e_aes.c 143 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289
  1. /*
  2. * Copyright 2001-2019 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the OpenSSL license (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. #include <openssl/opensslconf.h>
  10. #include <openssl/crypto.h>
  11. #include <openssl/evp.h>
  12. #include <openssl/err.h>
  13. #include <string.h>
  14. #include <assert.h>
  15. #include <openssl/aes.h>
  16. #include "internal/evp_int.h"
  17. #include "modes_lcl.h"
  18. #include <openssl/rand.h>
  19. #include "evp_locl.h"
  20. typedef struct {
  21. union {
  22. double align;
  23. AES_KEY ks;
  24. } ks;
  25. block128_f block;
  26. union {
  27. cbc128_f cbc;
  28. ctr128_f ctr;
  29. } stream;
  30. } EVP_AES_KEY;
  31. typedef struct {
  32. union {
  33. double align;
  34. AES_KEY ks;
  35. } ks; /* AES key schedule to use */
  36. int key_set; /* Set if key initialised */
  37. int iv_set; /* Set if an iv is set */
  38. GCM128_CONTEXT gcm;
  39. unsigned char *iv; /* Temporary IV store */
  40. int ivlen; /* IV length */
  41. int taglen;
  42. int iv_gen; /* It is OK to generate IVs */
  43. int tls_aad_len; /* TLS AAD length */
  44. ctr128_f ctr;
  45. } EVP_AES_GCM_CTX;
  46. typedef struct {
  47. union {
  48. double align;
  49. AES_KEY ks;
  50. } ks1, ks2; /* AES key schedules to use */
  51. XTS128_CONTEXT xts;
  52. void (*stream) (const unsigned char *in,
  53. unsigned char *out, size_t length,
  54. const AES_KEY *key1, const AES_KEY *key2,
  55. const unsigned char iv[16]);
  56. } EVP_AES_XTS_CTX;
  57. typedef struct {
  58. union {
  59. double align;
  60. AES_KEY ks;
  61. } ks; /* AES key schedule to use */
  62. int key_set; /* Set if key initialised */
  63. int iv_set; /* Set if an iv is set */
  64. int tag_set; /* Set if tag is valid */
  65. int len_set; /* Set if message length set */
  66. int L, M; /* L and M parameters from RFC3610 */
  67. int tls_aad_len; /* TLS AAD length */
  68. CCM128_CONTEXT ccm;
  69. ccm128_f str;
  70. } EVP_AES_CCM_CTX;
  71. #ifndef OPENSSL_NO_OCB
  72. typedef struct {
  73. union {
  74. double align;
  75. AES_KEY ks;
  76. } ksenc; /* AES key schedule to use for encryption */
  77. union {
  78. double align;
  79. AES_KEY ks;
  80. } ksdec; /* AES key schedule to use for decryption */
  81. int key_set; /* Set if key initialised */
  82. int iv_set; /* Set if an iv is set */
  83. OCB128_CONTEXT ocb;
  84. unsigned char *iv; /* Temporary IV store */
  85. unsigned char tag[16];
  86. unsigned char data_buf[16]; /* Store partial data blocks */
  87. unsigned char aad_buf[16]; /* Store partial AAD blocks */
  88. int data_buf_len;
  89. int aad_buf_len;
  90. int ivlen; /* IV length */
  91. int taglen;
  92. } EVP_AES_OCB_CTX;
  93. #endif
  94. #define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4))
  95. #ifdef VPAES_ASM
  96. int vpaes_set_encrypt_key(const unsigned char *userKey, int bits,
  97. AES_KEY *key);
  98. int vpaes_set_decrypt_key(const unsigned char *userKey, int bits,
  99. AES_KEY *key);
  100. void vpaes_encrypt(const unsigned char *in, unsigned char *out,
  101. const AES_KEY *key);
  102. void vpaes_decrypt(const unsigned char *in, unsigned char *out,
  103. const AES_KEY *key);
  104. void vpaes_cbc_encrypt(const unsigned char *in,
  105. unsigned char *out,
  106. size_t length,
  107. const AES_KEY *key, unsigned char *ivec, int enc);
  108. #endif
  109. #ifdef BSAES_ASM
  110. void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
  111. size_t length, const AES_KEY *key,
  112. unsigned char ivec[16], int enc);
  113. void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
  114. size_t len, const AES_KEY *key,
  115. const unsigned char ivec[16]);
  116. void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out,
  117. size_t len, const AES_KEY *key1,
  118. const AES_KEY *key2, const unsigned char iv[16]);
  119. void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out,
  120. size_t len, const AES_KEY *key1,
  121. const AES_KEY *key2, const unsigned char iv[16]);
  122. #endif
  123. #ifdef AES_CTR_ASM
  124. void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
  125. size_t blocks, const AES_KEY *key,
  126. const unsigned char ivec[AES_BLOCK_SIZE]);
  127. #endif
  128. #ifdef AES_XTS_ASM
  129. void AES_xts_encrypt(const unsigned char *inp, unsigned char *out, size_t len,
  130. const AES_KEY *key1, const AES_KEY *key2,
  131. const unsigned char iv[16]);
  132. void AES_xts_decrypt(const unsigned char *inp, unsigned char *out, size_t len,
  133. const AES_KEY *key1, const AES_KEY *key2,
  134. const unsigned char iv[16]);
  135. #endif
  136. /* increment counter (64-bit int) by 1 */
  137. static void ctr64_inc(unsigned char *counter)
  138. {
  139. int n = 8;
  140. unsigned char c;
  141. do {
  142. --n;
  143. c = counter[n];
  144. ++c;
  145. counter[n] = c;
  146. if (c)
  147. return;
  148. } while (n);
  149. }
  150. #if defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC))
  151. # include "ppc_arch.h"
  152. # ifdef VPAES_ASM
  153. # define VPAES_CAPABLE (OPENSSL_ppccap_P & PPC_ALTIVEC)
  154. # endif
  155. # define HWAES_CAPABLE (OPENSSL_ppccap_P & PPC_CRYPTO207)
  156. # define HWAES_set_encrypt_key aes_p8_set_encrypt_key
  157. # define HWAES_set_decrypt_key aes_p8_set_decrypt_key
  158. # define HWAES_encrypt aes_p8_encrypt
  159. # define HWAES_decrypt aes_p8_decrypt
  160. # define HWAES_cbc_encrypt aes_p8_cbc_encrypt
  161. # define HWAES_ctr32_encrypt_blocks aes_p8_ctr32_encrypt_blocks
  162. # define HWAES_xts_encrypt aes_p8_xts_encrypt
  163. # define HWAES_xts_decrypt aes_p8_xts_decrypt
  164. #endif
  165. #if !defined(OPENSSL_NO_ASM) && ( \
  166. ((defined(__i386) || defined(__i386__) || \
  167. defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \
  168. defined(__x86_64) || defined(__x86_64__) || \
  169. defined(_M_AMD64) || defined(_M_X64) )
  170. extern unsigned int OPENSSL_ia32cap_P[];
  171. # ifdef VPAES_ASM
  172. # define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
  173. # endif
  174. # ifdef BSAES_ASM
  175. # define BSAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
  176. # endif
  177. /*
  178. * AES-NI section
  179. */
  180. # define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32)))
  181. int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
  182. AES_KEY *key);
  183. int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
  184. AES_KEY *key);
  185. void aesni_encrypt(const unsigned char *in, unsigned char *out,
  186. const AES_KEY *key);
  187. void aesni_decrypt(const unsigned char *in, unsigned char *out,
  188. const AES_KEY *key);
  189. void aesni_ecb_encrypt(const unsigned char *in,
  190. unsigned char *out,
  191. size_t length, const AES_KEY *key, int enc);
  192. void aesni_cbc_encrypt(const unsigned char *in,
  193. unsigned char *out,
  194. size_t length,
  195. const AES_KEY *key, unsigned char *ivec, int enc);
  196. void aesni_ctr32_encrypt_blocks(const unsigned char *in,
  197. unsigned char *out,
  198. size_t blocks,
  199. const void *key, const unsigned char *ivec);
  200. void aesni_xts_encrypt(const unsigned char *in,
  201. unsigned char *out,
  202. size_t length,
  203. const AES_KEY *key1, const AES_KEY *key2,
  204. const unsigned char iv[16]);
  205. void aesni_xts_decrypt(const unsigned char *in,
  206. unsigned char *out,
  207. size_t length,
  208. const AES_KEY *key1, const AES_KEY *key2,
  209. const unsigned char iv[16]);
  210. void aesni_ccm64_encrypt_blocks(const unsigned char *in,
  211. unsigned char *out,
  212. size_t blocks,
  213. const void *key,
  214. const unsigned char ivec[16],
  215. unsigned char cmac[16]);
  216. void aesni_ccm64_decrypt_blocks(const unsigned char *in,
  217. unsigned char *out,
  218. size_t blocks,
  219. const void *key,
  220. const unsigned char ivec[16],
  221. unsigned char cmac[16]);
  222. # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
  223. size_t aesni_gcm_encrypt(const unsigned char *in,
  224. unsigned char *out,
  225. size_t len,
  226. const void *key, unsigned char ivec[16], u64 *Xi);
  227. # define AES_gcm_encrypt aesni_gcm_encrypt
  228. size_t aesni_gcm_decrypt(const unsigned char *in,
