.cv[n] = enc ? out[n] : tmp;
  1173. ++n;
  1174. }
  1175. }
  1176. cctx->res = n;
  1177. return 1;
  1178. }
  1179. # define S390X_aes_128_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
  1180. S390X_CAPBIT(S390X_AES_128))
  1181. # define S390X_aes_192_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
  1182. S390X_CAPBIT(S390X_AES_192))
  1183. # define S390X_aes_256_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
  1184. S390X_CAPBIT(S390X_AES_256))
  1185. static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx,
  1186. const unsigned char *key,
  1187. const unsigned char *ivec, int enc)
  1188. {
  1189. S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
  1190. const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
  1191. const int keylen = EVP_CIPHER_CTX_key_length(ctx);
  1192. const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
  1193. cctx->fc = S390X_AES_FC(keylen);
  1194. cctx->fc |= 1 << 24; /* 1 byte cipher feedback */
  1195. if (!enc)
  1196. cctx->fc |= S390X_DECRYPT;
  1197. memcpy(cctx->kmf.param.cv, iv, ivlen);
  1198. memcpy(cctx->kmf.param.k, key, keylen);
  1199. return 1;
  1200. }
  1201. static int s390x_aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1202. const unsigned char *in, size_t len)
  1203. {
  1204. S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
  1205. s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
  1206. return 1;
  1207. }
  1208. # define S390X_aes_128_cfb1_CAPABLE 0
  1209. # define S390X_aes_192_cfb1_CAPABLE 0
  1210. # define S390X_aes_256_cfb1_CAPABLE 0
  1211. # define s390x_aes_cfb1_init_key aes_init_key
  1212. # define s390x_aes_cfb1_cipher aes_cfb1_cipher
  1213. static int s390x_aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1214. const unsigned char *in, size_t len);
  1215. # define S390X_aes_128_ctr_CAPABLE 1 /* checked by callee */
  1216. # define S390X_aes_192_ctr_CAPABLE 1
  1217. # define S390X_aes_256_ctr_CAPABLE 1
  1218. # define S390X_AES_CTR_CTX EVP_AES_KEY
  1219. # define s390x_aes_ctr_init_key aes_init_key
  1220. # define s390x_aes_ctr_cipher aes_ctr_cipher
  1221. static int s390x_aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1222. const unsigned char *in, size_t len);
  1223. # define S390X_aes_128_gcm_CAPABLE (S390X_aes_128_CAPABLE && \
  1224. (OPENSSL_s390xcap_P.kma[0] & \
  1225. S390X_CAPBIT(S390X_AES_128)))
  1226. # define S390X_aes_192_gcm_CAPABLE (S390X_aes_192_CAPABLE && \
  1227. (OPENSSL_s390xcap_P.kma[0] & \
  1228. S390X_CAPBIT(S390X_AES_192)))
  1229. # define S390X_aes_256_gcm_CAPABLE (S390X_aes_256_CAPABLE && \
  1230. (OPENSSL_s390xcap_P.kma[0] & \
  1231. S390X_CAPBIT(S390X_AES_256)))
  1232. /* iv + padding length for iv lenghts != 12 */
  1233. # define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16)
  1234. /*-
  1235. * Process additional authenticated data. Returns 0 on success. Code is
  1236. * big-endian.
  1237. */
  1238. static int s390x_aes_gcm_aad(S390X_AES_GCM_CTX *ctx, const unsigned char *aad,
  1239. size_t len)
  1240. {
  1241. unsigned long long alen;
  1242. int n, rem;
  1243. if (ctx->kma.param.tpcl)
  1244. return -2;
  1245. alen = ctx->kma.param.taadl + len;
  1246. if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
  1247. return -1;
  1248. ctx->kma.param.taadl = alen;
  1249. n = ctx->areslen;
  1250. if (n) {
  1251. while (n && len) {
  1252. ctx->ares[n] = *aad;
  1253. n = (n + 1) & 0xf;
  1254. ++aad;
  1255. --len;
  1256. }
  1257. /* ctx->ares contains a complete block if offset has wrapped around */
  1258. if (!n) {
  1259. s390x_kma(ctx->ares, 16, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
  1260. ctx->fc |= S390X_KMA_HS;
  1261. }
  1262. ctx->areslen = n;
  1263. }
  1264. rem = len & 0xf;
  1265. len &= ~(size_t)0xf;
  1266. if (len) {
  1267. s390x_kma(aad, len, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
  1268. aad += len;
  1269. ctx->fc |= S390X_KMA_HS;
  1270. }
  1271. if (rem) {
  1272. ctx->areslen = rem;
  1273. do {
  1274. --rem;
  1275. ctx->ares[rem] = aad[rem];
  1276. } while (rem);
  1277. }
  1278. return 0;
  1279. }
  1280. /*-
  1281. * En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 0 for
  1282. * success. Code is big-endian.
  1283. */
  1284. static int s390x_aes_gcm(S390X_AES_GCM_CTX *ctx, const unsigned char *in,
  1285. unsigned char *out, size_t len)
  1286. {
  1287. const unsigned char *inptr;
  1288. unsigned long long mlen;
  1289. union {
  1290. unsigned int w[4];
  1291. unsigned char b[16];
  1292. } buf;
  1293. size_t inlen;
  1294. int n, rem, i;
  1295. mlen = ctx->kma.param.tpcl + len;
  1296. if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
  1297. return -1;
  1298. ctx->kma.param.tpcl = mlen;
  1299. n = ctx->mreslen;
  1300. if (n) {
  1301. inptr = in;
  1302. inlen = len;
  1303. while (n && inlen) {
  1304. ctx->mres[n] = *inptr;
  1305. n = (n + 1) & 0xf;
  1306. ++inptr;
  1307. --inlen;
  1308. }
  1309. /* ctx->mres contains a complete block if offset has wrapped around */
  1310. if (!n) {
  1311. s390x_kma(ctx->ares, ctx->areslen, ctx->mres, 16, buf.b,
  1312. ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
  1313. ctx->fc |= S390X_KMA_HS;
  1314. ctx->areslen = 0;
  1315. /* previous call already encrypted/decrypted its remainder,
  1316. * see comment below */
  1317. n = ctx->mreslen;
  1318. while (n) {
  1319. *out = buf.b[n];
  1320. n = (n + 1) & 0xf;
  1321. ++out;
  1322. ++in;
  1323. --len;
  1324. }
  1325. ctx->mreslen = 0;
  1326. }
  1327. }
  1328. rem = len & 0xf;
  1329. len &= ~(size_t)0xf;
  1330. if (len) {
  1331. s390x_kma(ctx->ares, ctx->areslen, in, len, out,
  1332. ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
  1333. in += len;
  1334. out += len;
  1335. ctx->fc |= S390X_KMA_HS;
  1336. ctx->areslen = 0;
  1337. }
  1338. /*-
  1339. * If there is a remainder, it has to be saved such that it can be
  1340. * processed by kma later. However, we also have to do the for-now
  1341. * unauthenticated encryption/decryption part here and now...
  1342. */
  1343. if (rem) {
  1344. if (!ctx->mreslen) {
  1345. buf.w[0] = ctx->kma.param.j0.w[0];
  1346. buf.w[1] = ctx->kma.param.j0.w[1];
  1347. buf.w[2] = ctx->kma.param.j0.w[2];
  1348. buf.w[3] = ctx->kma.param.cv.w + 1;
  1349. s390x_km(buf.b, 16, ctx->kres, ctx->fc & 0x1f, &ctx->kma.param.k);
  1350. }
  1351. n = ctx->mreslen;
  1352. for (i = 0; i < rem; i++) {
  1353. ctx->mres[n + i] = in[i];
  1354. out[i] = in[i] ^ ctx->kres[n + i];
  1355. }
  1356. ctx->mreslen += rem;
  1357. }
  1358. return 0;
  1359. }
  1360. /*-
  1361. * Initialize context structure. Code is big-endian.
  1362. */
  1363. static void s390x_aes_gcm_setiv(S390X_AES_GCM_CTX *ctx,
  1364. const unsigned char *iv)
  1365. {
  1366. ctx->kma.param.t.g[0] = 0;
  1367. ctx->kma.param.t.g[1] = 0;
  1368. ctx->kma.param.tpcl = 0;
  1369. ctx->kma.param.taadl = 0;
  1370. ctx->mreslen = 0;
  1371. ctx->areslen = 0;
  1372. ctx->kreslen = 0;
  1373. if (ctx->ivlen == 12) {
  1374. memcpy(&ctx->kma.param.j0, iv, ctx->ivlen);
  1375. ctx->kma.param.j0.w[3] = 1;
  1376. ctx->kma.param.cv.w = 1;
  1377. } else {
  1378. /* ctx->iv has the right size and is already padded. */
  1379. memcpy(ctx->iv, iv, ctx->ivlen);
  1380. s390x_kma(ctx->iv, S390X_gcm_ivpadlen(ctx->ivlen), NULL, 0, NULL,
  1381. ctx->fc, &ctx->kma.param);
  1382. ctx->fc |= S390X_KMA_HS;
  1383. ctx->kma.param.j0.g[0] = ctx->kma.param.t.g[0];
  1384. ctx->kma.param.j0.g[1] = ctx->kma.param.t.g[1];
  1385. ctx->kma.param.cv.w = ctx->kma.param.j0.w[3];
  1386. ctx->kma.param.t.g[0] = 0;
  1387. ctx->kma.param.t.g[1] = 0;
  1388. }
  1389. }
  1390. /*-
  1391. * Performs various operations on the context structure depending on control
  1392. * type. Returns 1 for success, 0 for failure and -1 for unknown control type.
  1393. * Code is big-endian.
  1394. */
  1395. static int s390x_aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  1396. {
  1397. S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
  1398. S390X_AES_GCM_CTX *gctx_out;
  1399. EVP_CIPHER_CTX *out;
  1400. unsigned char *buf, *iv;
  1401. int ivlen, enc, len;
  1402. switch (type) {
  1403. case EVP_CTRL_INIT:
  1404. ivlen = EVP_CIPHER_CTX_iv_length(c);
  1405. iv = EVP_CIPHER_CTX_iv_noconst(c);
  1406. gctx->key_set = 0;
  1407. gctx->iv_set = 0;
  1408. gctx->ivlen = ivlen;
  1409. gctx->iv = iv;
  1410. gctx->taglen = -1;
  1411. gctx->iv_gen = 0;
  1412. gctx->tls_aad_len = -1;
  1413. return 1;
  1414. case EVP_CTRL_AEAD_SET_IVLEN:
  1415. if (arg <= 0)
  1416. return 0;
  1417. if (arg != 12) {
  1418. iv = EVP_CIPHER_CTX_iv_noconst(c);
  1419. len = S390X_gcm_ivpadlen(arg);
  1420. /* Allocate memory for iv if needed. */
  1421. if (gctx->ivlen == 12 || len > S390X_gcm_ivpadlen(gctx->ivlen)) {
  1422. if (gctx->iv != iv)
  1423. OPENSSL_free(gctx->iv);
  1424. if ((gctx->iv = OPENSSL_malloc(len)) == NULL) {
  1425. EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
  1426. return 0;
  1427. }
  1428. }
  1429. /* Add padding. */
  1430. memset(gctx->iv + arg, 0, len - arg - 8);
  1431. *((unsigned long long *)(gctx->iv + len - 8)) = arg << 3;
  1432. }
  1433. gctx->ivlen = arg;
  1434. return 1;
  1435. case EVP_CTRL_AEAD_SET_TAG:
  1436. buf = EVP_CIPHER_CTX_buf_noconst(c);
  1437. enc = EVP_CIPHER_CTX_encrypting(c);
  1438. if (arg <= 0 || arg > 16 || enc)
  1439. return 0;
  1440. memcpy(buf, ptr, arg);
  1441. gctx->taglen = arg;
  1442. return 1;
  1443. case EVP_CTRL_AEAD_GET_TAG:
  1444. enc = EVP_CIPHER_CTX_encrypting(c);
  1445. if (arg <= 0 || arg > 16 || !enc || gctx->taglen < 0)
  1446. return 0;
  1447. memcpy(ptr, gctx->kma.param.t.b, arg);
  1448. return 1;
  1449. case EVP_CTRL_GCM_SET_IV_FIXED:
  1450. /* Special case: -1 length restores whole iv */
  1451. if (arg == -1) {
  1452. memcpy(gctx->iv, ptr, gctx->ivlen);
  1453. gctx->iv_gen = 1;
  1454. return 1;
  1455. }
  1456. /*
  1457. * Fixed field must be at least 4 bytes and invocation field at least
  1458. * 8.
  1459. */
  1460. if ((arg < 4) || (gctx->ivlen - arg) < 8)
  1461. return 0;
  1462. if (arg)
  1463. memcpy(gctx->iv, ptr, arg);
  1464. enc = EVP_CIPHER_CTX_encrypting(c);
  1465. if (enc && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
  1466. return 0;
  1467. gctx->iv_gen = 1;
  1468. return 1;
  1469. case EVP_CTRL_GCM_IV_GEN:
  1470. if (gctx->iv_gen == 0 || gctx->key_set == 0)
  1471. return 0;
  1472. s390x_aes_gcm_setiv(gctx, gctx->iv);
  1473. if (arg <= 0 || arg > gctx->ivlen)
  1474. arg = gctx->ivlen;
  1475. memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
  1476. /*
  1477. * Invocation field will be at least 8 bytes in size and so no need
  1478. * to check wrap around or increment more than last 8 bytes.
  1479. */
  1480. ctr64_inc(gctx->iv + gctx->ivlen - 8);
  1481. gctx->iv_set = 1;
  1482. return 1;
  1483. case EVP_CTRL_GCM_SET_IV_INV:
  1484. enc = EVP_CIPHER_CTX_encrypting(c);
  1485. if (gctx->iv_gen == 0 || gctx->key_set == 0 || enc)
  1486. return 0;
  1487. memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
  1488. s390x_aes_gcm_setiv(gctx, gctx->iv);
  1489. gctx->iv_set = 1;
  1490. return 1;
  1491. case EVP_CTRL_AEAD_TLS1_AAD:
  1492. /* Save the aad for later use. */
  1493. if (arg != EVP_AEAD_TLS1_AAD_LEN)
  1494. return 0;
  1495. buf = EVP_CIPHER_CTX_buf_noconst(c);
  1496. memcpy(buf, ptr, arg);
  1497. gctx->tls_aad_len = arg;
  1498. len = buf[arg - 2] << 8 | buf[arg - 1];
  1499. /* Correct length for explicit iv. */
  1500. if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
  1501. return 0;
  1502. len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
  1503. /* If decrypting correct for tag too. */
  1504. enc = EVP_CIPHER_CTX_encrypting(c);
  1505. if (!enc) {
  1506. if (len < EVP_GCM_TLS_TAG_LEN)
  1507. return 0;
  1508. len -= EVP_GCM_TLS_TAG_LEN;
  1509. }
  1510. buf[arg - 2] = len >> 8;
  1511. buf[arg - 1] = len & 0xff;
  1512. /* Extra padding: tag appended to record. */
  1513. return EVP_GCM_TLS_TAG_LEN;
  1514. case EVP_CTRL_COPY:
  1515. out = ptr;
  1516. gctx_out = EVP_C_DATA(S390X_AES_GCM_CTX, out);
  1517. iv = EVP_CIPHER_CTX_iv_noconst(c);
  1518. if (gctx->iv == iv) {
  1519. gctx_out->iv = EVP_CIPHER_CTX_iv_noconst(out);
  1520. } else {
  1521. len = S390X_gcm_ivpadlen(gctx->ivlen);
  1522. if ((gctx_out->iv = OPENSSL_malloc(len)) == NULL) {
  1523. EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
  1524. return 0;
  1525. }
  1526. memcpy(gctx_out->iv, gctx->iv, len);
  1527. }
  1528. return 1;
  1529. default:
  1530. return -1;
  1531. }
  1532. }
  1533. /*-
  1534. * Set key and/or iv. Returns 1 on success. Otherwise 0 is returned.
  1535. */
  1536. static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx,
  1537. const unsigned char *key,
  1538. const unsigned char *iv, int enc)
  1539. {
  1540. S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
  1541. int keylen;
  1542. if (iv == NULL && key == NULL)
  1543. return 1;
  1544. if (key != NULL) {
  1545. keylen = EVP_CIPHER_CTX_key_length(ctx);
  1546. memcpy(&gctx->kma.param.k, key, keylen);
  1547. gctx->fc = S390X_AES_FC(keylen);
  1548. if (!enc)
  1549. gctx->fc |= S390X_DECRYPT;
  1550. if (iv == NULL && gctx->iv_set)
  1551. iv = gctx->iv;
  1552. if (iv != NULL) {
  1553. s390x_aes_gcm_setiv(gctx, iv);
  1554. gctx->iv_set = 1;
  1555. }
  1556. gctx->key_set = 1;
  1557. } else {
  1558. if (gctx->key_set)
  1559. s390x_aes_gcm_setiv(gctx, iv);
  1560. else
  1561. memcpy(gctx->iv, iv, gctx->ivlen);
  1562. gctx->iv_set = 1;
  1563. gctx->iv_gen = 0;
  1564. }
  1565. return 1;
  1566. }
  1567. /*-
  1568. * En/de-crypt and authenticate TLS packet. Returns the number of bytes written
  1569. * if successful. Otherwise -1 is returned. Code is big-endian.
  1570. */
  1571. static int s390x_aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1572. const unsigned char *in, size_t len)
  1573. {
  1574. S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
  1575. const unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
  1576. const int enc = EVP_CIPHER_CTX_encrypting(ctx);
  1577. int rv = -1;
  1578. if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
  1579. return -1;
  1580. if (EVP_CIPHER_CTX_ctrl(ctx, enc ? EVP_CTRL_GCM_IV_GEN
  1581. : EVP_CTRL_GCM_SET_IV_INV,
  1582. EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
  1583. goto err;
  1584. in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
  1585. out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
  1586. len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
  1587. gctx->kma.param.taadl = gctx->tls_aad_len << 3;
  1588. gctx->kma.param.tpcl = len << 3;
  1589. s390x_kma(buf, gctx->tls_aad_len, in, len, out,
  1590. gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
  1591. if (enc) {
  1592. memcpy(out + len, gctx->kma.param.t.b, EVP_GCM_TLS_TAG_LEN);
  1593. rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
  1594. } else {
  1595. if (CRYPTO_memcmp(gctx->kma.param.t.b, in + len,
  1596. EVP_GCM_TLS_TAG_LEN)) {
  1597. OPENSSL_cleanse(out, len);
  1598. goto err;
  1599. }
  1600. rv = len;
  1601. }
  1602. err:
  1603. gctx->iv_set = 0;
  1604. gctx->tls_aad_len = -1;
  1605. return rv;
  1606. }
  1607. /*-
  1608. * Called from EVP layer to initialize context, process additional
  1609. * authenticated data, en/de-crypt plain/cipher-text and authenticate
  1610. * ciphertext or process a TLS packet, depending on context. Returns bytes
  1611. * written on success. Otherwise -1 is returned. Code is big-endian.
  1612. */
  1613. static int s390x_aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1614. const unsigned char *in, size_t len)
  1615. {
  1616. S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
  1617. unsigned char *buf, tmp[16];
  1618. int enc;
  1619. if (!gctx->key_set)
  1620. return -1;
  1621. if (gctx->tls_aad_len >= 0)
  1622. return s390x_aes_gcm_tls_cipher(ctx, out, in, len);
  1623. if (!gctx->iv_set)
  1624. return -1;
  1625. if (in != NULL) {
  1626. if (out == NULL) {
  1627. if (s390x_aes_gcm_aad(gctx, in, len))
  1628. return -1;
  1629. } else {
  1630. if (s390x_aes_gcm(gctx, in, out, len))
  1631. return -1;
  1632. }
  1633. return len;
  1634. } else {
  1635. gctx->kma.param.taadl <<= 3;
  1636. gctx->kma.param.tpcl <<= 3;
  1637. s390x_kma(gctx->ares, gctx->areslen, gctx->mres, gctx->mreslen, tmp,
  1638. gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
  1639. /* recall that we already did en-/decrypt gctx->mres
  1640. * and returned it to caller... */
  1641. OPENSSL_cleanse(tmp, gctx->mreslen);
  1642. gctx->iv_set = 0;
  1643. enc = EVP_CIPHER_CTX_encrypting(ctx);
  1644. if (enc) {
  1645. gctx->taglen = 16;
  1646. } else {
  1647. if (gctx->taglen < 0)
  1648. return -1;
  1649. buf = EVP_CIPHER_CTX_buf_noconst(ctx);
  1650. if (CRYPTO_memcmp(buf, gctx->kma.param.t.b, gctx->taglen))
  1651. return -1;
  1652. }
  1653. return 0;
  1654. }
  1655. }
  1656. static int s390x_aes_gcm_cleanup(EVP_CIPHER_CTX *c)
  1657. {
  1658. S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
  1659. const unsigned char *iv;
  1660. if (gctx == NULL)
  1661. return 0;
  1662. iv = EVP_CIPHER_CTX_iv(c);
  1663. if (iv != gctx->iv)
  1664. OPENSSL_free(gctx->iv);
  1665. OPENSSL_cleanse(gctx, sizeof(*gctx));
  1666. return 1;
  1667. }
  1668. # define S390X_AES_XTS_CTX EVP_AES_XTS_CTX
  1669. # define S390X_aes_128_xts_CAPABLE 1 /* checked by callee */
  1670. # define S390X_aes_256_xts_CAPABLE 1
  1671. # define s390x_aes_xts_init_key aes_xts_init_key
  1672. static int s390x_aes_xts_init_key(EVP_CIPHER_CTX *ctx,
  1673. const unsigned char *key,
  1674. const unsigned char *iv, int enc);
  1675. # define s390x_aes_xts_cipher aes_xts_cipher
  1676. static int s390x_aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1677. const unsigned char *in, size_t len);
  1678. # define s390x_aes_xts_ctrl aes_xts_ctrl
  1679. static int s390x_aes_xts_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
  1680. # define s390x_aes_xts_cleanup aes_xts_cleanup
  1681. # define S390X_aes_128_ccm_CAPABLE (S390X_aes_128_CAPABLE && \
  1682. (OPENSSL_s390xcap_P.kmac[0] & \
  1683. S390X_CAPBIT(S390X_AES_128)))
  1684. # define S390X_aes_192_ccm_CAPABLE (S390X_aes_192_CAPABLE && \
  1685. (OPENSSL_s390xcap_P.kmac[0] & \
  1686. S390X_CAPBIT(S390X_AES_192)))
  1687. # define S390X_aes_256_ccm_CAPABLE (S390X_aes_256_CAPABLE && \
  1688. (OPENSSL_s390xcap_P.kmac[0] & \
  1689. S390X_CAPBIT(S390X_AES_256)))
  1690. # define S390X_CCM_AAD_FLAG 0x40
  1691. /*-
  1692. * Set nonce and length fields. Code is big-endian.
  1693. */
  1694. static inline void s390x_aes_ccm_setiv(S390X_AES_CCM_CTX *ctx,
  1695. const unsigned char *nonce,
  1696. size_t mlen)
  1697. {
  1698. ctx->aes.ccm.nonce.b[0] &= ~S390X_CCM_AAD_FLAG;
  1699. ctx->aes.ccm.nonce.g[1] = mlen;
  1700. memcpy(ctx->aes.ccm.nonce.b + 1, nonce, 15 - ctx->aes.ccm.l);
  1701. }
  1702. /*-
  1703. * Process additional authenticated data. Code is big-endian.
  1704. */
  1705. static void s390x_aes_ccm_aad(S390X_AES_CCM_CTX *ctx, const unsigned char *aad,
  1706. size_t alen)
  1707. {
  1708. unsigned char *ptr;
  1709. int i, rem;
  1710. if (!alen)
  1711. return;
  1712. ctx->aes.ccm.nonce.b[0] |= S390X_CCM_AAD_FLAG;
  1713. /* Suppress 'type-punned pointer dereference' warning. */
  1714. ptr = ctx->aes.ccm.buf.b;
  1715. if (alen < ((1 << 16) - (1 << 8))) {
  1716. *(uint16_t *)ptr = alen;
  1717. i = 2;
  1718. } else if (sizeof(alen) == 8
  1719. && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) {
  1720. *(uint16_t *)ptr = 0xffff;
  1721. *(uint64_t *)(ptr + 2) = alen;
  1722. i = 10;
  1723. } else {
  1724. *(uint16_t *)ptr = 0xfffe;
  1725. *(uint32_t *)(ptr + 2) = alen;
  1726. i = 6;
  1727. }
  1728. while (i < 16 && alen) {
  1729. ctx->aes.ccm.buf.b[i] = *aad;
  1730. ++aad;
  1731. --alen;
  1732. ++i;
  1733. }
  1734. while (i < 16) {
  1735. ctx->aes.ccm.buf.b[i] = 0;
  1736. ++i;
  1737. }
  1738. ctx->aes.ccm.kmac_param.icv.g[0] = 0;
  1739. ctx->aes.ccm.kmac_param.icv.g[1] = 0;
  1740. s390x_kmac(ctx->aes.ccm.nonce.b, 32, ctx->aes.ccm.fc,
  1741. &ctx->aes.ccm.kmac_param);
  1742. ctx->aes.ccm.blocks += 2;
  1743. rem = alen & 0xf;
  1744. alen &= ~(size_t)0xf;
  1745. if (alen) {
  1746. s390x_kmac(aad, alen, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
  1747. ctx->aes.ccm.blocks += alen >> 4;
  1748. aad += alen;
  1749. }
  1750. if (rem) {
  1751. for (i = 0; i < rem; i++)
  1752. ctx->aes.ccm.kmac_param.icv.b[i] ^= aad[i];
  1753. s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
  1754. ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
  1755. ctx->aes.ccm.kmac_param.k);
  1756. ctx->aes.ccm.blocks++;
  1757. }
  1758. }
  1759. /*-
  1760. * En/de-crypt plain/cipher-text. Compute tag from plaintext. Returns 0 for
  1761. * success.