  229. unsigned char *out,
  230. size_t len,
  231. const void *key, unsigned char ivec[16], u64 *Xi);
  232. # define AES_gcm_decrypt aesni_gcm_decrypt
  233. void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *in,
  234. size_t len);
  235. # define AES_GCM_ASM(gctx) (gctx->ctr==aesni_ctr32_encrypt_blocks && \
  236. gctx->gcm.ghash==gcm_ghash_avx)
  237. # define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \
  238. gctx->gcm.ghash==gcm_ghash_avx)
  239. # undef AES_GCM_ASM2 /* minor size optimization */
  240. # endif
  241. static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  242. const unsigned char *iv, int enc)
  243. {
  244. int ret, mode;
  245. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  246. mode = EVP_CIPHER_CTX_mode(ctx);
  247. if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
  248. && !enc) {
  249. ret = aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  250. &dat->ks.ks);
  251. dat->block = (block128_f) aesni_decrypt;
  252. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  253. (cbc128_f) aesni_cbc_encrypt : NULL;
  254. } else {
  255. ret = aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  256. &dat->ks.ks);
  257. dat->block = (block128_f) aesni_encrypt;
  258. if (mode == EVP_CIPH_CBC_MODE)
  259. dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt;
  260. else if (mode == EVP_CIPH_CTR_MODE)
  261. dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
  262. else
  263. dat->stream.cbc = NULL;
  264. }
  265. if (ret < 0) {
  266. EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
  267. return 0;
  268. }
  269. return 1;
  270. }
  271. static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  272. const unsigned char *in, size_t len)
  273. {
  274. aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
  275. EVP_CIPHER_CTX_iv_noconst(ctx),
  276. EVP_CIPHER_CTX_encrypting(ctx));
  277. return 1;
  278. }
  279. static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  280. const unsigned char *in, size_t len)
  281. {
  282. size_t bl = EVP_CIPHER_CTX_block_size(ctx);
  283. if (len < bl)
  284. return 1;
  285. aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
  286. EVP_CIPHER_CTX_encrypting(ctx));
  287. return 1;
  288. }
  289. # define aesni_ofb_cipher aes_ofb_cipher
  290. static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  291. const unsigned char *in, size_t len);
  292. # define aesni_cfb_cipher aes_cfb_cipher
  293. static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  294. const unsigned char *in, size_t len);
  295. # define aesni_cfb8_cipher aes_cfb8_cipher
  296. static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  297. const unsigned char *in, size_t len);
  298. # define aesni_cfb1_cipher aes_cfb1_cipher
  299. static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  300. const unsigned char *in, size_t len);
  301. # define aesni_ctr_cipher aes_ctr_cipher
  302. static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  303. const unsigned char *in, size_t len);
  304. static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  305. const unsigned char *iv, int enc)
  306. {
  307. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
  308. if (!iv && !key)
  309. return 1;
  310. if (key) {
  311. aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  312. &gctx->ks.ks);
  313. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt);
  314. gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
  315. /*
  316. * If we have an iv can set it directly, otherwise use saved IV.
  317. */
  318. if (iv == NULL && gctx->iv_set)
  319. iv = gctx->iv;
  320. if (iv) {
  321. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  322. gctx->iv_set = 1;
  323. }
  324. gctx->key_set = 1;
  325. } else {
  326. /* If key set use IV, otherwise copy */
  327. if (gctx->key_set)
  328. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  329. else
  330. memcpy(gctx->iv, iv, gctx->ivlen);
  331. gctx->iv_set = 1;
  332. gctx->iv_gen = 0;
  333. }
  334. return 1;
  335. }
  336. # define aesni_gcm_cipher aes_gcm_cipher
  337. static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  338. const unsigned char *in, size_t len);
  339. static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  340. const unsigned char *iv, int enc)
  341. {
  342. EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
  343. if (!iv && !key)
  344. return 1;
  345. if (key) {
  346. /* The key is two half length keys in reality */
  347. const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2;
  348. /*
  349. * Verify that the two keys are different.
  350. *
  351. * This addresses Rogaway's vulnerability.
  352. * See comment in aes_xts_init_key() below.
  353. */
  354. if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
  355. EVPerr(EVP_F_AESNI_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS);
  356. return 0;
  357. }
  358. /* key_len is two AES keys */
  359. if (enc) {
  360. aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
  361. &xctx->ks1.ks);
  362. xctx->xts.block1 = (block128_f) aesni_encrypt;
  363. xctx->stream = aesni_xts_encrypt;
  364. } else {
  365. aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
  366. &xctx->ks1.ks);
  367. xctx->xts.block1 = (block128_f) aesni_decrypt;
  368. xctx->stream = aesni_xts_decrypt;
  369. }
  370. aesni_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
  371. EVP_CIPHER_CTX_key_length(ctx) * 4,
  372. &xctx->ks2.ks);
  373. xctx->xts.block2 = (block128_f) aesni_encrypt;
  374. xctx->xts.key1 = &xctx->ks1;
  375. }
  376. if (iv) {
  377. xctx->xts.key2 = &xctx->ks2;
  378. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
  379. }
  380. return 1;
  381. }
  382. # define aesni_xts_cipher aes_xts_cipher
  383. static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  384. const unsigned char *in, size_t len);
  385. static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  386. const unsigned char *iv, int enc)
  387. {
  388. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
  389. if (!iv && !key)
  390. return 1;
  391. if (key) {
  392. aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  393. &cctx->ks.ks);
  394. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  395. &cctx->ks, (block128_f) aesni_encrypt);
  396. cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks :
  397. (ccm128_f) aesni_ccm64_decrypt_blocks;
  398. cctx->key_set = 1;
  399. }
  400. if (iv) {
  401. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
  402. cctx->iv_set = 1;
  403. }
  404. return 1;
  405. }
  406. # define aesni_ccm_cipher aes_ccm_cipher
  407. static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  408. const unsigned char *in, size_t len);
  409. # ifndef OPENSSL_NO_OCB
  410. void aesni_ocb_encrypt(const unsigned char *in, unsigned char *out,
  411. size_t blocks, const void *key,
  412. size_t start_block_num,
  413. unsigned char offset_i[16],
  414. const unsigned char L_[][16],
  415. unsigned char checksum[16]);
  416. void aesni_ocb_decrypt(const unsigned char *in, unsigned char *out,
  417. size_t blocks, const void *key,
  418. size_t start_block_num,
  419. unsigned char offset_i[16],
  420. const unsigned char L_[][16],
  421. unsigned char checksum[16]);
  422. static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  423. const unsigned char *iv, int enc)
  424. {
  425. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
  426. if (!iv && !key)
  427. return 1;
  428. if (key) {
  429. do {
  430. /*
  431. * We set both the encrypt and decrypt key here because decrypt
  432. * needs both. We could possibly optimise to remove setting the
  433. * decrypt for an encryption operation.
  434. */
  435. aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  436. &octx->ksenc.ks);
  437. aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  438. &octx->ksdec.ks);
  439. if (!CRYPTO_ocb128_init(&octx->ocb,
  440. &octx->ksenc.ks, &octx->ksdec.ks,
  441. (block128_f) aesni_encrypt,
  442. (block128_f) aesni_decrypt,
  443. enc ? aesni_ocb_encrypt
  444. : aesni_ocb_decrypt))
  445. return 0;
  446. }
  447. while (0);
  448. /*
  449. * If we have an iv we can set it directly, otherwise use saved IV.