  1762. */
  1763. static int s390x_aes_ccm(S390X_AES_CCM_CTX *ctx, const unsigned char *in,
  1764. unsigned char *out, size_t len, int enc)
  1765. {
  1766. size_t n, rem;
  1767. unsigned int i, l, num;
  1768. unsigned char flags;
  1769. flags = ctx->aes.ccm.nonce.b[0];
  1770. if (!(flags & S390X_CCM_AAD_FLAG)) {
  1771. s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.kmac_param.icv.b,
  1772. ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k);
  1773. ctx->aes.ccm.blocks++;
  1774. }
  1775. l = flags & 0x7;
  1776. ctx->aes.ccm.nonce.b[0] = l;
  1777. /*-
  1778. * Reconstruct length from encoded length field
  1779. * and initialize it with counter value.
  1780. */
  1781. n = 0;
  1782. for (i = 15 - l; i < 15; i++) {
  1783. n |= ctx->aes.ccm.nonce.b[i];
  1784. ctx->aes.ccm.nonce.b[i] = 0;
  1785. n <<= 8;
  1786. }
  1787. n |= ctx->aes.ccm.nonce.b[15];
  1788. ctx->aes.ccm.nonce.b[15] = 1;
  1789. if (n != len)
  1790. return -1; /* length mismatch */
  1791. if (enc) {
  1792. /* Two operations per block plus one for tag encryption */
  1793. ctx->aes.ccm.blocks += (((len + 15) >> 4) << 1) + 1;
  1794. if (ctx->aes.ccm.blocks > (1ULL << 61))
  1795. return -2; /* too much data */
  1796. }
  1797. num = 0;
  1798. rem = len & 0xf;
  1799. len &= ~(size_t)0xf;
  1800. if (enc) {
  1801. /* mac-then-encrypt */
  1802. if (len)
  1803. s390x_kmac(in, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
  1804. if (rem) {
  1805. for (i = 0; i < rem; i++)
  1806. ctx->aes.ccm.kmac_param.icv.b[i] ^= in[len + i];
  1807. s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
  1808. ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
  1809. ctx->aes.ccm.kmac_param.k);
  1810. }
  1811. CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
  1812. ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
  1813. &num, (ctr128_f)AES_ctr32_encrypt);
  1814. } else {
  1815. /* decrypt-then-mac */
  1816. CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
  1817. ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
  1818. &num, (ctr128_f)AES_ctr32_encrypt);
  1819. if (len)
  1820. s390x_kmac(out, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
  1821. if (rem) {
  1822. for (i = 0; i < rem; i++)
  1823. ctx->aes.ccm.kmac_param.icv.b[i] ^= out[len + i];
  1824. s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
  1825. ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
  1826. ctx->aes.ccm.kmac_param.k);
  1827. }
  1828. }
  1829. /* encrypt tag */
  1830. for (i = 15 - l; i < 16; i++)
  1831. ctx->aes.ccm.nonce.b[i] = 0;
  1832. s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.buf.b, ctx->aes.ccm.fc,
  1833. ctx->aes.ccm.kmac_param.k);
  1834. ctx->aes.ccm.kmac_param.icv.g[0] ^= ctx->aes.ccm.buf.g[0];
  1835. ctx->aes.ccm.kmac_param.icv.g[1] ^= ctx->aes.ccm.buf.g[1];
  1836. ctx->aes.ccm.nonce.b[0] = flags; /* restore flags field */
  1837. return 0;
  1838. }
  1839. /*-
  1840. * En/de-crypt and authenticate TLS packet. Returns the number of bytes written
  1841. * if successful. Otherwise -1 is returned.
  1842. */
  1843. static int s390x_aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1844. const unsigned char *in, size_t len)
  1845. {
  1846. S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
  1847. unsigned char *ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
  1848. unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
  1849. const int enc = EVP_CIPHER_CTX_encrypting(ctx);
  1850. if (out != in
  1851. || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->aes.ccm.m))
  1852. return -1;
  1853. if (enc) {
  1854. /* Set explicit iv (sequence number). */
  1855. memcpy(out, buf, EVP_CCM_TLS_EXPLICIT_IV_LEN);
  1856. }
  1857. len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
  1858. /*-
  1859. * Get explicit iv (sequence number). We already have fixed iv
  1860. * (server/client_write_iv) here.
  1861. */
  1862. memcpy(ivec + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN);
  1863. s390x_aes_ccm_setiv(cctx, ivec, len);
  1864. /* Process aad (sequence number|type|version|length) */
  1865. s390x_aes_ccm_aad(cctx, buf, cctx->aes.ccm.tls_aad_len);
  1866. in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
  1867. out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
  1868. if (enc) {
  1869. if (s390x_aes_ccm(cctx, in, out, len, enc))
  1870. return -1;
  1871. memcpy(out + len, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
  1872. return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
  1873. } else {
  1874. if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
  1875. if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, in + len,
  1876. cctx->aes.ccm.m))
  1877. return len;
  1878. }
  1879. OPENSSL_cleanse(out, len);
  1880. return -1;
  1881. }
  1882. }
  1883. /*-
  1884. * Set key and flag field and/or iv. Returns 1 if successful. Otherwise 0 is
  1885. * returned.
  1886. */
  1887. static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx,
  1888. const unsigned char *key,
  1889. const unsigned char *iv, int enc)
  1890. {
  1891. S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
  1892. unsigned char *ivec;
  1893. int keylen;
  1894. if (iv == NULL && key == NULL)
  1895. return 1;
  1896. if (key != NULL) {
  1897. keylen = EVP_CIPHER_CTX_key_length(ctx);
  1898. cctx->aes.ccm.fc = S390X_AES_FC(keylen);
  1899. memcpy(cctx->aes.ccm.kmac_param.k, key, keylen);
  1900. /* Store encoded m and l. */
  1901. cctx->aes.ccm.nonce.b[0] = ((cctx->aes.ccm.l - 1) & 0x7)
  1902. | (((cctx->aes.ccm.m - 2) >> 1) & 0x7) << 3;
  1903. memset(cctx->aes.ccm.nonce.b + 1, 0,
  1904. sizeof(cctx->aes.ccm.nonce.b));
  1905. cctx->aes.ccm.blocks = 0;
  1906. cctx->aes.ccm.key_set = 1;
  1907. }
  1908. if (iv != NULL) {
  1909. ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
  1910. memcpy(ivec, iv, 15 - cctx->aes.ccm.l);
  1911. cctx->aes.ccm.iv_set = 1;
  1912. }
  1913. return 1;
  1914. }
  1915. /*-
  1916. * Called from EVP layer to initialize context, process additional
  1917. * authenticated data, en/de-crypt plain/cipher-text and authenticate
  1918. * plaintext or process a TLS packet, depending on context. Returns bytes
  1919. * written on success. Otherwise -1 is returned.
  1920. */
  1921. static int s390x_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1922. const unsigned char *in, size_t len)
  1923. {
  1924. S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
  1925. const int enc = EVP_CIPHER_CTX_encrypting(ctx);
  1926. int rv;
  1927. unsigned char *buf, *ivec;
  1928. if (!cctx->aes.ccm.key_set)
  1929. return -1;
  1930. if (cctx->aes.ccm.tls_aad_len >= 0)
  1931. return s390x_aes_ccm_tls_cipher(ctx, out, in, len);
  1932. /*-
  1933. * Final(): Does not return any data. Recall that ccm is mac-then-encrypt
  1934. * so integrity must be checked already at Update() i.e., before
  1935. * potentially corrupted data is output.
  1936. */
  1937. if (in == NULL && out != NULL)
  1938. return 0;
  1939. if (!cctx->aes.ccm.iv_set)
  1940. return -1;
  1941. if (!enc && !cctx->aes.ccm.tag_set)
  1942. return -1;
  1943. if (out == NULL) {
  1944. /* Update(): Pass message length. */
  1945. if (in == NULL) {
  1946. ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
  1947. s390x_aes_ccm_setiv(cctx, ivec, len);
  1948. cctx->aes.ccm.len_set = 1;
  1949. return len;
  1950. }
  1951. /* Update(): Process aad. */
  1952. if (!cctx->aes.ccm.len_set && len)
  1953. return -1;
  1954. s390x_aes_ccm_aad(cctx, in, len);
  1955. return len;
  1956. }
  1957. /* Update(): Process message. */
  1958. if (!cctx->aes.ccm.len_set) {
  1959. /*-
  1960. * In case message length was not previously set explicitly via
  1961. * Update(), set it now.
  1962. */
  1963. ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
  1964. s390x_aes_ccm_setiv(cctx, ivec, len);
  1965. cctx->aes.ccm.len_set = 1;
  1966. }
  1967. if (enc) {
  1968. if (s390x_aes_ccm(cctx, in, out, len, enc))
  1969. return -1;
  1970. cctx->aes.ccm.tag_set = 1;
  1971. return len;
  1972. } else {
  1973. rv = -1;
  1974. if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
  1975. buf = EVP_CIPHER_CTX_buf_noconst(ctx);
  1976. if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, buf,
  1977. cctx->aes.ccm.m))
  1978. rv = len;
  1979. }
  1980. if (rv == -1)
  1981. OPENSSL_cleanse(out, len);
  1982. cctx->aes.ccm.iv_set = 0;
  1983. cctx->aes.ccm.tag_set = 0;
  1984. cctx->aes.ccm.len_set = 0;
  1985. return rv;
  1986. }
  1987. }
  1988. /*-
  1989. * Performs various operations on the context structure depending on control
  1990. * type. Returns 1 for success, 0 for failure and -1 for unknown control type.
  1991. * Code is big-endian.