  450. */
  451. if (iv == NULL && octx->iv_set)
  452. iv = octx->iv;
  453. if (iv) {
  454. if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
  455. != 1)
  456. return 0;
  457. octx->iv_set = 1;
  458. }
  459. octx->key_set = 1;
  460. } else {
  461. /* If key set use IV, otherwise copy */
  462. if (octx->key_set)
  463. CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
  464. else
  465. memcpy(octx->iv, iv, octx->ivlen);
  466. octx->iv_set = 1;
  467. }
  468. return 1;
  469. }
  470. # define aesni_ocb_cipher aes_ocb_cipher
  471. static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  472. const unsigned char *in, size_t len);
  473. # endif /* OPENSSL_NO_OCB */
  474. # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
  475. static const EVP_CIPHER aesni_##keylen##_##mode = { \
  476. nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
  477. flags|EVP_CIPH_##MODE##_MODE, \
  478. aesni_init_key, \
  479. aesni_##mode##_cipher, \
  480. NULL, \
  481. sizeof(EVP_AES_KEY), \
  482. NULL,NULL,NULL,NULL }; \
  483. static const EVP_CIPHER aes_##keylen##_##mode = { \
  484. nid##_##keylen##_##nmode,blocksize, \
  485. keylen/8,ivlen, \
  486. flags|EVP_CIPH_##MODE##_MODE, \
  487. aes_init_key, \
  488. aes_##mode##_cipher, \
  489. NULL, \
  490. sizeof(EVP_AES_KEY), \
  491. NULL,NULL,NULL,NULL }; \
  492. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  493. { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
  494. # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
  495. static const EVP_CIPHER aesni_##keylen##_##mode = { \
  496. nid##_##keylen##_##mode,blocksize, \
  497. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  498. flags|EVP_CIPH_##MODE##_MODE, \
  499. aesni_##mode##_init_key, \
  500. aesni_##mode##_cipher, \
  501. aes_##mode##_cleanup, \
  502. sizeof(EVP_AES_##MODE##_CTX), \
  503. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  504. static const EVP_CIPHER aes_##keylen##_##mode = { \
  505. nid##_##keylen##_##mode,blocksize, \
  506. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  507. flags|EVP_CIPH_##MODE##_MODE, \
  508. aes_##mode##_init_key, \
  509. aes_##mode##_cipher, \
  510. aes_##mode##_cleanup, \
  511. sizeof(EVP_AES_##MODE##_CTX), \
  512. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  513. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  514. { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
  515. #elif defined(AES_ASM) && (defined(__sparc) || defined(__sparc__))
  516. # include "sparc_arch.h"
  517. extern unsigned int OPENSSL_sparcv9cap_P[];
  518. /*
  519. * Initial Fujitsu SPARC64 X support
  520. */
  521. # define HWAES_CAPABLE (OPENSSL_sparcv9cap_P[0] & SPARCV9_FJAESX)
  522. # define HWAES_set_encrypt_key aes_fx_set_encrypt_key
  523. # define HWAES_set_decrypt_key aes_fx_set_decrypt_key
  524. # define HWAES_encrypt aes_fx_encrypt
  525. # define HWAES_decrypt aes_fx_decrypt
  526. # define HWAES_cbc_encrypt aes_fx_cbc_encrypt
  527. # define HWAES_ctr32_encrypt_blocks aes_fx_ctr32_encrypt_blocks
  528. # define SPARC_AES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_AES)
  529. void aes_t4_set_encrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
  530. void aes_t4_set_decrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
  531. void aes_t4_encrypt(const unsigned char *in, unsigned char *out,
  532. const AES_KEY *key);
  533. void aes_t4_decrypt(const unsigned char *in, unsigned char *out,
  534. const AES_KEY *key);
  535. /*
  536. * Key-length specific subroutines were chosen for following reason.
  537. * Each SPARC T4 core can execute up to 8 threads which share core's
  538. * resources. Loading as much key material to registers allows to
  539. * minimize references to shared memory interface, as well as amount
  540. * of instructions in inner loops [much needed on T4]. But then having
  541. * non-key-length specific routines would require conditional branches
  542. * either in inner loops or on subroutines' entries. Former is hardly
  543. * acceptable, while latter means code size increase to size occupied
  544. * by multiple key-length specific subroutines, so why fight?
  545. */
  546. void aes128_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
  547. size_t len, const AES_KEY *key,
  548. unsigned char *ivec);
  549. void aes128_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
  550. size_t len, const AES_KEY *key,
  551. unsigned char *ivec);
  552. void aes192_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
  553. size_t len, const AES_KEY *key,
  554. unsigned char *ivec);
  555. void aes192_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
  556. size_t len, const AES_KEY *key,
  557. unsigned char *ivec);
  558. void aes256_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
  559. size_t len, const AES_KEY *key,
  560. unsigned char *ivec);
  561. void aes256_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
  562. size_t len, const AES_KEY *key,
  563. unsigned char *ivec);
  564. void aes128_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
  565. size_t blocks, const AES_KEY *key,
  566. unsigned char *ivec);
  567. void aes192_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
  568. size_t blocks, const AES_KEY *key,
  569. unsigned char *ivec);
  570. void aes256_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
  571. size_t blocks, const AES_KEY *key,
  572. unsigned char *ivec);
  573. void aes128_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
  574. size_t blocks, const AES_KEY *key1,
  575. const AES_KEY *key2, const unsigned char *ivec);
  576. void aes128_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
  577. size_t blocks, const AES_KEY *key1,
  578. const AES_KEY *key2, const unsigned char *ivec);
  579. void aes256_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
  580. size_t blocks, const AES_KEY *key1,
  581. const AES_KEY *key2, const unsigned char *ivec);
  582. void aes256_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
  583. size_t blocks, const AES_KEY *key1,
  584. const AES_KEY *key2, const unsigned char *ivec);
  585. static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  586. const unsigned char *iv, int enc)
  587. {
  588. int ret, mode, bits;
  589. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  590. mode = EVP_CIPHER_CTX_mode(ctx);
  591. bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
  592. if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
  593. && !enc) {
  594. ret = 0;
  595. aes_t4_set_decrypt_key(key, bits, &dat->ks.ks);
  596. dat->block = (block128_f) aes_t4_decrypt;
  597. switch (bits) {
  598. case 128:
  599. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  600. (cbc128_f) aes128_t4_cbc_decrypt : NULL;
  601. break;
  602. case 192:
  603. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  604. (cbc128_f) aes192_t4_cbc_decrypt : NULL;
  605. break;
  606. case 256:
  607. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  608. (cbc128_f) aes256_t4_cbc_decrypt : NULL;
  609. break;
  610. default:
  611. ret = -1;
  612. }
  613. } else {
  614. ret = 0;
  615. aes_t4_set_encrypt_key(key, bits, &dat->ks.ks);
  616. dat->block = (block128_f) aes_t4_encrypt;
  617. switch (bits) {
  618. case 128:
  619. if (mode == EVP_CIPH_CBC_MODE)
  620. dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt;
  621. else if (mode == EVP_CIPH_CTR_MODE)
  622. dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
  623. else
  624. dat->stream.cbc = NULL;
  625. break;
  626. case 192:
  627. if (mode == EVP_CIPH_CBC_MODE)
  628. dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt;
  629. else if (mode == EVP_CIPH_CTR_MODE)
  630. dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
  631. else
  632. dat->stream.cbc = NULL;
  633. break;
  634. case 256:
  635. if (mode == EVP_CIPH_CBC_MODE)
  636. dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt;
  637. else if (mode == EVP_CIPH_CTR_MODE)
  638. dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
  639. else
  640. dat->stream.cbc = NULL;
  641. break;
  642. default:
  643. ret = -1;
  644. }
  645. }
  646. if (ret < 0) {
  647. EVPerr(EVP_F_AES_T4_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
  648. return 0;
  649. }
  650. return 1;
  651. }
  652. # define aes_t4_cbc_cipher aes_cbc_cipher
  653. static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  654. const unsigned char *in, size_t len);
  655. # define aes_t4_ecb_cipher aes_ecb_cipher
  656. static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  657. const unsigned char *in, size_t len);
  658. # define aes_t4_ofb_cipher aes_ofb_cipher
  659. static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  660. const unsigned char *in, size_t len);
  661. # define aes_t4_cfb_cipher aes_cfb_cipher
  662. static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  663. const unsigned char *in, size_t len);
  664. # define aes_t4_cfb8_cipher aes_cfb8_cipher
  665. static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  666. const unsigned char *in, size_t len);
  667. # define aes_t4_cfb1_cipher aes_cfb1_cipher
  668. static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  669. const unsigned char *in, size_t len);
  670. # define aes_t4_ctr_cipher aes_ctr_cipher
  671. static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  672. const unsigned char *in, size_t len);
  673. static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  674. const unsigned char *iv, int enc)
  675. {
  676. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
  677. if (!iv && !key)
  678. return 1;
  679. if (key) {
  680. int bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
  681. aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks);
  682. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  683. (block128_f) aes_t4_encrypt);
  684. switch (bits) {
  685. case 128:
  686. gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
  687. break;
  688. case 192:
  689. gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
  690. break;
  691. case 256:
  692. gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
  693. break;
  694. default:
  695. return 0;
  696. }
  697. /*
  698. * If we have an iv can set it directly, otherwise use saved IV.
  699. */
  700. if (iv == NULL && gctx->iv_set)
  701. iv = gctx->iv;
  702. if (iv) {
  703. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  704. gctx->iv_set = 1;
  705. }
  706. gctx->key_set = 1;
  707. } else {
  708. /* If key set use IV, otherwise copy */
  709. if (gctx->key_set)
  710. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  711. else
  712. memcpy(gctx->iv, iv, gctx->ivlen);
  713. gctx->iv_set = 1;
  714. gctx->iv_gen = 0;
  715. }
  716. return 1;
  717. }
  718. # define aes_t4_gcm_cipher aes_gcm_cipher
  719. static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  720. const unsigned char *in, size_t len);
  721. static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  722. const unsigned char *iv, int enc)
  723. {
  724. EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
  725. if (!iv && !key)
  726. return 1;
  727. if (key) {
  728. /* The key is two half length keys in reality */
  729. const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2;
  730. const int bits = bytes * 8;
  731. /*
  732. * Verify that the two keys are different.
  733. *
  734. * This addresses Rogaway's vulnerability.
  735. * See comment in aes_xts_init_key() below.