  1992. */
  1993. static int s390x_aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  1994. {
  1995. S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, c);
  1996. unsigned char *buf, *iv;
  1997. int enc, len;
  1998. switch (type) {
  1999. case EVP_CTRL_INIT:
  2000. cctx->aes.ccm.key_set = 0;
  2001. cctx->aes.ccm.iv_set = 0;
  2002. cctx->aes.ccm.l = 8;
  2003. cctx->aes.ccm.m = 12;
  2004. cctx->aes.ccm.tag_set = 0;
  2005. cctx->aes.ccm.len_set = 0;
  2006. cctx->aes.ccm.tls_aad_len = -1;
  2007. return 1;
  2008. case EVP_CTRL_AEAD_TLS1_AAD:
  2009. if (arg != EVP_AEAD_TLS1_AAD_LEN)
  2010. return 0;
  2011. /* Save the aad for later use. */
  2012. buf = EVP_CIPHER_CTX_buf_noconst(c);
  2013. memcpy(buf, ptr, arg);
  2014. cctx->aes.ccm.tls_aad_len = arg;
  2015. len = buf[arg - 2] << 8 | buf[arg - 1];
  2016. if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
  2017. return 0;
  2018. /* Correct length for explicit iv. */
  2019. len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
  2020. enc = EVP_CIPHER_CTX_encrypting(c);
  2021. if (!enc) {
  2022. if (len < cctx->aes.ccm.m)
  2023. return 0;
  2024. /* Correct length for tag. */
  2025. len -= cctx->aes.ccm.m;
  2026. }
  2027. buf[arg - 2] = len >> 8;
  2028. buf[arg - 1] = len & 0xff;
  2029. /* Extra padding: tag appended to record. */
  2030. return cctx->aes.ccm.m;
  2031. case EVP_CTRL_CCM_SET_IV_FIXED:
  2032. if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
  2033. return 0;
  2034. /* Copy to first part of the iv. */
  2035. iv = EVP_CIPHER_CTX_iv_noconst(c);
  2036. memcpy(iv, ptr, arg);
  2037. return 1;
  2038. case EVP_CTRL_AEAD_SET_IVLEN:
  2039. arg = 15 - arg;
  2040. /* fall-through */
  2041. case EVP_CTRL_CCM_SET_L:
  2042. if (arg < 2 || arg > 8)
  2043. return 0;
  2044. cctx->aes.ccm.l = arg;
  2045. return 1;
  2046. case EVP_CTRL_AEAD_SET_TAG:
  2047. if ((arg & 1) || arg < 4 || arg > 16)
  2048. return 0;
  2049. enc = EVP_CIPHER_CTX_encrypting(c);
  2050. if (enc && ptr)
  2051. return 0;
  2052. if (ptr) {
  2053. cctx->aes.ccm.tag_set = 1;
  2054. buf = EVP_CIPHER_CTX_buf_noconst(c);
  2055. memcpy(buf, ptr, arg);
  2056. }
  2057. cctx->aes.ccm.m = arg;
  2058. return 1;
  2059. case EVP_CTRL_AEAD_GET_TAG:
  2060. enc = EVP_CIPHER_CTX_encrypting(c);
  2061. if (!enc || !cctx->aes.ccm.tag_set)
  2062. return 0;
  2063. if(arg < cctx->aes.ccm.m)
  2064. return 0;
  2065. memcpy(ptr, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
  2066. cctx->aes.ccm.tag_set = 0;
  2067. cctx->aes.ccm.iv_set = 0;
  2068. cctx->aes.ccm.len_set = 0;
  2069. return 1;
  2070. case EVP_CTRL_COPY:
  2071. return 1;
  2072. default:
  2073. return -1;
  2074. }
  2075. }
  2076. # define s390x_aes_ccm_cleanup aes_ccm_cleanup
  2077. # ifndef OPENSSL_NO_OCB
  2078. # define S390X_AES_OCB_CTX EVP_AES_OCB_CTX
  2079. # define S390X_aes_128_ocb_CAPABLE 0
  2080. # define S390X_aes_192_ocb_CAPABLE 0
  2081. # define S390X_aes_256_ocb_CAPABLE 0
  2082. # define s390x_aes_ocb_init_key aes_ocb_init_key
  2083. static int s390x_aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  2084. const unsigned char *iv, int enc);
  2085. # define s390x_aes_ocb_cipher aes_ocb_cipher
  2086. static int s390x_aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2087. const unsigned char *in, size_t len);
  2088. # define s390x_aes_ocb_cleanup aes_ocb_cleanup
  2089. static int s390x_aes_ocb_cleanup(EVP_CIPHER_CTX *);
  2090. # define s390x_aes_ocb_ctrl aes_ocb_ctrl
  2091. static int s390x_aes_ocb_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
  2092. # endif
  2093. # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode, \
  2094. MODE,flags) \
  2095. static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \
  2096. nid##_##keylen##_##nmode,blocksize, \
  2097. keylen / 8, \
  2098. ivlen, \
  2099. flags | EVP_CIPH_##MODE##_MODE, \
  2100. s390x_aes_##mode##_init_key, \
  2101. s390x_aes_##mode##_cipher, \
  2102. NULL, \
  2103. sizeof(S390X_AES_##MODE##_CTX), \
  2104. NULL, \
  2105. NULL, \
  2106. NULL, \
  2107. NULL \
  2108. }; \
  2109. static const EVP_CIPHER aes_##keylen##_##mode = { \
  2110. nid##_##keylen##_##nmode, \
  2111. blocksize, \
  2112. keylen / 8, \
  2113. ivlen, \
  2114. flags | EVP_CIPH_##MODE##_MODE, \
  2115. aes_init_key, \
  2116. aes_##mode##_cipher, \
  2117. NULL, \
  2118. sizeof(EVP_AES_KEY), \
  2119. NULL, \
  2120. NULL, \
  2121. NULL, \
  2122. NULL \
  2123. }; \
  2124. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  2125. { \
  2126. return S390X_aes_##keylen##_##mode##_CAPABLE ? \
  2127. &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \
  2128. }
  2129. # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags)\
  2130. static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \
  2131. nid##_##keylen##_##mode, \
  2132. blocksize, \
  2133. (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * keylen / 8, \
  2134. ivlen, \
  2135. flags | EVP_CIPH_##MODE##_MODE, \
  2136. s390x_aes_##mode##_init_key, \
  2137. s390x_aes_##mode##_cipher, \
  2138. s390x_aes_##mode##_cleanup, \
  2139. sizeof(S390X_AES_##MODE##_CTX), \
  2140. NULL, \
  2141. NULL, \
  2142. s390x_aes_##mode##_ctrl, \
  2143. NULL \
  2144. }; \
  2145. static const EVP_CIPHER aes_##keylen##_##mode = { \
  2146. nid##_##keylen##_##mode,blocksize, \
  2147. (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * keylen / 8, \
  2148. ivlen, \
  2149. flags | EVP_CIPH_##MODE##_MODE, \
  2150. aes_##mode##_init_key, \
  2151. aes_##mode##_cipher, \
  2152. aes_##mode##_cleanup, \
  2153. sizeof(EVP_AES_##MODE##_CTX), \
  2154. NULL, \
  2155. NULL, \
  2156. aes_##mode##_ctrl, \
  2157. NULL \
  2158. }; \
  2159. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  2160. { \
  2161. return S390X_aes_##keylen##_##mode##_CAPABLE ? \
  2162. &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \
  2163. }
  2164. #else
  2165. # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
  2166. static const EVP_CIPHER aes_##keylen##_##mode = { \
  2167. nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
  2168. flags|EVP_CIPH_##MODE##_MODE, \
  2169. aes_init_key, \
  2170. aes_##mode##_cipher, \
  2171. NULL, \
  2172. sizeof(EVP_AES_KEY), \
  2173. NULL,NULL,NULL,NULL }; \
  2174. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  2175. { return &aes_##keylen##_##mode; }
  2176. # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
  2177. static const EVP_CIPHER aes_##keylen##_##mode = { \
  2178. nid##_##keylen##_##mode,blocksize, \
  2179. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  2180. flags|EVP_CIPH_##MODE##_MODE, \
  2181. aes_##mode##_init_key, \
  2182. aes_##mode##_cipher, \
  2183. aes_##mode##_cleanup, \
  2184. sizeof(EVP_AES_##MODE##_CTX), \
  2185. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  2186. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  2187. { return &aes_##keylen##_##mode; }
  2188. #endif
  2189. #if defined(OPENSSL_CPUID_OBJ) && (defined(__arm__) || defined(__arm) || defined(__aarch64__))
  2190. # include "arm_arch.h"
  2191. # if __ARM_MAX_ARCH__>=7
  2192. # if defined(BSAES_ASM)
  2193. # define BSAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
  2194. # endif
  2195. # if defined(VPAES_ASM)
  2196. # define VPAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
  2197. # endif
  2198. # define HWAES_CAPABLE (OPENSSL_armcap_P & ARMV8_AES)
  2199. # define HWAES_set_encrypt_key aes_v8_set_encrypt_key
  2200. # define HWAES_set_decrypt_key aes_v8_set_decrypt_key
  2201. # define HWAES_encrypt aes_v8_encrypt
  2202. # define HWAES_decrypt aes_v8_decrypt
  2203. # define HWAES_cbc_encrypt aes_v8_cbc_encrypt
  2204. # define HWAES_ctr32_encrypt_blocks aes_v8_ctr32_encrypt_blocks
  2205. # endif
  2206. #endif
  2207. #if defined(HWAES_CAPABLE)
  2208. int HWAES_set_encrypt_key(const unsigned char *userKey, const int bits,
  2209. AES_KEY *key);
  2210. int HWAES_set_decrypt_key(const unsigned char *userKey, const int bits,
  2211. AES_KEY *key);
  2212. void HWAES_encrypt(const unsigned char *in, unsigned char *out,
  2213. const AES_KEY *key);
  2214. void HWAES_decrypt(const unsigned char *in, unsigned char *out,
  2215. const AES_KEY *key);
  2216. void HWAES_cbc_encrypt(const unsigned char *in, unsigned char *out,
  2217. size_t length, const AES_KEY *key,
  2218. unsigned char *ivec, const int enc);
  2219. void HWAES_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
  2220. size_t len, const AES_KEY *key,
  2221. const unsigned char ivec[16]);
  2222. void HWAES_xts_encrypt(const unsigned char *inp, unsigned char *out,
  2223. size_t len, const AES_KEY *key1,
  2224. const AES_KEY *key2, const unsigned char iv[16]);
  2225. void HWAES_xts_decrypt(const unsigned char *inp, unsigned char *out,
  2226. size_t len, const AES_KEY *key1,
  2227. const AES_KEY *key2, const unsigned char iv[16]);
  2228. #endif
  2229. #define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \
  2230. BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
  2231. BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
  2232. BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
  2233. BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
  2234. BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \
  2235. BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \
  2236. BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)
  2237. static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  2238. const unsigned char *iv, int enc)
  2239. {
  2240. int ret, mode;
  2241. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2242. mode = EVP_CIPHER_CTX_mode(ctx);
  2243. if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
  2244. && !enc) {
  2245. #ifdef HWAES_CAPABLE
  2246. if (HWAES_CAPABLE) {
  2247. ret = HWAES_set_decrypt_key(key,
  2248. EVP_CIPHER_CTX_key_length(ctx) * 8,
  2249. &dat->ks.ks);
  2250. dat->block = (block128_f) HWAES_decrypt;
  2251. dat->stream.cbc = NULL;
  2252. # ifdef HWAES_cbc_encrypt
  2253. if (mode == EVP_CIPH_CBC_MODE)
  2254. dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
  2255. # endif
  2256. } else
  2257. #endif
  2258. #ifdef BSAES_CAPABLE
  2259. if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) {
  2260. ret = AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  2261. &dat->ks.ks);
  2262. dat->block = (block128_f) AES_decrypt;
  2263. dat->stream.cbc = (cbc128_f) bsaes_cbc_encrypt;
  2264. } else
  2265. #endif
  2266. #ifdef VPAES_CAPABLE
  2267. if (VPAES_CAPABLE) {
  2268. ret = vpaes_set_decrypt_key(key,
  2269. EVP_CIPHER_CTX_key_length(ctx) * 8,
  2270. &dat->ks.ks);
  2271. dat->block = (block128_f) vpaes_decrypt;
  2272. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  2273. (cbc128_f) vpaes_cbc_encrypt : NULL;
  2274. } else
  2275. #endif
  2276. {
  2277. ret = AES_set_decrypt_key(key,
  2278. EVP_CIPHER_CTX_key_length(ctx) * 8,
  2279. &dat->ks.ks);
  2280. dat->block = (block128_f) AES_decrypt;
  2281. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  2282. (cbc128_f) AES_cbc_encrypt : NULL;
  2283. }
  2284. } else
  2285. #ifdef HWAES_CAPABLE
  2286. if (HWAES_CAPABLE) {
  2287. ret = HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  2288. &dat->ks.ks);
  2289. dat->block = (block128_f) HWAES_encrypt;
  2290. dat->stream.cbc = NULL;
  2291. # ifdef HWAES_cbc_encrypt
  2292. if (mode == EVP_CIPH_CBC_MODE)
  2293. dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
  2294. else
  2295. # endif
  2296. # ifdef HWAES_ctr32_encrypt_blocks
  2297. if (mode == EVP_CIPH_CTR_MODE)
  2298. dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
  2299. else
  2300. # endif
  2301. (void)0; /* terminate potentially open 'else' */
  2302. } else
  2303. #endif
  2304. #ifdef BSAES_CAPABLE
  2305. if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) {
  2306. ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  2307. &dat->ks.ks);
  2308. dat->block = (block128_f) AES_encrypt;
  2309. dat->stream.ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
  2310. } else
  2311. #endif
  2312. #ifdef VPAES_CAPABLE
  2313. if (VPAES_CAPABLE) {
  2314. ret = vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  2315. &dat->ks.ks);
  2316. dat->block = (block128_f) vpaes_encrypt;
  2317. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  2318. (cbc128_f) vpaes_cbc_encrypt : NULL;
  2319. } else