  736. */
  737. if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
  738. EVPerr(EVP_F_AES_T4_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS);
  739. return 0;
  740. }
  741. xctx->stream = NULL;
  742. /* key_len is two AES keys */
  743. if (enc) {
  744. aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks);
  745. xctx->xts.block1 = (block128_f) aes_t4_encrypt;
  746. switch (bits) {
  747. case 128:
  748. xctx->stream = aes128_t4_xts_encrypt;
  749. break;
  750. case 256:
  751. xctx->stream = aes256_t4_xts_encrypt;
  752. break;
  753. default:
  754. return 0;
  755. }
  756. } else {
  757. aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
  758. &xctx->ks1.ks);
  759. xctx->xts.block1 = (block128_f) aes_t4_decrypt;
  760. switch (bits) {
  761. case 128:
  762. xctx->stream = aes128_t4_xts_decrypt;
  763. break;
  764. case 256:
  765. xctx->stream = aes256_t4_xts_decrypt;
  766. break;
  767. default:
  768. return 0;
  769. }
  770. }
  771. aes_t4_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
  772. EVP_CIPHER_CTX_key_length(ctx) * 4,
  773. &xctx->ks2.ks);
  774. xctx->xts.block2 = (block128_f) aes_t4_encrypt;
  775. xctx->xts.key1 = &xctx->ks1;
  776. }
  777. if (iv) {
  778. xctx->xts.key2 = &xctx->ks2;
  779. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
  780. }
  781. return 1;
  782. }
  783. # define aes_t4_xts_cipher aes_xts_cipher
  784. static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  785. const unsigned char *in, size_t len);
  786. static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  787. const unsigned char *iv, int enc)
  788. {
  789. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
  790. if (!iv && !key)
  791. return 1;
  792. if (key) {
  793. int bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
  794. aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks);
  795. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  796. &cctx->ks, (block128_f) aes_t4_encrypt);
  797. cctx->str = NULL;
  798. cctx->key_set = 1;
  799. }
  800. if (iv) {
  801. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
  802. cctx->iv_set = 1;
  803. }
  804. return 1;
  805. }
  806. # define aes_t4_ccm_cipher aes_ccm_cipher
  807. static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  808. const unsigned char *in, size_t len);
  809. # ifndef OPENSSL_NO_OCB
  810. static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  811. const unsigned char *iv, int enc)
  812. {
  813. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
  814. if (!iv && !key)
  815. return 1;
  816. if (key) {
  817. do {
  818. /*
  819. * We set both the encrypt and decrypt key here because decrypt
  820. * needs both. We could possibly optimise to remove setting the
  821. * decrypt for an encryption operation.
  822. */
  823. aes_t4_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  824. &octx->ksenc.ks);
  825. aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  826. &octx->ksdec.ks);
  827. if (!CRYPTO_ocb128_init(&octx->ocb,
  828. &octx->ksenc.ks, &octx->ksdec.ks,
  829. (block128_f) aes_t4_encrypt,
  830. (block128_f) aes_t4_decrypt,
  831. NULL))
  832. return 0;
  833. }
  834. while (0);
  835. /*
  836. * If we have an iv we can set it directly, otherwise use saved IV.
  837. */
  838. if (iv == NULL && octx->iv_set)
  839. iv = octx->iv;
  840. if (iv) {
  841. if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
  842. != 1)
  843. return 0;
  844. octx->iv_set = 1;
  845. }
  846. octx->key_set = 1;
  847. } else {
  848. /* If key set use IV, otherwise copy */
  849. if (octx->key_set)
  850. CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
  851. else
  852. memcpy(octx->iv, iv, octx->ivlen);
  853. octx->iv_set = 1;
  854. }
  855. return 1;
  856. }
  857. # define aes_t4_ocb_cipher aes_ocb_cipher
  858. static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  859. const unsigned char *in, size_t len);
  860. # endif /* OPENSSL_NO_OCB */
  861. # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
  862. static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
  863. nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
  864. flags|EVP_CIPH_##MODE##_MODE, \
  865. aes_t4_init_key, \
  866. aes_t4_##mode##_cipher, \
  867. NULL, \
  868. sizeof(EVP_AES_KEY), \
  869. NULL,NULL,NULL,NULL }; \
  870. static const EVP_CIPHER aes_##keylen##_##mode = { \
  871. nid##_##keylen##_##nmode,blocksize, \
  872. keylen/8,ivlen, \
  873. flags|EVP_CIPH_##MODE##_MODE, \
  874. aes_init_key, \
  875. aes_##mode##_cipher, \
  876. NULL, \
  877. sizeof(EVP_AES_KEY), \
  878. NULL,NULL,NULL,NULL }; \
  879. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  880. { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
  881. # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
  882. static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
  883. nid##_##keylen##_##mode,blocksize, \
  884. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  885. flags|EVP_CIPH_##MODE##_MODE, \
  886. aes_t4_##mode##_init_key, \
  887. aes_t4_##mode##_cipher, \
  888. aes_##mode##_cleanup, \
  889. sizeof(EVP_AES_##MODE##_CTX), \
  890. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  891. static const EVP_CIPHER aes_##keylen##_##mode = { \
  892. nid##_##keylen##_##mode,blocksize, \
  893. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  894. flags|EVP_CIPH_##MODE##_MODE, \
  895. aes_##mode##_init_key, \
  896. aes_##mode##_cipher, \
  897. aes_##mode##_cleanup, \
  898. sizeof(EVP_AES_##MODE##_CTX), \
  899. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  900. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  901. { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
  902. #elif defined(OPENSSL_CPUID_OBJ) && defined(__s390__)
  903. /*
  904. * IBM S390X support
  905. */
  906. # include "s390x_arch.h"
  907. typedef struct {
  908. union {
  909. double align;
  910. /*-
  911. * KM-AES parameter block - begin
  912. * (see z/Architecture Principles of Operation >= SA22-7832-06)
  913. */
  914. struct {
  915. unsigned char k[32];
  916. } param;
  917. /* KM-AES parameter block - end */
  918. } km;
  919. unsigned int fc;
  920. } S390X_AES_ECB_CTX;
  921. typedef struct {
  922. union {
  923. double align;
  924. /*-
  925. * KMO-AES parameter block - begin
  926. * (see z/Architecture Principles of Operation >= SA22-7832-08)
  927. */
  928. struct {
  929. unsigned char cv[16];
  930. unsigned char k[32];
  931. } param;
  932. /* KMO-AES parameter block - end */
  933. } kmo;
  934. unsigned int fc;
  935. int res;
  936. } S390X_AES_OFB_CTX;
  937. typedef struct {
  938. union {
  939. double align;
  940. /*-
  941. * KMF-AES parameter block - begin
  942. * (see z/Architecture Principles of Operation >= SA22-7832-08)
  943. */
  944. struct {
  945. unsigned char cv[16];
  946. unsigned char k[32];
  947. } param;
  948. /* KMF-AES parameter block - end */
  949. } kmf;
  950. unsigned int fc;
  951. int res;
  952. } S390X_AES_CFB_CTX;
  953. typedef struct {
  954. union {
  955. double align;
  956. /*-
  957. * KMA-GCM-AES parameter block - begin
  958. * (see z/Architecture Principles of Operation >= SA22-7832-11)
  959. */
  960. struct {
  961. unsigned char reserved[12];
  962. union {
  963. unsigned int w;
  964. unsigned char b[4];
  965. } cv;
  966. union {
  967. unsigned long long g[2];
  968. unsigned char b[16];
  969. } t;
  970. unsigned char h[16];
  971. unsigned long long taadl;
  972. unsigned long long tpcl;
  973. union {
  974. unsigned long long g[2];
  975. unsigned int w[4];
  976. } j0;
  977. unsigned char k[32];
  978. } param;
  979. /* KMA-GCM-AES parameter block - end */
  980. } kma;
  981. unsigned int fc;
  982. int key_set;
  983. unsigned char *iv;
  984. int ivlen;
  985. int iv_set;
  986. int iv_gen;
  987. int taglen;
  988. unsigned char ares[16];
  989. unsigned char mres[16];
  990. unsigned char kres[16];
  991. int areslen;
  992. int mreslen;
  993. int kreslen;
  994. int tls_aad_len;
  995. } S390X_AES_GCM_CTX;
  996. typedef struct {
  997. union {
  998. double align;
  999. /*-
  1000. * Padding is chosen so that ccm.kmac_param.k overlaps with key.k and
  1001. * ccm.fc with key.k.rounds. Remember that on s390x, an AES_KEY's
  1002. * rounds field is used to store the function code and that the key
  1003. * schedule is not stored (if aes hardware support is detected).
  1004. */
  1005. struct {
  1006. unsigned char pad[16];
  1007. AES_KEY k;
  1008. } key;
  1009. struct {
  1010. /*-
  1011. * KMAC-AES parameter block - begin
  1012. * (see z/Architecture Principles of Operation >= SA22-7832-08)
  1013. */
  1014. struct {
  1015. union {
  1016. unsigned long long g[2];
  1017. unsigned char b[16];
  1018. } icv;
  1019. unsigned char k[32];
  1020. } kmac_param;
  1021. /* KMAC-AES paramater block - end */
  1022. union {
  1023. unsigned long long g[2];
  1024. unsigned char b[16];
  1025. } nonce;
  1026. union {
  1027. unsigned long long g[2];
  1028. unsigned char b[16];
  1029. } buf;
  1030. unsigned long long blocks;
  1031. int l;
  1032. int m;
  1033. int tls_aad_len;
  1034. int iv_set;
  1035. int tag_set;
  1036. int len_set;
  1037. int key_set;
  1038. unsigned char pad[140];
  1039. unsigned int fc;
  1040. } ccm;
  1041. } aes;
  1042. } S390X_AES_CCM_CTX;
  1043. /* Convert key size to function code: [16,24,32] -> [18,19,20]. */
  1044. # define S390X_AES_FC(keylen) (S390X_AES_128 + ((((keylen) << 3) - 128) >> 6))
  1045. /* Most modes of operation need km for partial block processing. */
  1046. # define S390X_aes_128_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
  1047. S390X_CAPBIT(S390X_AES_128))
  1048. # define S390X_aes_192_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
  1049. S390X_CAPBIT(S390X_AES_192))
  1050. # define S390X_aes_256_CAPABLE (OPENSSL_s390xcap_P.km[0] & \
  1051. S390X_CAPBIT(S390X_AES_256))
  1052. # define s390x_aes_init_key aes_init_key
  1053. static int s390x_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  1054. const unsigned char *iv, int enc);
  1055. # define S390X_aes_128_cbc_CAPABLE 1 /* checked by callee */
  1056. # define S390X_aes_192_cbc_CAPABLE 1
  1057. # define S390X_aes_256_cbc_CAPABLE 1
  1058. # define S390X_AES_CBC_CTX EVP_AES_KEY
  1059. # define s390x_aes_cbc_init_key aes_init_key
  1060. # define s390x_aes_cbc_cipher aes_cbc_cipher
  1061. static int s390x_aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1062. const unsigned char *in, size_t len);
  1063. # define S390X_aes_128_ecb_CAPABLE S390X_aes_128_CAPABLE
  1064. # define S390X_aes_192_ecb_CAPABLE S390X_aes_192_CAPABLE
  1065. # define S390X_aes_256_ecb_CAPABLE S390X_aes_256_CAPABLE
  1066. static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx,
  1067. const unsigned char *key,
  1068. const unsigned char *iv, int enc)
  1069. {
  1070. S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
  1071. const int keylen = EVP_CIPHER_CTX_key_length(ctx);
  1072. cctx->fc = S390X_AES_FC(keylen);
  1073. if (!enc)
  1074. cctx->fc |= S390X_DECRYPT;
  1075. memcpy(cctx->km.param.k, key, keylen);
  1076. return 1;
  1077. }
  1078. static int s390x_aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1079. const unsigned char *in, size_t len)
  1080. {
  1081. S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
  1082. s390x_km(in, len, out, cctx->fc, &cctx->km.param);
  1083. return 1;
  1084. }
  1085. # define S390X_aes_128_ofb_CAPABLE (S390X_aes_128_CAPABLE && \
  1086. (OPENSSL_s390xcap_P.kmo[0] & \
  1087. S390X_CAPBIT(S390X_AES_128)))
  1088. # define S390X_aes_192_ofb_CAPABLE (S390X_aes_192_CAPABLE && \
  1089. (OPENSSL_s390xcap_P.kmo[0] & \
  1090. S390X_CAPBIT(S390X_AES_192)))
  1091. # define S390X_aes_256_ofb_CAPABLE (S390X_aes_256_CAPABLE && \
  1092. (OPENSSL_s390xcap_P.kmo[0] & \
  1093. S390X_CAPBIT(S390X_AES_256)))
  1094. static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx,
  1095. const unsigned char *key,
  1096. const unsigned char *ivec, int enc)
  1097. {
  1098. S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
  1099. const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
  1100. const int keylen = EVP_CIPHER_CTX_key_length(ctx);
  1101. const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
  1102. memcpy(cctx->kmo.param.cv, iv, ivlen);
  1103. memcpy(cctx->kmo.param.k, key, keylen);
  1104. cctx->fc = S390X_AES_FC(keylen);
  1105. cctx->res = 0;
  1106. return 1;
  1107. }
  1108. static int s390x_aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1109. const unsigned char *in, size_t len)
  1110. {
  1111. S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
  1112. int n = cctx->res;
  1113. int rem;
  1114. while (n && len) {
  1115. *out = *in ^ cctx->kmo.param.cv[n];
  1116. n = (n + 1) & 0xf;
  1117. --len;
  1118. ++in;
  1119. ++out;
  1120. }
  1121. rem = len & 0xf;
  1122. len &= ~(size_t)0xf;
  1123. if (len) {
  1124. s390x_kmo(in, len, out, cctx->fc, &cctx->kmo.param);
  1125. out += len;
  1126. in += len;
  1127. }
  1128. if (rem) {
  1129. s390x_km(cctx->kmo.param.cv, 16, cctx->kmo.param.cv, cctx->fc,
  1130. cctx->kmo.param.k);
  1131. while (rem--) {
  1132. out[n] = in[n] ^ cctx->kmo.param.cv[n];
  1133. ++n;
  1134. }
  1135. }
  1136. cctx->res = n;
  1137. return 1;
  1138. }
  1139. # define S390X_aes_128_cfb_CAPABLE (S390X_aes_128_CAPABLE && \
  1140. (OPENSSL_s390xcap_P.kmf[0] & \
  1141. S390X_CAPBIT(S390X_AES_128)))
  1142. # define S390X_aes_192_cfb_CAPABLE (S390X_aes_192_CAPABLE && \
  1143. (OPENSSL_s390xcap_P.kmf[0] & \
  1144. S390X_CAPBIT(S390X_AES_192)))
  1145. # define S390X_aes_256_cfb_CAPABLE (S390X_aes_256_CAPABLE && \
  1146. (OPENSSL_s390xcap_P.kmf[0] & \
  1147. S390X_CAPBIT(S390X_AES_256)))
  1148. static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx,
  1149. const unsigned char *key,
  1150. const unsigned char *ivec, int enc)
  1151. {
  1152. S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
  1153. const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
  1154. const int keylen = EVP_CIPHER_CTX_key_length(ctx);
  1155. const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
  1156. cctx->fc = S390X_AES_FC(keylen);
  1157. cctx->fc |= 16 << 24; /* 16 bytes cipher feedback */
  1158. if (!enc)
  1159. cctx->fc |= S390X_DECRYPT;
  1160. cctx->res = 0;
  1161. memcpy(cctx->kmf.param.cv, iv, ivlen);
  1162. memcpy(cctx->kmf.param.k, key, keylen);
  1163. return 1;
  1164. }
  1165. static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1166. const unsigned char *in, size_t len)
  1167. {
  1168. S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
  1169. const int keylen = EVP_CIPHER_CTX_key_length(ctx);
  1170. const int enc = EVP_CIPHER_CTX_encrypting(ctx);
  1171. int n = cctx->res;
  1172. int rem;
  1173. unsigned char tmp;
  1174. while (n && len) {
  1175. tmp = *in;
  1176. *out = cctx->kmf.param.cv[n] ^ tmp;
  1177. cctx->kmf.param.cv[n] = enc ? *out : tmp;
  1178. n = (n + 1) & 0xf;
  1179. --len;
  1180. ++in;
  1181. ++out;
  1182. }
  1183. rem = len & 0xf;
  1184. len &= ~(size_t)0xf;
  1185. if (len) {
  1186. s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
  1187. out += len;
  1188. in += len;
  1189. }
  1190. if (rem) {
  1191. s390x_km(cctx->kmf.param.cv, 16, cctx->kmf.param.cv,
  1192. S390X_AES_FC(keylen), cctx->kmf.param.k);
  1193. while (rem--) {
  1194. tmp = in[n];
  1195. out[n] = cctx->kmf.param.cv[n] ^ tmp;
  1196. cctx->kmf.param.cv[n] = enc ? out[n] : tmp;
  1197. ++n;
  1198. }
  1199. }
  1200. cctx->res = n;
  1201. return 1;
  1202. }
  1203. # define S390X_aes_128_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
  1204. S390X_CAPBIT(S390X_AES_128))
  1205. # define S390X_aes_192_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
  1206. S390X_CAPBIT(S390X_AES_192))
  1207. # define S390X_aes_256_cfb8_CAPABLE (OPENSSL_s390xcap_P.kmf[0] & \
  1208. S390X_CAPBIT(S390X_AES_256))
  1209. static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx,
  1210. const unsigned char *key,
  1211. const unsigned char *ivec, int enc)
  1212. {
  1213. S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
  1214. const unsigned char *iv = EVP_CIPHER_CTX_original_iv(ctx);
  1215. const int keylen = EVP_CIPHER_CTX_key_length(ctx);
  1216. const int ivlen = EVP_CIPHER_CTX_iv_length(ctx);
  1217. cctx->fc = S390X_AES_FC(keylen);
  1218. cctx->fc |= 1 << 24; /* 1 byte cipher feedback */
  1219. if (!enc)
  1220. cctx->fc |= S390X_DECRYPT;
  1221. memcpy(cctx->kmf.param.cv, iv, ivlen);
  1222. memcpy(cctx->kmf.param.k, key, keylen);
  1223. return 1;
  1224. }
  1225. static int s390x_aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1226. const unsigned char *in, size_t len)
  1227. {
  1228. S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
  1229. s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
  1230. return 1;
  1231. }
  1232. # define S390X_aes_128_cfb1_CAPABLE 0
  1233. # define S390X_aes_192_cfb1_CAPABLE 0
  1234. # define S390X_aes_256_cfb1_CAPABLE 0
  1235. # define s390x_aes_cfb1_init_key aes_init_key
  1236. # define s390x_aes_cfb1_cipher aes_cfb1_cipher
  1237. static int s390x_aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1238. const unsigned char *in, size_t len);
  1239. # define S390X_aes_128_ctr_CAPABLE 1 /* checked by callee */
  1240. # define S390X_aes_192_ctr_CAPABLE 1
  1241. # define S390X_aes_256_ctr_CAPABLE 1
  1242. # define S390X_AES_CTR_CTX EVP_AES_KEY
  1243. # define s390x_aes_ctr_init_key aes_init_key
  1244. # define s390x_aes_ctr_cipher aes_ctr_cipher
  1245. static int s390x_aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1246. const unsigned char *in, size_t len);
  1247. # define S390X_aes_128_gcm_CAPABLE (S390X_aes_128_CAPABLE && \
  1248. (OPENSSL_s390xcap_P.kma[0] & \
  1249. S390X_CAPBIT(S390X_AES_128)))
  1250. # define S390X_aes_192_gcm_CAPABLE (S390X_aes_192_CAPABLE && \
  1251. (OPENSSL_s390xcap_P.kma[0] & \
  1252. S390X_CAPBIT(S390X_AES_192)))
  1253. # define S390X_aes_256_gcm_CAPABLE (S390X_aes_256_CAPABLE && \
  1254. (OPENSSL_s390xcap_P.kma[0] & \
  1255. S390X_CAPBIT(S390X_AES_256)))
  1256. /* iv + padding length for iv lenghts != 12 */
  1257. # define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16)
  1258. /*-
  1259. * Process additional authenticated data. Returns 0 on success. Code is
  1260. * big-endian.