  2320. #endif
  2321. {
  2322. ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  2323. &dat->ks.ks);
  2324. dat->block = (block128_f) AES_encrypt;
  2325. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  2326. (cbc128_f) AES_cbc_encrypt : NULL;
  2327. #ifdef AES_CTR_ASM
  2328. if (mode == EVP_CIPH_CTR_MODE)
  2329. dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt;
  2330. #endif
  2331. }
  2332. if (ret < 0) {
  2333. EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
  2334. return 0;
  2335. }
  2336. return 1;
  2337. }
  2338. static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2339. const unsigned char *in, size_t len)
  2340. {
  2341. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2342. if (dat->stream.cbc)
  2343. (*dat->stream.cbc) (in, out, len, &dat->ks,
  2344. EVP_CIPHER_CTX_iv_noconst(ctx),
  2345. EVP_CIPHER_CTX_encrypting(ctx));
  2346. else if (EVP_CIPHER_CTX_encrypting(ctx))
  2347. CRYPTO_cbc128_encrypt(in, out, len, &dat->ks,
  2348. EVP_CIPHER_CTX_iv_noconst(ctx), dat->block);
  2349. else
  2350. CRYPTO_cbc128_decrypt(in, out, len, &dat->ks,
  2351. EVP_CIPHER_CTX_iv_noconst(ctx), dat->block);
  2352. return 1;
  2353. }
  2354. static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2355. const unsigned char *in, size_t len)
  2356. {
  2357. size_t bl = EVP_CIPHER_CTX_block_size(ctx);
  2358. size_t i;
  2359. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2360. if (len < bl)
  2361. return 1;
  2362. for (i = 0, len -= bl; i <= len; i += bl)
  2363. (*dat->block) (in + i, out + i, &dat->ks);
  2364. return 1;
  2365. }
  2366. static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2367. const unsigned char *in, size_t len)
  2368. {
  2369. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2370. int num = EVP_CIPHER_CTX_num(ctx);
  2371. CRYPTO_ofb128_encrypt(in, out, len, &dat->ks,
  2372. EVP_CIPHER_CTX_iv_noconst(ctx), &num, dat->block);
  2373. EVP_CIPHER_CTX_set_num(ctx, num);
  2374. return 1;
  2375. }
  2376. static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2377. const unsigned char *in, size_t len)
  2378. {
  2379. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2380. int num = EVP_CIPHER_CTX_num(ctx);
  2381. CRYPTO_cfb128_encrypt(in, out, len, &dat->ks,
  2382. EVP_CIPHER_CTX_iv_noconst(ctx), &num,
  2383. EVP_CIPHER_CTX_encrypting(ctx), dat->block);
  2384. EVP_CIPHER_CTX_set_num(ctx, num);
  2385. return 1;
  2386. }
  2387. static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2388. const unsigned char *in, size_t len)
  2389. {
  2390. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2391. int num = EVP_CIPHER_CTX_num(ctx);
  2392. CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks,
  2393. EVP_CIPHER_CTX_iv_noconst(ctx), &num,
  2394. EVP_CIPHER_CTX_encrypting(ctx), dat->block);
  2395. EVP_CIPHER_CTX_set_num(ctx, num);
  2396. return 1;
  2397. }
  2398. static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2399. const unsigned char *in, size_t len)
  2400. {
  2401. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2402. if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) {
  2403. int num = EVP_CIPHER_CTX_num(ctx);
  2404. CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks,
  2405. EVP_CIPHER_CTX_iv_noconst(ctx), &num,
  2406. EVP_CIPHER_CTX_encrypting(ctx), dat->block);
  2407. EVP_CIPHER_CTX_set_num(ctx, num);
  2408. return 1;
  2409. }
  2410. while (len >= MAXBITCHUNK) {
  2411. int num = EVP_CIPHER_CTX_num(ctx);
  2412. CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks,
  2413. EVP_CIPHER_CTX_iv_noconst(ctx), &num,
  2414. EVP_CIPHER_CTX_encrypting(ctx), dat->block);
  2415. EVP_CIPHER_CTX_set_num(ctx, num);
  2416. len -= MAXBITCHUNK;
  2417. out += MAXBITCHUNK;
  2418. in += MAXBITCHUNK;
  2419. }
  2420. if (len) {
  2421. int num = EVP_CIPHER_CTX_num(ctx);
  2422. CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks,
  2423. EVP_CIPHER_CTX_iv_noconst(ctx), &num,
  2424. EVP_CIPHER_CTX_encrypting(ctx), dat->block);
  2425. EVP_CIPHER_CTX_set_num(ctx, num);
  2426. }
  2427. return 1;
  2428. }
  2429. static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2430. const unsigned char *in, size_t len)
  2431. {
  2432. unsigned int num = EVP_CIPHER_CTX_num(ctx);
  2433. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2434. if (dat->stream.ctr)
  2435. CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks,
  2436. EVP_CIPHER_CTX_iv_noconst(ctx),
  2437. EVP_CIPHER_CTX_buf_noconst(ctx),
  2438. &num, dat->stream.ctr);
  2439. else
  2440. CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,
  2441. EVP_CIPHER_CTX_iv_noconst(ctx),
  2442. EVP_CIPHER_CTX_buf_noconst(ctx), &num,
  2443. dat->block);
  2444. EVP_CIPHER_CTX_set_num(ctx, num);
  2445. return 1;
  2446. }
  2447. BLOCK_CIPHER_generic_pack(NID_aes, 128, 0)
  2448. BLOCK_CIPHER_generic_pack(NID_aes, 192, 0)
  2449. BLOCK_CIPHER_generic_pack(NID_aes, 256, 0)
  2450. static int aes_gcm_cleanup(EVP_CIPHER_CTX *c)
  2451. {
  2452. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
  2453. if (gctx == NULL)
  2454. return 0;
  2455. OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
  2456. if (gctx->iv != EVP_CIPHER_CTX_iv_noconst(c))
  2457. OPENSSL_free(gctx->iv);
  2458. return 1;
  2459. }
  2460. static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  2461. {
  2462. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
  2463. switch (type) {
  2464. case EVP_CTRL_INIT:
  2465. gctx->key_set = 0;
  2466. gctx->iv_set = 0;
  2467. gctx->ivlen = c->cipher->iv_len;
  2468. gctx->iv = c->iv;
  2469. gctx->taglen = -1;
  2470. gctx->iv_gen = 0;
  2471. gctx->tls_aad_len = -1;
  2472. return 1;
  2473. case EVP_CTRL_AEAD_SET_IVLEN:
  2474. if (arg <= 0)
  2475. return 0;
  2476. /* Allocate memory for IV if needed */
  2477. if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) {
  2478. if (gctx->iv != c->iv)
  2479. OPENSSL_free(gctx->iv);
  2480. if ((gctx->iv = OPENSSL_malloc(arg)) == NULL) {
  2481. EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
  2482. return 0;
  2483. }
  2484. }
  2485. gctx->ivlen = arg;
  2486. return 1;
  2487. case EVP_CTRL_AEAD_SET_TAG:
  2488. if (arg <= 0 || arg > 16 || c->encrypt)
  2489. return 0;
  2490. memcpy(c->buf, ptr, arg);
  2491. gctx->taglen = arg;
  2492. return 1;
  2493. case EVP_CTRL_AEAD_GET_TAG:
  2494. if (arg <= 0 || arg > 16 || !c->encrypt
  2495. || gctx->taglen < 0)
  2496. return 0;
  2497. memcpy(ptr, c->buf, arg);
  2498. return 1;
  2499. case EVP_CTRL_GCM_SET_IV_FIXED:
  2500. /* Special case: -1 length restores whole IV */
  2501. if (arg == -1) {
  2502. memcpy(gctx->iv, ptr, gctx->ivlen);
  2503. gctx->iv_gen = 1;
  2504. return 1;
  2505. }
  2506. /*
  2507. * Fixed field must be at least 4 bytes and invocation field at least
  2508. * 8.
  2509. */
  2510. if ((arg < 4) || (gctx->ivlen - arg) < 8)
  2511. return 0;
  2512. if (arg)
  2513. memcpy(gctx->iv, ptr, arg);
  2514. if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
  2515. return 0;
  2516. gctx->iv_gen = 1;
  2517. return 1;
  2518. case EVP_CTRL_GCM_IV_GEN:
  2519. if (gctx->iv_gen == 0 || gctx->key_set == 0)
  2520. return 0;
  2521. CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
  2522. if (arg <= 0 || arg > gctx->ivlen)
  2523. arg = gctx->ivlen;
  2524. memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
  2525. /*
  2526. * Invocation field will be at least 8 bytes in size and so no need
  2527. * to check wrap around or increment more than last 8 bytes.
  2528. */
  2529. ctr64_inc(gctx->iv + gctx->ivlen - 8);
  2530. gctx->iv_set = 1;
  2531. return 1;
  2532. case EVP_CTRL_GCM_SET_IV_INV:
  2533. if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)
  2534. return 0;
  2535. memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
  2536. CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
  2537. gctx->iv_set = 1;
  2538. return 1;
  2539. case EVP_CTRL_AEAD_TLS1_AAD:
  2540. /* Save the AAD for later use */
  2541. if (arg != EVP_AEAD_TLS1_AAD_LEN)
  2542. return 0;
  2543. memcpy(c->buf, ptr, arg);
  2544. gctx->tls_aad_len = arg;
  2545. {
  2546. unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1];
  2547. /* Correct length for explicit IV */
  2548. if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
  2549. return 0;
  2550. len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
  2551. /* If decrypting correct for tag too */
  2552. if (!c->encrypt) {
  2553. if (len < EVP_GCM_TLS_TAG_LEN)
  2554. return 0;
  2555. len -= EVP_GCM_TLS_TAG_LEN;
  2556. }
  2557. c->buf[arg - 2] = len >> 8;
  2558. c->buf[arg - 1] = len & 0xff;
  2559. }
  2560. /* Extra padding: tag appended to record */
  2561. return EVP_GCM_TLS_TAG_LEN;
  2562. case EVP_CTRL_COPY:
  2563. {
  2564. EVP_CIPHER_CTX *out = ptr;
  2565. EVP_AES_GCM_CTX *gctx_out = EVP_C_DATA(EVP_AES_GCM_CTX,out);
  2566. if (gctx->gcm.key) {
  2567. if (gctx->gcm.key != &gctx->ks)
  2568. return 0;
  2569. gctx_out->gcm.key = &gctx_out->ks;
  2570. }
  2571. if (gctx->iv == c->iv)
  2572. gctx_out->iv = out->iv;
  2573. else {
  2574. if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL) {
  2575. EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
  2576. return 0;
  2577. }
  2578. memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
  2579. }
  2580. return 1;
  2581. }
  2582. default:
  2583. return -1;
  2584. }
  2585. }
  2586. static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  2587. const unsigned char *iv, int enc)
  2588. {
  2589. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
  2590. if (!iv && !key)
  2591. return 1;
  2592. if (key) {
  2593. do {
  2594. #ifdef HWAES_CAPABLE
  2595. if (HWAES_CAPABLE) {
  2596. HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  2597. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  2598. (block128_f) HWAES_encrypt);
  2599. # ifdef HWAES_ctr32_encrypt_blocks
  2600. gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
  2601. # else
  2602. gctx->ctr = NULL;
  2603. # endif
  2604. break;
  2605. } else
  2606. #endif
  2607. #ifdef BSAES_CAPABLE
  2608. if (BSAES_CAPABLE) {
  2609. AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  2610. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  2611. (block128_f) AES_encrypt);
  2612. gctx->ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
  2613. break;
  2614. } else
  2615. #endif
  2616. #ifdef VPAES_CAPABLE
  2617. if (VPAES_CAPABLE) {
  2618. vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  2619. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  2620. (block128_f) vpaes_encrypt);
  2621. gctx->ctr = NULL;
  2622. break;
  2623. } else
  2624. #endif
  2625. (void)0; /* terminate potentially open 'else' */
  2626. AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  2627. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  2628. (block128_f) AES_encrypt);
  2629. #ifdef AES_CTR_ASM
  2630. gctx->ctr = (ctr128_f) AES_ctr32_encrypt;
  2631. #else
  2632. gctx->ctr = NULL;
  2633. #endif
  2634. } while (0);
  2635. /*
  2636. * If we have an iv can set it directly, otherwise use saved IV.
  2637. */
  2638. if (iv == NULL && gctx->iv_set)
  2639. iv = gctx->iv;
  2640. if (iv) {
  2641. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  2642. gctx->iv_set = 1;
  2643. }
  2644. gctx->key_set = 1;
  2645. } else {
  2646. /* If key set use IV, otherwise copy */
  2647. if (gctx->key_set)
  2648. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  2649. else
  2650. memcpy(gctx->iv, iv, gctx->ivlen);
  2651. gctx->iv_set = 1;
  2652. gctx->iv_gen = 0;
  2653. }
  2654. return 1;
  2655. }
  2656. /*
  2657. * Handle TLS GCM packet format. This consists of the last portion of the IV
  2658. * followed by the payload and finally the tag. On encrypt generate IV,
  2659. * encrypt payload and write the tag. On verify retrieve IV, decrypt payload
  2660. * and verify tag.
  2661. */
  2662. static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2663. const unsigned char *in, size_t len)
  2664. {
  2665. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
  2666. int rv = -1;
  2667. /* Encrypt/decrypt must be performed in place */
  2668. if (out != in
  2669. || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
  2670. return -1;
  2671. /*
  2672. * Set IV from start of buffer or generate IV and write to start of
  2673. * buffer.
  2674. */
  2675. if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN
  2676. : EVP_CTRL_GCM_SET_IV_INV,
  2677. EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
  2678. goto err;
  2679. /* Use saved AAD */
  2680. if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len))
  2681. goto err;
  2682. /* Fix buffer and length to point to payload */
  2683. in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
  2684. out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
  2685. len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
  2686. if (ctx->encrypt) {
  2687. /* Encrypt payload */
  2688. if (gctx->ctr) {
  2689. size_t bulk = 0;
  2690. #if defined(AES_GCM_ASM)
  2691. if (len >= 32 && AES_GCM_ASM(gctx)) {
  2692. if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
  2693. return -1;
  2694. bulk = AES_gcm_encrypt(in, out, len,
  2695. gctx->gcm.key,
  2696. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2697. gctx->gcm.len.u[1] += bulk;
  2698. }
  2699. #endif
  2700. if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
  2701. in + bulk,
  2702. out + bulk,
  2703. len - bulk, gctx->ctr))
  2704. goto err;
  2705. } else {
  2706. size_t bulk = 0;
  2707. #if defined(AES_GCM_ASM2)
  2708. if (len >= 32 && AES_GCM_ASM2(gctx)) {
  2709. if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
  2710. return -1;
  2711. bulk = AES_gcm_encrypt(in, out, len,
  2712. gctx->gcm.key,
  2713. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2714. gctx->gcm.len.u[1] += bulk;
  2715. }
  2716. #endif
  2717. if (CRYPTO_gcm128_encrypt(&gctx->gcm,
  2718. in + bulk, out + bulk, len - bulk))
  2719. goto err;
  2720. }
  2721. out += len;
  2722. /* Finally write tag */
  2723. CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);
  2724. rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
  2725. } else {
  2726. /* Decrypt */
  2727. if (gctx->ctr) {
  2728. size_t bulk = 0;
  2729. #if defined(AES_GCM_ASM)
  2730. if (len >= 16 && AES_GCM_ASM(gctx)) {
  2731. if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
  2732. return -1;
  2733. bulk = AES_gcm_decrypt(in, out, len,
  2734. gctx->gcm.key,
  2735. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2736. gctx->gcm.len.u[1] += bulk;
  2737. }
  2738. #endif
  2739. if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
  2740. in + bulk,
  2741. out + bulk,
  2742. len - bulk, gctx->ctr))
  2743. goto err;
  2744. } else {
  2745. size_t bulk = 0;
  2746. #if defined(AES_GCM_ASM2)
  2747. if (len >= 16 && AES_GCM_ASM2(gctx)) {
  2748. if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
  2749. return -1;
  2750. bulk = AES_gcm_decrypt(in, out, len,
  2751. gctx->gcm.key,
  2752. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2753. gctx->gcm.len.u[1] += bulk;
  2754. }
  2755. #endif
  2756. if (CRYPTO_gcm128_decrypt(&gctx->gcm,
  2757. in + bulk, out + bulk, len - bulk))
  2758. goto err;
  2759. }
  2760. /* Retrieve tag */
  2761. CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN);
  2762. /* If tag mismatch wipe buffer */
  2763. if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) {
  2764. OPENSSL_cleanse(out, len);
  2765. goto err;
  2766. }
  2767. rv = len;
  2768. }
  2769. err:
  2770. gctx->iv_set = 0;
  2771. gctx->tls_aad_len = -1;
  2772. return rv;
  2773. }
  2774. static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2775. const unsigned char *in, size_t len)
  2776. {
  2777. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
  2778. /* If not set up, return error */
  2779. if (!gctx->key_set)
  2780. return -1;
  2781. if (gctx->tls_aad_len >= 0)
  2782. return aes_gcm_tls_cipher(ctx, out, in, len);
  2783. if (!gctx->iv_set)
  2784. return -1;
  2785. if (in) {
  2786. if (out == NULL) {
  2787. if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
  2788. return -1;
  2789. } else if (ctx->encrypt) {
  2790. if (gctx->ctr) {
  2791. size_t bulk = 0;
  2792. #if defined(AES_GCM_ASM)
  2793. if (len >= 32 && AES_GCM_ASM(gctx)) {
  2794. size_t res = (16 - gctx->gcm.mres) % 16;
  2795. if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
  2796. return -1;
  2797. bulk = AES_gcm_encrypt(in + res,
  2798. out + res, len - res,
  2799. gctx->gcm.key, gctx->gcm.Yi.c,
  2800. gctx->gcm.Xi.u);
  2801. gctx->gcm.len.u[1] += bulk;
  2802. bulk += res;
  2803. }
  2804. #endif
  2805. if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
  2806. in + bulk,
  2807. out + bulk,
  2808. len - bulk, gctx->ctr))
  2809. return -1;
  2810. } else {
  2811. size_t bulk = 0;
  2812. #if defined(AES_GCM_ASM2)
  2813. if (len >= 32 && AES_GCM_ASM2(gctx)) {
  2814. size_t res = (16 - gctx->gcm.mres) % 16;
  2815. if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
  2816. return -1;
  2817. bulk = AES_gcm_encrypt(in + res,
  2818. out + res, len - res,
  2819. gctx->gcm.key, gctx->gcm.Yi.c,
  2820. gctx->gcm.Xi.u);
  2821. gctx->gcm.len.u[1] += bulk;
  2822. bulk += res;
  2823. }
  2824. #endif
  2825. if (CRYPTO_gcm128_encrypt(&gctx->gcm,
  2826. in + bulk, out + bulk, len - bulk))
  2827. return -1;
  2828. }
  2829. } else {
  2830. if (gctx->ctr) {
  2831. size_t bulk = 0;
  2832. #if defined(AES_GCM_ASM)
  2833. if (len >= 16 && AES_GCM_ASM(gctx)) {
  2834. size_t res = (16 - gctx->gcm.mres) % 16;
  2835. if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
  2836. return -1;
  2837. bulk = AES_gcm_decrypt(in + res,
  2838. out + res, len - res,
  2839. gctx->gcm.key,
  2840. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2841. gctx->gcm.len.u[1] += bulk;
  2842. bulk += res;
  2843. }
  2844. #endif
  2845. if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
  2846. in + bulk,
  2847. out + bulk,
  2848. len - bulk, gctx->ctr))
  2849. return -1;
  2850. } else {
  2851. size_t bulk = 0;
  2852. #if defined(AES_GCM_ASM2)
  2853. if (len >= 16 && AES_GCM_ASM2(gctx)) {
  2854. size_t res = (16 - gctx->gcm.mres) % 16;
  2855. if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
  2856. return -1;
  2857. bulk = AES_gcm_decrypt(in + res,
  2858. out + res, len - res,
  2859. gctx->gcm.key,
  2860. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2861. gctx->gcm.len.u[1] += bulk;
  2862. bulk += res;
  2863. }
  2864. #endif
  2865. if (CRYPTO_gcm128_decrypt(&gctx->gcm,
  2866. in + bulk, out + bulk, len - bulk))
  2867. return -1;
  2868. }
  2869. }
  2870. return len;
  2871. } else {
  2872. if (!ctx->encrypt) {
  2873. if (gctx->taglen < 0)
  2874. return -1;
  2875. if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0)
  2876. return -1;
  2877. gctx->iv_set = 0;
  2878. return 0;
  2879. }
  2880. CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
  2881. gctx->taglen = 16;
  2882. /* Don't reuse the IV */
  2883. gctx->iv_set = 0;
  2884. return 0;
  2885. }
  2886. }
  2887. #define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \
  2888. | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
  2889. | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
  2890. | EVP_CIPH_CUSTOM_COPY)
  2891. BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM,
  2892. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  2893. BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM,
  2894. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  2895. BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM,
  2896. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  2897. static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  2898. {
  2899. EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,c);
  2900. if (type == EVP_CTRL_COPY) {
  2901. EVP_CIPHER_CTX *out = ptr;
  2902. EVP_AES_XTS_CTX *xctx_out = EVP_C_DATA(EVP_AES_XTS_CTX,out);
  2903. if (xctx->xts.key1) {
  2904. if (xctx->xts.key1 != &xctx->ks1)
  2905. return 0;
  2906. xctx_out->xts.key1 = &xctx_out->ks1;
  2907. }
  2908. if (xctx->xts.key2) {
  2909. if (xctx->xts.key2 != &xctx->ks2)
  2910. return 0;
  2911. xctx_out->xts.key2 = &xctx_out->ks2;
  2912. }
  2913. return 1;
  2914. } else if (type != EVP_CTRL_INIT)
  2915. return -1;
  2916. /* key1 and key2 are used as an indicator both key and IV are set */
  2917. xctx->xts.key1 = NULL;
  2918. xctx->xts.key2 = NULL;
  2919. return 1;
  2920. }
  2921. static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  2922. const unsigned char *iv, int enc)
  2923. {
  2924. EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
  2925. if (!iv && !key)
  2926. return 1;
  2927. if (key)
  2928. do {
  2929. #ifdef AES_XTS_ASM
  2930. xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;
  2931. #else
  2932. xctx->stream = NULL;
  2933. #endif
  2934. /* key_len is two AES keys */
  2935. #ifdef HWAES_CAPABLE
  2936. if (HWAES_CAPABLE) {
  2937. if (enc) {
  2938. HWAES_set_encrypt_key(key,
  2939. EVP_CIPHER_CTX_key_length(ctx) * 4,
  2940. &xctx->ks1.ks);
  2941. xctx->xts.block1 = (block128_f) HWAES_encrypt;
  2942. # ifdef HWAES_xts_encrypt
  2943. xctx->stream = HWAES_xts_encrypt;
  2944. # endif
  2945. } else {
  2946. HWAES_set_decrypt_key(key,
  2947. EVP_CIPHER_CTX_key_length(ctx) * 4,
  2948. &xctx->ks1.ks);
  2949. xctx->xts.block1 = (block128_f) HWAES_decrypt;
  2950. # ifdef HWAES_xts_decrypt
  2951. xctx->stream = HWAES_xts_decrypt;
  2952. #endif
  2953. }
  2954. HWAES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
  2955. EVP_CIPHER_CTX_key_length(ctx) * 4,
  2956. &xctx->ks2.ks);
  2957. xctx->xts.block2 = (block128_f) HWAES_encrypt;
  2958. xctx->xts.key1 = &xctx->ks1;
  2959. break;
  2960. } else
  2961. #endif
  2962. #ifdef BSAES_CAPABLE
  2963. if (BSAES_CAPABLE)
  2964. xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt;
  2965. else
  2966. #endif
  2967. #ifdef VPAES_CAPABLE
  2968. if (VPAES_CAPABLE) {
  2969. if (enc) {
  2970. vpaes_set_encrypt_key(key,
  2971. EVP_CIPHER_CTX_key_length(ctx) * 4,
  2972. &xctx->ks1.ks);
  2973. xctx->xts.block1 = (block128_f) vpaes_encrypt;
  2974. } else {
  2975. vpaes_set_decrypt_key(key,
  2976. EVP_CIPHER_CTX_key_length(ctx) * 4,
  2977. &xctx->ks1.ks);
  2978. xctx->xts.block1 = (block128_f) vpaes_decrypt;
  2979. }
  2980. vpaes_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
  2981. EVP_CIPHER_CTX_key_length(ctx) * 4,
  2982. &xctx->ks2.ks);
  2983. xctx->xts.block2 = (block128_f) vpaes_encrypt;
  2984. xctx->xts.key1 = &xctx->ks1;
  2985. break;
  2986. } else
  2987. #endif
  2988. (void)0; /* terminate potentially open 'else' */
  2989. if (enc) {
  2990. AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
  2991. &xctx->ks1.ks);
  2992. xctx->xts.block1 = (block128_f) AES_encrypt;
  2993. } else {
  2994. AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
  2995. &xctx->ks1.ks);
  2996. xctx->xts.block1 = (block128_f) AES_decrypt;
  2997. }
  2998. AES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
  2999. EVP_CIPHER_CTX_key_length(ctx) * 4,
  3000. &xctx->ks2.ks);
  3001. xctx->xts.block2 = (block128_f) AES_encrypt;
  3002. xctx->xts.key1 = &xctx->ks1;
  3003. } while (0);
  3004. if (iv) {
  3005. xctx->xts.key2 = &xctx->ks2;
  3006. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
  3007. }
  3008. return 1;
  3009. }
  3010. static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  3011. const unsigned char *in, size_t len)
  3012. {
  3013. EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
  3014. if (!xctx->xts.key1 || !xctx->xts.key2)
  3015. return 0;
  3016. if (!out || !in || len < AES_BLOCK_SIZE)
  3017. return 0;
  3018. if (xctx->stream)
  3019. (*xctx->stream) (in, out, len,
  3020. xctx->xts.key1, xctx->xts.key2,