  1261. */
  1262. static int s390x_aes_gcm_aad(S390X_AES_GCM_CTX *ctx, const unsigned char *aad,
  1263. size_t len)
  1264. {
  1265. unsigned long long alen;
  1266. int n, rem;
  1267. if (ctx->kma.param.tpcl)
  1268. return -2;
  1269. alen = ctx->kma.param.taadl + len;
  1270. if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
  1271. return -1;
  1272. ctx->kma.param.taadl = alen;
  1273. n = ctx->areslen;
  1274. if (n) {
  1275. while (n && len) {
  1276. ctx->ares[n] = *aad;
  1277. n = (n + 1) & 0xf;
  1278. ++aad;
  1279. --len;
  1280. }
  1281. /* ctx->ares contains a complete block if offset has wrapped around */
  1282. if (!n) {
  1283. s390x_kma(ctx->ares, 16, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
  1284. ctx->fc |= S390X_KMA_HS;
  1285. }
  1286. ctx->areslen = n;
  1287. }
  1288. rem = len & 0xf;
  1289. len &= ~(size_t)0xf;
  1290. if (len) {
  1291. s390x_kma(aad, len, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
  1292. aad += len;
  1293. ctx->fc |= S390X_KMA_HS;
  1294. }
  1295. if (rem) {
  1296. ctx->areslen = rem;
  1297. do {
  1298. --rem;
  1299. ctx->ares[rem] = aad[rem];
  1300. } while (rem);
  1301. }
  1302. return 0;
  1303. }
  1304. /*-
  1305. * En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 0 for
  1306. * success. Code is big-endian.
  1307. */
  1308. static int s390x_aes_gcm(S390X_AES_GCM_CTX *ctx, const unsigned char *in,
  1309. unsigned char *out, size_t len)
  1310. {
  1311. const unsigned char *inptr;
  1312. unsigned long long mlen;
  1313. union {
  1314. unsigned int w[4];
  1315. unsigned char b[16];
  1316. } buf;
  1317. size_t inlen;
  1318. int n, rem, i;
  1319. mlen = ctx->kma.param.tpcl + len;
  1320. if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
  1321. return -1;
  1322. ctx->kma.param.tpcl = mlen;
  1323. n = ctx->mreslen;
  1324. if (n) {
  1325. inptr = in;
  1326. inlen = len;
  1327. while (n && inlen) {
  1328. ctx->mres[n] = *inptr;
  1329. n = (n + 1) & 0xf;
  1330. ++inptr;
  1331. --inlen;
  1332. }
  1333. /* ctx->mres contains a complete block if offset has wrapped around */
  1334. if (!n) {
  1335. s390x_kma(ctx->ares, ctx->areslen, ctx->mres, 16, buf.b,
  1336. ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
  1337. ctx->fc |= S390X_KMA_HS;
  1338. ctx->areslen = 0;
  1339. /* previous call already encrypted/decrypted its remainder,
  1340. * see comment below */
  1341. n = ctx->mreslen;
  1342. while (n) {
  1343. *out = buf.b[n];
  1344. n = (n + 1) & 0xf;
  1345. ++out;
  1346. ++in;
  1347. --len;
  1348. }
  1349. ctx->mreslen = 0;
  1350. }
  1351. }
  1352. rem = len & 0xf;
  1353. len &= ~(size_t)0xf;
  1354. if (len) {
  1355. s390x_kma(ctx->ares, ctx->areslen, in, len, out,
  1356. ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
  1357. in += len;
  1358. out += len;
  1359. ctx->fc |= S390X_KMA_HS;
  1360. ctx->areslen = 0;
  1361. }
  1362. /*-
  1363. * If there is a remainder, it has to be saved such that it can be
  1364. * processed by kma later. However, we also have to do the for-now
  1365. * unauthenticated encryption/decryption part here and now...
  1366. */
  1367. if (rem) {
  1368. if (!ctx->mreslen) {
  1369. buf.w[0] = ctx->kma.param.j0.w[0];
  1370. buf.w[1] = ctx->kma.param.j0.w[1];
  1371. buf.w[2] = ctx->kma.param.j0.w[2];
  1372. buf.w[3] = ctx->kma.param.cv.w + 1;
  1373. s390x_km(buf.b, 16, ctx->kres, ctx->fc & 0x1f, &ctx->kma.param.k);
  1374. }
  1375. n = ctx->mreslen;
  1376. for (i = 0; i < rem; i++) {
  1377. ctx->mres[n + i] = in[i];
  1378. out[i] = in[i] ^ ctx->kres[n + i];
  1379. }
  1380. ctx->mreslen += rem;
  1381. }
  1382. return 0;
  1383. }
  1384. /*-
  1385. * Initialize context structure. Code is big-endian.
  1386. */
  1387. static void s390x_aes_gcm_setiv(S390X_AES_GCM_CTX *ctx,
  1388. const unsigned char *iv)
  1389. {
  1390. ctx->kma.param.t.g[0] = 0;
  1391. ctx->kma.param.t.g[1] = 0;
  1392. ctx->kma.param.tpcl = 0;
  1393. ctx->kma.param.taadl = 0;
  1394. ctx->mreslen = 0;
  1395. ctx->areslen = 0;
  1396. ctx->kreslen = 0;
  1397. if (ctx->ivlen == 12) {
  1398. memcpy(&ctx->kma.param.j0, iv, ctx->ivlen);
  1399. ctx->kma.param.j0.w[3] = 1;
  1400. ctx->kma.param.cv.w = 1;
  1401. } else {
  1402. /* ctx->iv has the right size and is already padded. */
  1403. memcpy(ctx->iv, iv, ctx->ivlen);
  1404. s390x_kma(ctx->iv, S390X_gcm_ivpadlen(ctx->ivlen), NULL, 0, NULL,
  1405. ctx->fc, &ctx->kma.param);
  1406. ctx->fc |= S390X_KMA_HS;
  1407. ctx->kma.param.j0.g[0] = ctx->kma.param.t.g[0];
  1408. ctx->kma.param.j0.g[1] = ctx->kma.param.t.g[1];
  1409. ctx->kma.param.cv.w = ctx->kma.param.j0.w[3];
  1410. ctx->kma.param.t.g[0] = 0;
  1411. ctx->kma.param.t.g[1] = 0;
  1412. }
  1413. }
  1414. /*-
  1415. * Performs various operations on the context structure depending on control
  1416. * type. Returns 1 for success, 0 for failure and -1 for unknown control type.
  1417. * Code is big-endian.
  1418. */
  1419. static int s390x_aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  1420. {
  1421. S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
  1422. S390X_AES_GCM_CTX *gctx_out;
  1423. EVP_CIPHER_CTX *out;
  1424. unsigned char *buf, *iv;
  1425. int ivlen, enc, len;
  1426. switch (type) {
  1427. case EVP_CTRL_INIT:
  1428. ivlen = EVP_CIPHER_iv_length(c->cipher);
  1429. iv = EVP_CIPHER_CTX_iv_noconst(c);
  1430. gctx->key_set = 0;
  1431. gctx->iv_set = 0;
  1432. gctx->ivlen = ivlen;
  1433. gctx->iv = iv;
  1434. gctx->taglen = -1;
  1435. gctx->iv_gen = 0;
  1436. gctx->tls_aad_len = -1;
  1437. return 1;
  1438. case EVP_CTRL_GET_IVLEN:
  1439. *(int *)ptr = gctx->ivlen;
  1440. return 1;
  1441. case EVP_CTRL_AEAD_SET_IVLEN:
  1442. if (arg <= 0)
  1443. return 0;
  1444. if (arg != 12) {
  1445. iv = EVP_CIPHER_CTX_iv_noconst(c);
  1446. len = S390X_gcm_ivpadlen(arg);
  1447. /* Allocate memory for iv if needed. */
  1448. if (gctx->ivlen == 12 || len > S390X_gcm_ivpadlen(gctx->ivlen)) {
  1449. if (gctx->iv != iv)
  1450. OPENSSL_free(gctx->iv);
  1451. if ((gctx->iv = OPENSSL_malloc(len)) == NULL) {
  1452. EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
  1453. return 0;
  1454. }
  1455. }
  1456. /* Add padding. */
  1457. memset(gctx->iv + arg, 0, len - arg - 8);
  1458. *((unsigned long long *)(gctx->iv + len - 8)) = arg << 3;
  1459. }
  1460. gctx->ivlen = arg;
  1461. return 1;
  1462. case EVP_CTRL_AEAD_SET_TAG:
  1463. buf = EVP_CIPHER_CTX_buf_noconst(c);
  1464. enc = EVP_CIPHER_CTX_encrypting(c);
  1465. if (arg <= 0 || arg > 16 || enc)
  1466. return 0;
  1467. memcpy(buf, ptr, arg);
  1468. gctx->taglen = arg;
  1469. return 1;
  1470. case EVP_CTRL_AEAD_GET_TAG:
  1471. enc = EVP_CIPHER_CTX_encrypting(c);
  1472. if (arg <= 0 || arg > 16 || !enc || gctx->taglen < 0)
  1473. return 0;
  1474. memcpy(ptr, gctx->kma.param.t.b, arg);
  1475. return 1;
  1476. case EVP_CTRL_GCM_SET_IV_FIXED:
  1477. /* Special case: -1 length restores whole iv */
  1478. if (arg == -1) {
  1479. memcpy(gctx->iv, ptr, gctx->ivlen);
  1480. gctx->iv_gen = 1;
  1481. return 1;
  1482. }
  1483. /*
  1484. * Fixed field must be at least 4 bytes and invocation field at least
  1485. * 8.
  1486. */
  1487. if ((arg < 4) || (gctx->ivlen - arg) < 8)
  1488. return 0;
  1489. if (arg)
  1490. memcpy(gctx->iv, ptr, arg);
  1491. enc = EVP_CIPHER_CTX_encrypting(c);
  1492. if (enc && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
  1493. return 0;
  1494. gctx->iv_gen = 1;
  1495. return 1;
  1496. case EVP_CTRL_GCM_IV_GEN:
  1497. if (gctx->iv_gen == 0 || gctx->key_set == 0)
  1498. return 0;
  1499. s390x_aes_gcm_setiv(gctx, gctx->iv);
  1500. if (arg <= 0 || arg > gctx->ivlen)
  1501. arg = gctx->ivlen;
  1502. memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
  1503. /*
  1504. * Invocation field will be at least 8 bytes in size and so no need
  1505. * to check wrap around or increment more than last 8 bytes.
  1506. */
  1507. ctr64_inc(gctx->iv + gctx->ivlen - 8);
  1508. gctx->iv_set = 1;
  1509. return 1;
  1510. case EVP_CTRL_GCM_SET_IV_INV:
  1511. enc = EVP_CIPHER_CTX_encrypting(c);
  1512. if (gctx->iv_gen == 0 || gctx->key_set == 0 || enc)
  1513. return 0;
  1514. memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
  1515. s390x_aes_gcm_setiv(gctx, gctx->iv);
  1516. gctx->iv_set = 1;
  1517. return 1;
  1518. case EVP_CTRL_AEAD_TLS1_AAD:
  1519. /* Save the aad for later use. */
  1520. if (arg != EVP_AEAD_TLS1_AAD_LEN)
  1521. return 0;
  1522. buf = EVP_CIPHER_CTX_buf_noconst(c);
  1523. memcpy(buf, ptr, arg);
  1524. gctx->tls_aad_len = arg;
  1525. len = buf[arg - 2] << 8 | buf[arg - 1];
  1526. /* Correct length for explicit iv. */
  1527. if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
  1528. return 0;
  1529. len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
  1530. /* If decrypting correct for tag too. */
  1531. enc = EVP_CIPHER_CTX_encrypting(c);
  1532. if (!enc) {
  1533. if (len < EVP_GCM_TLS_TAG_LEN)
  1534. return 0;
  1535. len -= EVP_GCM_TLS_TAG_LEN;
  1536. }
  1537. buf[arg - 2] = len >> 8;
  1538. buf[arg - 1] = len & 0xff;
  1539. /* Extra padding: tag appended to record. */
  1540. return EVP_GCM_TLS_TAG_LEN;
  1541. case EVP_CTRL_COPY:
  1542. out = ptr;
  1543. gctx_out = EVP_C_DATA(S390X_AES_GCM_CTX, out);
  1544. iv = EVP_CIPHER_CTX_iv_noconst(c);
  1545. if (gctx->iv == iv) {
  1546. gctx_out->iv = EVP_CIPHER_CTX_iv_noconst(out);
  1547. } else {
  1548. len = S390X_gcm_ivpadlen(gctx->ivlen);
  1549. if ((gctx_out->iv = OPENSSL_malloc(len)) == NULL) {
  1550. EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
  1551. return 0;
  1552. }
  1553. memcpy(gctx_out->iv, gctx->iv, len);
  1554. }
  1555. return 1;
  1556. default:
  1557. return -1;
  1558. }
  1559. }
  1560. /*-
  1561. * Set key and/or iv. Returns 1 on success. Otherwise 0 is returned.
  1562. */
  1563. static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx,
  1564. const unsigned char *key,
  1565. const unsigned char *iv, int enc)
  1566. {
  1567. S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
  1568. int keylen;
  1569. if (iv == NULL && key == NULL)
  1570. return 1;
  1571. if (key != NULL) {
  1572. keylen = EVP_CIPHER_CTX_key_length(ctx);
  1573. memcpy(&gctx->kma.param.k, key, keylen);
  1574. gctx->fc = S390X_AES_FC(keylen);
  1575. if (!enc)
  1576. gctx->fc |= S390X_DECRYPT;
  1577. if (iv == NULL && gctx->iv_set)
  1578. iv = gctx->iv;
  1579. if (iv != NULL) {
  1580. s390x_aes_gcm_setiv(gctx, iv);
  1581. gctx->iv_set = 1;
  1582. }
  1583. gctx->key_set = 1;
  1584. } else {
  1585. if (gctx->key_set)
  1586. s390x_aes_gcm_setiv(gctx, iv);
  1587. else
  1588. memcpy(gctx->iv, iv, gctx->ivlen);
  1589. gctx->iv_set = 1;
  1590. gctx->iv_gen = 0;
  1591. }
  1592. return 1;
  1593. }
  1594. /*-
  1595. * En/de-crypt and authenticate TLS packet. Returns the number of bytes written
  1596. * if successful. Otherwise -1 is returned. Code is big-endian.
  1597. */
  1598. static int s390x_aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1599. const unsigned char *in, size_t len)
  1600. {
  1601. S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
  1602. const unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
  1603. const int enc = EVP_CIPHER_CTX_encrypting(ctx);
  1604. int rv = -1;
  1605. if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
  1606. return -1;
  1607. if (EVP_CIPHER_CTX_ctrl(ctx, enc ? EVP_CTRL_GCM_IV_GEN
  1608. : EVP_CTRL_GCM_SET_IV_INV,
  1609. EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
  1610. goto err;
  1611. in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
  1612. out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
  1613. len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
  1614. gctx->kma.param.taadl = gctx->tls_aad_len << 3;
  1615. gctx->kma.param.tpcl = len << 3;
  1616. s390x_kma(buf, gctx->tls_aad_len, in, len, out,
  1617. gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
  1618. if (enc) {
  1619. memcpy(out + len, gctx->kma.param.t.b, EVP_GCM_TLS_TAG_LEN);
  1620. rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
  1621. } else {
  1622. if (CRYPTO_memcmp(gctx->kma.param.t.b, in + len,
  1623. EVP_GCM_TLS_TAG_LEN)) {
  1624. OPENSSL_cleanse(out, len);
  1625. goto err;
  1626. }
  1627. rv = len;
  1628. }
  1629. err:
  1630. gctx->iv_set = 0;
  1631. gctx->tls_aad_len = -1;
  1632. return rv;
  1633. }
  1634. /*-
  1635. * Called from EVP layer to initialize context, process additional
  1636. * authenticated data, en/de-crypt plain/cipher-text and authenticate
  1637. * ciphertext or process a TLS packet, depending on context. Returns bytes
  1638. * written on success. Otherwise -1 is returned. Code is big-endian.