  3021. EVP_CIPHER_CTX_iv_noconst(ctx));
  3022. else if (CRYPTO_xts128_encrypt(&xctx->xts, EVP_CIPHER_CTX_iv_noconst(ctx),
  3023. in, out, len,
  3024. EVP_CIPHER_CTX_encrypting(ctx)))
  3025. return 0;
  3026. return 1;
  3027. }
  3028. #define aes_xts_cleanup NULL
  3029. #define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \
  3030. | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
  3031. | EVP_CIPH_CUSTOM_COPY)
  3032. BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS)
  3033. BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS)
  3034. static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  3035. {
  3036. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,c);
  3037. switch (type) {
  3038. case EVP_CTRL_INIT:
  3039. cctx->key_set = 0;
  3040. cctx->iv_set = 0;
  3041. cctx->L = 8;
  3042. cctx->M = 12;
  3043. cctx->tag_set = 0;
  3044. cctx->len_set = 0;
  3045. cctx->tls_aad_len = -1;
  3046. return 1;
  3047. case EVP_CTRL_AEAD_TLS1_AAD:
  3048. /* Save the AAD for later use */
  3049. if (arg != EVP_AEAD_TLS1_AAD_LEN)
  3050. return 0;
  3051. memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
  3052. cctx->tls_aad_len = arg;
  3053. {
  3054. uint16_t len =
  3055. EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8
  3056. | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1];
  3057. /* Correct length for explicit IV */
  3058. if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
  3059. return 0;
  3060. len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
  3061. /* If decrypting correct for tag too */
  3062. if (!EVP_CIPHER_CTX_encrypting(c)) {
  3063. if (len < cctx->M)
  3064. return 0;
  3065. len -= cctx->M;
  3066. }
  3067. EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8;
  3068. EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff;
  3069. }
  3070. /* Extra padding: tag appended to record */
  3071. return cctx->M;
  3072. case EVP_CTRL_CCM_SET_IV_FIXED:
  3073. /* Sanity check length */
  3074. if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
  3075. return 0;
  3076. /* Just copy to first part of IV */
  3077. memcpy(EVP_CIPHER_CTX_iv_noconst(c), ptr, arg);
  3078. return 1;
  3079. case EVP_CTRL_AEAD_SET_IVLEN:
  3080. arg = 15 - arg;
  3081. /* fall thru */
  3082. case EVP_CTRL_CCM_SET_L:
  3083. if (arg < 2 || arg > 8)
  3084. return 0;
  3085. cctx->L = arg;
  3086. return 1;
  3087. case EVP_CTRL_AEAD_SET_TAG:
  3088. if ((arg & 1) || arg < 4 || arg > 16)
  3089. return 0;
  3090. if (EVP_CIPHER_CTX_encrypting(c) && ptr)
  3091. return 0;
  3092. if (ptr) {
  3093. cctx->tag_set = 1;
  3094. memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
  3095. }
  3096. cctx->M = arg;
  3097. return 1;
  3098. case EVP_CTRL_AEAD_GET_TAG:
  3099. if (!EVP_CIPHER_CTX_encrypting(c) || !cctx->tag_set)
  3100. return 0;
  3101. if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
  3102. return 0;
  3103. cctx->tag_set = 0;
  3104. cctx->iv_set = 0;
  3105. cctx->len_set = 0;
  3106. return 1;
  3107. case EVP_CTRL_COPY:
  3108. {
  3109. EVP_CIPHER_CTX *out = ptr;
  3110. EVP_AES_CCM_CTX *cctx_out = EVP_C_DATA(EVP_AES_CCM_CTX,out);
  3111. if (cctx->ccm.key) {
  3112. if (cctx->ccm.key != &cctx->ks)
  3113. return 0;
  3114. cctx_out->ccm.key = &cctx_out->ks;
  3115. }
  3116. return 1;
  3117. }
  3118. default:
  3119. return -1;
  3120. }
  3121. }
  3122. static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  3123. const unsigned char *iv, int enc)
  3124. {
  3125. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
  3126. if (!iv && !key)
  3127. return 1;
  3128. if (key)
  3129. do {
  3130. #ifdef HWAES_CAPABLE
  3131. if (HWAES_CAPABLE) {
  3132. HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3133. &cctx->ks.ks);
  3134. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  3135. &cctx->ks, (block128_f) HWAES_encrypt);
  3136. cctx->str = NULL;
  3137. cctx->key_set = 1;
  3138. break;
  3139. } else
  3140. #endif
  3141. #ifdef VPAES_CAPABLE
  3142. if (VPAES_CAPABLE) {
  3143. vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3144. &cctx->ks.ks);
  3145. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  3146. &cctx->ks, (block128_f) vpaes_encrypt);
  3147. cctx->str = NULL;
  3148. cctx->key_set = 1;
  3149. break;
  3150. }
  3151. #endif
  3152. AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3153. &cctx->ks.ks);
  3154. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  3155. &cctx->ks, (block128_f) AES_encrypt);
  3156. cctx->str = NULL;
  3157. cctx->key_set = 1;
  3158. } while (0);
  3159. if (iv) {
  3160. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
  3161. cctx->iv_set = 1;
  3162. }
  3163. return 1;
  3164. }
  3165. static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  3166. const unsigned char *in, size_t len)
  3167. {
  3168. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
  3169. CCM128_CONTEXT *ccm = &cctx->ccm;
  3170. /* Encrypt/decrypt must be performed in place */
  3171. if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M))
  3172. return -1;
  3173. /* If encrypting set explicit IV from sequence number (start of AAD) */
  3174. if (EVP_CIPHER_CTX_encrypting(ctx))
  3175. memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx),
  3176. EVP_CCM_TLS_EXPLICIT_IV_LEN);
  3177. /* Get rest of IV from explicit IV */
  3178. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx) + EVP_CCM_TLS_FIXED_IV_LEN, in,
  3179. EVP_CCM_TLS_EXPLICIT_IV_LEN);
  3180. /* Correct length value */
  3181. len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
  3182. if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), 15 - cctx->L,
  3183. len))
  3184. return -1;
  3185. /* Use saved AAD */
  3186. CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx), cctx->tls_aad_len);
  3187. /* Fix buffer to point to payload */
  3188. in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
  3189. out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
  3190. if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3191. if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
  3192. cctx->str) :
  3193. CRYPTO_ccm128_encrypt(ccm, in, out, len))
  3194. return -1;
  3195. if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M))
  3196. return -1;
  3197. return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
  3198. } else {
  3199. if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
  3200. cctx->str) :
  3201. !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
  3202. unsigned char tag[16];
  3203. if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
  3204. if (!CRYPTO_memcmp(tag, in + len, cctx->M))
  3205. return len;
  3206. }
  3207. }
  3208. OPENSSL_cleanse(out, len);
  3209. return -1;
  3210. }
  3211. }
  3212. static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  3213. const unsigned char *in, size_t len)
  3214. {
  3215. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
  3216. CCM128_CONTEXT *ccm = &cctx->ccm;
  3217. /* If not set up, return error */
  3218. if (!cctx->key_set)
  3219. return -1;
  3220. if (cctx->tls_aad_len >= 0)
  3221. return aes_ccm_tls_cipher(ctx, out, in, len);
  3222. /* EVP_*Final() doesn't return any data */
  3223. if (in == NULL && out != NULL)
  3224. return 0;
  3225. if (!cctx->iv_set)
  3226. return -1;
  3227. if (!EVP_CIPHER_CTX_encrypting(ctx) && !cctx->tag_set)
  3228. return -1;
  3229. if (!out) {
  3230. if (!in) {
  3231. if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx),
  3232. 15 - cctx->L, len))
  3233. return -1;
  3234. cctx->len_set = 1;
  3235. return len;
  3236. }
  3237. /* If have AAD need message length */
  3238. if (!cctx->len_set && len)
  3239. return -1;
  3240. CRYPTO_ccm128_aad(ccm, in, len);
  3241. return len;
  3242. }
  3243. /* If not set length yet do it */
  3244. if (!cctx->len_set) {
  3245. if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx),
  3246. 15 - cctx->L, len))
  3247. return -1;
  3248. cctx->len_set = 1;
  3249. }
  3250. if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3251. if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
  3252. cctx->str) :
  3253. CRYPTO_ccm128_encrypt(ccm, in, out, len))
  3254. return -1;
  3255. cctx->tag_set = 1;
  3256. return len;
  3257. } else {
  3258. int rv = -1;
  3259. if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
  3260. cctx->str) :
  3261. !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
  3262. unsigned char tag[16];
  3263. if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
  3264. if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx),
  3265. cctx->M))
  3266. rv = len;
  3267. }
  3268. }
  3269. if (rv == -1)
  3270. OPENSSL_cleanse(out, len);
  3271. cctx->iv_set = 0;
  3272. cctx->tag_set = 0;
  3273. cctx->len_set = 0;
  3274. return rv;
  3275. }
  3276. }
  3277. #define aes_ccm_cleanup NULL
  3278. BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM,
  3279. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3280. BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM,
  3281. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3282. BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM,
  3283. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3284. typedef struct {
  3285. union {
  3286. double align;
  3287. AES_KEY ks;
  3288. } ks;
  3289. /* Indicates if IV has been set */
  3290. unsigned char *iv;
  3291. } EVP_AES_WRAP_CTX;
  3292. static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  3293. const unsigned char *iv, int enc)
  3294. {
  3295. EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
  3296. if (!iv && !key)
  3297. return 1;
  3298. if (key) {
  3299. if (EVP_CIPHER_CTX_encrypting(ctx))
  3300. AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3301. &wctx->ks.ks);
  3302. else
  3303. AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3304. &wctx->ks.ks);
  3305. if (!iv)
  3306. wctx->iv = NULL;
  3307. }
  3308. if (iv) {
  3309. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, EVP_CIPHER_CTX_iv_length(ctx));
  3310. wctx->iv = EVP_CIPHER_CTX_iv_noconst(ctx);
  3311. }
  3312. return 1;
  3313. }
  3314. static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  3315. const unsigned char *in, size_t inlen)
  3316. {
  3317. EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
  3318. size_t rv;
  3319. /* AES wrap with padding has IV length of 4, without padding 8 */
  3320. int pad = EVP_CIPHER_CTX_iv_length(ctx) == 4;
  3321. /* No final operation so always return zero length */
  3322. if (!in)
  3323. return 0;
  3324. /* Input length must always be non-zero */
  3325. if (!inlen)
  3326. return -1;
  3327. /* If decrypting need at least 16 bytes and multiple of 8 */
  3328. if (!EVP_CIPHER_CTX_encrypting(ctx) && (inlen < 16 || inlen & 0x7))
  3329. return -1;
  3330. /* If not padding input must be multiple of 8 */
  3331. if (!pad && inlen & 0x7)
  3332. return -1;
  3333. if (is_partially_overlapping(out, in, inlen)) {
  3334. EVPerr(EVP_F_AES_WRAP_CIPHER, EVP_R_PARTIALLY_OVERLAPPING);
  3335. return 0;
  3336. }
  3337. if (!out) {
  3338. if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3339. /* If padding round up to multiple of 8 */
  3340. if (pad)
  3341. inlen = (inlen + 7) / 8 * 8;
  3342. /* 8 byte prefix */
  3343. return inlen + 8;
  3344. } else {
  3345. /*
  3346. * If not padding output will be exactly 8 bytes smaller than
  3347. * input. If padding it will be at least 8 bytes smaller but we
  3348. * don't know how much.
  3349. */
  3350. return inlen - 8;
  3351. }
  3352. }
  3353. if (pad) {
  3354. if (EVP_CIPHER_CTX_encrypting(ctx))
  3355. rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv,
  3356. out, in, inlen,
  3357. (block128_f) AES_encrypt);
  3358. else
  3359. rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv,
  3360. out, in, inlen,
  3361. (block128_f) AES_decrypt);
  3362. } else {
  3363. if (EVP_CIPHER_CTX_encrypting(ctx))
  3364. rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv,
  3365. out, in, inlen, (block128_f) AES_encrypt);
  3366. else
  3367. rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv,
  3368. out, in, inlen, (block128_f) AES_decrypt);
  3369. }
  3370. return rv ? (int)rv : -1;
  3371. }
  3372. #define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \
  3373. | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
  3374. | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1)
  3375. static const EVP_CIPHER aes_128_wrap = {
  3376. NID_id_aes128_wrap,
  3377. 8, 16, 8, WRAP_FLAGS,
  3378. aes_wrap_init_key, aes_wrap_cipher,
  3379. NULL,
  3380. sizeof(EVP_AES_WRAP_CTX),
  3381. NULL, NULL, NULL, NULL
  3382. };
  3383. const EVP_CIPHER *EVP_aes_128_wrap(void)
  3384. {
  3385. return &aes_128_wrap;
  3386. }
  3387. static const EVP_CIPHER aes_192_wrap = {
  3388. NID_id_aes192_wrap,
  3389. 8, 24, 8, WRAP_FLAGS,
  3390. aes_wrap_init_key, aes_wrap_cipher,
  3391. NULL,
  3392. sizeof(EVP_AES_WRAP_CTX),
  3393. NULL, NULL, NULL, NULL
  3394. };
  3395. const EVP_CIPHER *EVP_aes_192_wrap(void)
  3396. {
  3397. return &aes_192_wrap;
  3398. }
  3399. static const EVP_CIPHER aes_256_wrap = {
  3400. NID_id_aes256_wrap,
  3401. 8, 32, 8, WRAP_FLAGS,
  3402. aes_wrap_init_key, aes_wrap_cipher,
  3403. NULL,
  3404. sizeof(EVP_AES_WRAP_CTX),
  3405. NULL, NULL, NULL, NULL
  3406. };
  3407. const EVP_CIPHER *EVP_aes_256_wrap(void)
  3408. {
  3409. return &aes_256_wrap;
  3410. }
  3411. static const EVP_CIPHER aes_128_wrap_pad = {
  3412. NID_id_aes128_wrap_pad,
  3413. 8, 16, 4, WRAP_FLAGS,
  3414. aes_wrap_init_key, aes_wrap_cipher,
  3415. NULL,
  3416. sizeof(EVP_AES_WRAP_CTX),
  3417. NULL, NULL, NULL, NULL
  3418. };
  3419. const EVP_CIPHER *EVP_aes_128_wrap_pad(void)
  3420. {
  3421. return &aes_128_wrap_pad;
  3422. }
  3423. static const EVP_CIPHER aes_192_wrap_pad = {
  3424. NID_id_aes192_wrap_pad,
  3425. 8, 24, 4, WRAP_FLAGS,
  3426. aes_wrap_init_key, aes_wrap_cipher,
  3427. NULL,
  3428. sizeof(EVP_AES_WRAP_CTX),
  3429. NULL, NULL, NULL, NULL
  3430. };
  3431. const EVP_CIPHER *EVP_aes_192_wrap_pad(void)
  3432. {
  3433. return &aes_192_wrap_pad;
  3434. }
  3435. static const EVP_CIPHER aes_256_wrap_pad = {
  3436. NID_id_aes256_wrap_pad,
  3437. 8, 32, 4, WRAP_FLAGS,
  3438. aes_wrap_init_key, aes_wrap_cipher,
  3439. NULL,
  3440. sizeof(EVP_AES_WRAP_CTX),
  3441. NULL, NULL, NULL, NULL
  3442. };
  3443. const EVP_CIPHER *EVP_aes_256_wrap_pad(void)
  3444. {
  3445. return &aes_256_wrap_pad;
  3446. }
  3447. #ifndef OPENSSL_NO_OCB
  3448. static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  3449. {
  3450. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
  3451. EVP_CIPHER_CTX *newc;
  3452. EVP_AES_OCB_CTX *new_octx;
  3453. switch (type) {
  3454. case EVP_CTRL_INIT:
  3455. octx->key_set = 0;
  3456. octx->iv_set = 0;
  3457. octx->ivlen = EVP_CIPHER_CTX_iv_length(c);
  3458. octx->iv = EVP_CIPHER_CTX_iv_noconst(c);
  3459. octx->taglen = 16;
  3460. octx->data_buf_len = 0;
  3461. octx->aad_buf_len = 0;
  3462. return 1;
  3463. case EVP_CTRL_AEAD_SET_IVLEN:
  3464. /* IV len must be 1 to 15 */
  3465. if (arg <= 0 || arg > 15)
  3466. return 0;
  3467. octx->ivlen = arg;
  3468. return 1;
  3469. case EVP_CTRL_AEAD_SET_TAG:
  3470. if (!ptr) {
  3471. /* Tag len must be 0 to 16 */
  3472. if (arg < 0 || arg > 16)
  3473. return 0;
  3474. octx->taglen = arg;
  3475. return 1;
  3476. }
  3477. if (arg != octx->taglen || EVP_CIPHER_CTX_encrypting(c))
  3478. return 0;
  3479. memcpy(octx->tag, ptr, arg);
  3480. return 1;
  3481. case EVP_CTRL_AEAD_GET_TAG:
  3482. if (arg != octx->taglen || !EVP_CIPHER_CTX_encrypting(c))
  3483. return 0;
  3484. memcpy(ptr, octx->tag, arg);
  3485. return 1;
  3486. case EVP_CTRL_COPY:
  3487. newc = (EVP_CIPHER_CTX *)ptr;
  3488. new_octx = EVP_C_DATA(EVP_AES_OCB_CTX,newc);
  3489. return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb,
  3490. &new_octx->ksenc.ks,
  3491. &new_octx->ksdec.ks);
  3492. default:
  3493. return -1;
  3494. }
  3495. }
  3496. # ifdef HWAES_CAPABLE
  3497. # ifdef HWAES_ocb_encrypt
  3498. void HWAES_ocb_encrypt(const unsigned char *in, unsigned char *out,
  3499. size_t blocks, const void *key,
  3500. size_t start_block_num,
  3501. unsigned char offset_i[16],
  3502. const unsigned char L_[][16],
  3503. unsigned char checksum[16]);
  3504. # else
  3505. # define HWAES_ocb_encrypt ((ocb128_f)NULL)
  3506. # endif
  3507. # ifdef HWAES_ocb_decrypt
  3508. void HWAES_ocb_decrypt(const unsigned char *in, unsigned char *out,
  3509. size_t blocks, const void *key,
  3510. size_t start_block_num,
  3511. unsigned char offset_i[16],
  3512. const unsigned char L_[][16],
  3513. unsigned char checksum[16]);
  3514. # else
  3515. # define HWAES_ocb_decrypt ((ocb128_f)NULL)
  3516. # endif
  3517. # endif
  3518. static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  3519. const unsigned char *iv, int enc)
  3520. {
  3521. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
  3522. if (!iv && !key)
  3523. return 1;
  3524. if (key) {
  3525. do {
  3526. /*
  3527. * We set both the encrypt and decrypt key here because decrypt
  3528. * needs both. We could possibly optimise to remove setting the
  3529. * decrypt for an encryption operation.
  3530. */
  3531. # ifdef HWAES_CAPABLE
  3532. if (HWAES_CAPABLE) {
  3533. HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3534. &octx->ksenc.ks);
  3535. HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3536. &octx->ksdec.ks);
  3537. if (!CRYPTO_ocb128_init(&octx->ocb,
  3538. &octx->ksenc.ks, &octx->ksdec.ks,
  3539. (block128_f) HWAES_encrypt,
  3540. (block128_f) HWAES_decrypt,
  3541. enc ? HWAES_ocb_encrypt
  3542. : HWAES_ocb_decrypt))
  3543. return 0;
  3544. break;
  3545. }
  3546. # endif
  3547. # ifdef VPAES_CAPABLE
  3548. if (VPAES_CAPABLE) {
  3549. vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3550. &octx->ksenc.ks);
  3551. vpaes_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3552. &octx->ksdec.ks);
  3553. if (!CRYPTO_ocb128_init(&octx->ocb,
  3554. &octx->ksenc.ks, &octx->ksdec.ks,
  3555. (block128_f) vpaes_encrypt,
  3556. (block128_f) vpaes_decrypt,
  3557. NULL))
  3558. return 0;
  3559. break;
  3560. }
  3561. # endif
  3562. AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3563. &octx->ksenc.ks);
  3564. AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3565. &octx->ksdec.ks);
  3566. if (!CRYPTO_ocb128_init(&octx->ocb,
  3567. &octx->ksenc.ks, &octx->ksdec.ks,
  3568. (block128_f) AES_encrypt,
  3569. (block128_f) AES_decrypt,
  3570. NULL))
  3571. return 0;
  3572. }
  3573. while (0);
  3574. /*
  3575. * If we have an iv we can set it directly, otherwise use saved IV.
  3576. */
  3577. if (iv == NULL && octx->iv_set)
  3578. iv = octx->iv;
  3579. if (iv) {
  3580. if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
  3581. != 1)
  3582. return 0;
  3583. octx->iv_set = 1;
  3584. }
  3585. octx->key_set = 1;
  3586. } else {
  3587. /* If key set use IV, otherwise copy */
  3588. if (octx->key_set)
  3589. CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
  3590. else
  3591. memcpy(octx->iv, iv, octx->ivlen);
  3592. octx->iv_set = 1;
  3593. }
  3594. return 1;
  3595. }
  3596. static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  3597. const unsigned char *in, size_t len)
  3598. {
  3599. unsigned char *buf;
  3600. int *buf_len;
  3601. int written_len = 0;
  3602. size_t trailing_len;
  3603. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
  3604. /* If IV or Key not set then return error */
  3605. if (!octx->iv_set)
  3606. return -1;
  3607. if (!octx->key_set)
  3608. return -1;
  3609. if (in != NULL) {
  3610. /*
  3611. * Need to ensure we are only passing full blocks to low level OCB
  3612. * routines. We do it here rather than in EVP_EncryptUpdate/
  3613. * EVP_DecryptUpdate because we need to pass full blocks of AAD too
  3614. * and those routines don't support that
  3615. */
  3616. /* Are we dealing with AAD or normal data here? */
  3617. if (out == NULL) {
  3618. buf = octx->aad_buf;
  3619. buf_len = &(octx->aad_buf_len);
  3620. } else {
  3621. buf = octx->data_buf;
  3622. buf_len = &(octx->data_buf_len);
  3623. if (is_partially_overlapping(out + *buf_len, in, len)) {
  3624. EVPerr(EVP_F_AES_OCB_CIPHER, EVP_R_PARTIALLY_OVERLAPPING);
  3625. return 0;
  3626. }
  3627. }
  3628. /*
  3629. * If we've got a partially filled buffer from a previous call then
  3630. * use that data first
  3631. */
  3632. if (*buf_len > 0) {
  3633. unsigned int remaining;
  3634. remaining = AES_BLOCK_SIZE - (*buf_len);
  3635. if (remaining > len) {
  3636. memcpy(buf + (*buf_len), in, len);
  3637. *(buf_len) += len;
  3638. return 0;
  3639. }
  3640. memcpy(buf + (*buf_len), in, remaining);
  3641. /*
  3642. * If we get here we've filled the buffer, so process it
  3643. */
  3644. len -= remaining;
  3645. in += remaining;
  3646. if (out == NULL) {
  3647. if (!CRYPTO_ocb128_aad(&octx->ocb, buf, AES_BLOCK_SIZE))
  3648. return -1;
  3649. } else if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3650. if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out,
  3651. AES_BLOCK_SIZE))
  3652. return -1;
  3653. } else {
  3654. if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out,
  3655. AES_BLOCK_SIZE))
  3656. return -1;
  3657. }
  3658. written_len = AES_BLOCK_SIZE;
  3659. *buf_len = 0;
  3660. if (out != NULL)
  3661. out += AES_BLOCK_SIZE;
  3662. }
  3663. /* Do we have a partial block to handle at the end? */
  3664. trailing_len = len % AES_BLOCK_SIZE;
  3665. /*
  3666. * If we've got some full blocks to handle, then process these first
  3667. */
  3668. if (len != trailing_len) {
  3669. if (out == NULL) {
  3670. if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len))
  3671. return -1;
  3672. } else if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3673. if (!CRYPTO_ocb128_encrypt
  3674. (&octx->ocb, in, out, len - trailing_len))
  3675. return -1;
  3676. } else {
  3677. if (!CRYPTO_ocb128_decrypt
  3678. (&octx->ocb, in, out, len - trailing_len))
  3679. return -1;
  3680. }
  3681. written_len += len - trailing_len;
  3682. in += len - trailing_len;
  3683. }
  3684. /* Handle any trailing partial block */
  3685. if (trailing_len > 0) {
  3686. memcpy(buf, in, trailing_len);
  3687. *buf_len = trailing_len;
  3688. }
  3689. return written_len;
  3690. } else {
  3691. /*
  3692. * First of all empty the buffer of any partial block that we might
  3693. * have been provided - both for data and AAD
  3694. */
  3695. if (octx->data_buf_len > 0) {
  3696. if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3697. if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out,
  3698. octx->data_buf_len))
  3699. return -1;
  3700. } else {
  3701. if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out,
  3702. octx->data_buf_len))
  3703. return -1;
  3704. }
  3705. written_len = octx->data_buf_len;
  3706. octx->data_buf_len = 0;
  3707. }
  3708. if (octx->aad_buf_len > 0) {
  3709. if (!CRYPTO_ocb128_aad
  3710. (&octx->ocb, octx->aad_buf, octx->aad_buf_len))
  3711. return -1;
  3712. octx->aad_buf_len = 0;
  3713. }
  3714. /* If decrypting then verify */
  3715. if (!EVP_CIPHER_CTX_encrypting(ctx)) {
  3716. if (octx->taglen < 0)
  3717. return -1;
  3718. if (CRYPTO_ocb128_finish(&octx->ocb,
  3719. octx->tag, octx->taglen) != 0)
  3720. return -1;
  3721. octx->iv_set = 0;
  3722. return written_len;
  3723. }
  3724. /* If encrypting then just get the tag */
  3725. if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1)
  3726. return -1;
  3727. /* Don't reuse the IV */
  3728. octx->iv_set = 0;
  3729. return written_len;
  3730. }
  3731. }
  3732. static int aes_ocb_cleanup(EVP_CIPHER_CTX *c)
  3733. {
  3734. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
  3735. CRYPTO_ocb128_cleanup(&octx->ocb);
  3736. return 1;
  3737. }
  3738. BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB,
  3739. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3740. BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB,
  3741. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3742. BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB,
  3743. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3744. #endif /* OPENSSL_NO_OCB */