  1639. */
  1640. static int s390x_aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1641. const unsigned char *in, size_t len)
  1642. {
  1643. S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
  1644. unsigned char *buf, tmp[16];
  1645. int enc;
  1646. if (!gctx->key_set)
  1647. return -1;
  1648. if (gctx->tls_aad_len >= 0)
  1649. return s390x_aes_gcm_tls_cipher(ctx, out, in, len);
  1650. if (!gctx->iv_set)
  1651. return -1;
  1652. if (in != NULL) {
  1653. if (out == NULL) {
  1654. if (s390x_aes_gcm_aad(gctx, in, len))
  1655. return -1;
  1656. } else {
  1657. if (s390x_aes_gcm(gctx, in, out, len))
  1658. return -1;
  1659. }
  1660. return len;
  1661. } else {
  1662. gctx->kma.param.taadl <<= 3;
  1663. gctx->kma.param.tpcl <<= 3;
  1664. s390x_kma(gctx->ares, gctx->areslen, gctx->mres, gctx->mreslen, tmp,
  1665. gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
  1666. /* recall that we already did en-/decrypt gctx->mres
  1667. * and returned it to caller... */
  1668. OPENSSL_cleanse(tmp, gctx->mreslen);
  1669. gctx->iv_set = 0;
  1670. enc = EVP_CIPHER_CTX_encrypting(ctx);
  1671. if (enc) {
  1672. gctx->taglen = 16;
  1673. } else {
  1674. if (gctx->taglen < 0)
  1675. return -1;
  1676. buf = EVP_CIPHER_CTX_buf_noconst(ctx);
  1677. if (CRYPTO_memcmp(buf, gctx->kma.param.t.b, gctx->taglen))
  1678. return -1;
  1679. }
  1680. return 0;
  1681. }
  1682. }
  1683. static int s390x_aes_gcm_cleanup(EVP_CIPHER_CTX *c)
  1684. {
  1685. S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
  1686. const unsigned char *iv;
  1687. if (gctx == NULL)
  1688. return 0;
  1689. iv = EVP_CIPHER_CTX_iv(c);
  1690. if (iv != gctx->iv)
  1691. OPENSSL_free(gctx->iv);
  1692. OPENSSL_cleanse(gctx, sizeof(*gctx));
  1693. return 1;
  1694. }
  1695. # define S390X_AES_XTS_CTX EVP_AES_XTS_CTX
  1696. # define S390X_aes_128_xts_CAPABLE 1 /* checked by callee */
  1697. # define S390X_aes_256_xts_CAPABLE 1
  1698. # define s390x_aes_xts_init_key aes_xts_init_key
  1699. static int s390x_aes_xts_init_key(EVP_CIPHER_CTX *ctx,
  1700. const unsigned char *key,
  1701. const unsigned char *iv, int enc);
  1702. # define s390x_aes_xts_cipher aes_xts_cipher
  1703. static int s390x_aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1704. const unsigned char *in, size_t len);
  1705. # define s390x_aes_xts_ctrl aes_xts_ctrl
  1706. static int s390x_aes_xts_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
  1707. # define s390x_aes_xts_cleanup aes_xts_cleanup
  1708. # define S390X_aes_128_ccm_CAPABLE (S390X_aes_128_CAPABLE && \
  1709. (OPENSSL_s390xcap_P.kmac[0] & \
  1710. S390X_CAPBIT(S390X_AES_128)))
  1711. # define S390X_aes_192_ccm_CAPABLE (S390X_aes_192_CAPABLE && \
  1712. (OPENSSL_s390xcap_P.kmac[0] & \
  1713. S390X_CAPBIT(S390X_AES_192)))
  1714. # define S390X_aes_256_ccm_CAPABLE (S390X_aes_256_CAPABLE && \
  1715. (OPENSSL_s390xcap_P.kmac[0] & \
  1716. S390X_CAPBIT(S390X_AES_256)))
  1717. # define S390X_CCM_AAD_FLAG 0x40
  1718. /*-
  1719. * Set nonce and length fields. Code is big-endian.
  1720. */
  1721. static inline void s390x_aes_ccm_setiv(S390X_AES_CCM_CTX *ctx,
  1722. const unsigned char *nonce,
  1723. size_t mlen)
  1724. {
  1725. ctx->aes.ccm.nonce.b[0] &= ~S390X_CCM_AAD_FLAG;
  1726. ctx->aes.ccm.nonce.g[1] = mlen;
  1727. memcpy(ctx->aes.ccm.nonce.b + 1, nonce, 15 - ctx->aes.ccm.l);
  1728. }
  1729. /*-
  1730. * Process additional authenticated data. Code is big-endian.
  1731. */
  1732. static void s390x_aes_ccm_aad(S390X_AES_CCM_CTX *ctx, const unsigned char *aad,
  1733. size_t alen)
  1734. {
  1735. unsigned char *ptr;
  1736. int i, rem;
  1737. if (!alen)
  1738. return;
  1739. ctx->aes.ccm.nonce.b[0] |= S390X_CCM_AAD_FLAG;
  1740. /* Suppress 'type-punned pointer dereference' warning. */
  1741. ptr = ctx->aes.ccm.buf.b;
  1742. if (alen < ((1 << 16) - (1 << 8))) {
  1743. *(uint16_t *)ptr = alen;
  1744. i = 2;
  1745. } else if (sizeof(alen) == 8
  1746. && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) {
  1747. *(uint16_t *)ptr = 0xffff;
  1748. *(uint64_t *)(ptr + 2) = alen;
  1749. i = 10;
  1750. } else {
  1751. *(uint16_t *)ptr = 0xfffe;
  1752. *(uint32_t *)(ptr + 2) = alen;
  1753. i = 6;
  1754. }
  1755. while (i < 16 && alen) {
  1756. ctx->aes.ccm.buf.b[i] = *aad;
  1757. ++aad;
  1758. --alen;
  1759. ++i;
  1760. }
  1761. while (i < 16) {
  1762. ctx->aes.ccm.buf.b[i] = 0;
  1763. ++i;
  1764. }
  1765. ctx->aes.ccm.kmac_param.icv.g[0] = 0;
  1766. ctx->aes.ccm.kmac_param.icv.g[1] = 0;
  1767. s390x_kmac(ctx->aes.ccm.nonce.b, 32, ctx->aes.ccm.fc,
  1768. &ctx->aes.ccm.kmac_param);
  1769. ctx->aes.ccm.blocks += 2;
  1770. rem = alen & 0xf;
  1771. alen &= ~(size_t)0xf;
  1772. if (alen) {
  1773. s390x_kmac(aad, alen, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
  1774. ctx->aes.ccm.blocks += alen >> 4;
  1775. aad += alen;
  1776. }
  1777. if (rem) {
  1778. for (i = 0; i < rem; i++)
  1779. ctx->aes.ccm.kmac_param.icv.b[i] ^= aad[i];
  1780. s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
  1781. ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
  1782. ctx->aes.ccm.kmac_param.k);
  1783. ctx->aes.ccm.blocks++;
  1784. }
  1785. }
  1786. /*-
  1787. * En/de-crypt plain/cipher-text. Compute tag from plaintext. Returns 0 for
  1788. * success.
  1789. */
  1790. static int s390x_aes_ccm(S390X_AES_CCM_CTX *ctx, const unsigned char *in,
  1791. unsigned char *out, size_t len, int enc)
  1792. {
  1793. size_t n, rem;
  1794. unsigned int i, l, num;
  1795. unsigned char flags;
  1796. flags = ctx->aes.ccm.nonce.b[0];
  1797. if (!(flags & S390X_CCM_AAD_FLAG)) {
  1798. s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.kmac_param.icv.b,
  1799. ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k);
  1800. ctx->aes.ccm.blocks++;
  1801. }
  1802. l = flags & 0x7;
  1803. ctx->aes.ccm.nonce.b[0] = l;
  1804. /*-
  1805. * Reconstruct length from encoded length field
  1806. * and initialize it with counter value.
  1807. */
  1808. n = 0;
  1809. for (i = 15 - l; i < 15; i++) {
  1810. n |= ctx->aes.ccm.nonce.b[i];
  1811. ctx->aes.ccm.nonce.b[i] = 0;
  1812. n <<= 8;
  1813. }
  1814. n |= ctx->aes.ccm.nonce.b[15];
  1815. ctx->aes.ccm.nonce.b[15] = 1;
  1816. if (n != len)
  1817. return -1; /* length mismatch */
  1818. if (enc) {
  1819. /* Two operations per block plus one for tag encryption */
  1820. ctx->aes.ccm.blocks += (((len + 15) >> 4) << 1) + 1;
  1821. if (ctx->aes.ccm.blocks > (1ULL << 61))
  1822. return -2; /* too much data */
  1823. }
  1824. num = 0;
  1825. rem = len & 0xf;
  1826. len &= ~(size_t)0xf;
  1827. if (enc) {
  1828. /* mac-then-encrypt */
  1829. if (len)
  1830. s390x_kmac(in, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
  1831. if (rem) {
  1832. for (i = 0; i < rem; i++)
  1833. ctx->aes.ccm.kmac_param.icv.b[i] ^= in[len + i];
  1834. s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
  1835. ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
  1836. ctx->aes.ccm.kmac_param.k);
  1837. }
  1838. CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
  1839. ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
  1840. &num, (ctr128_f)AES_ctr32_encrypt);
  1841. } else {
  1842. /* decrypt-then-mac */
  1843. CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
  1844. ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
  1845. &num, (ctr128_f)AES_ctr32_encrypt);
  1846. if (len)
  1847. s390x_kmac(out, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
  1848. if (rem) {
  1849. for (i = 0; i < rem; i++)
  1850. ctx->aes.ccm.kmac_param.icv.b[i] ^= out[len + i];
  1851. s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
  1852. ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
  1853. ctx->aes.ccm.kmac_param.k);
  1854. }
  1855. }
  1856. /* encrypt tag */
  1857. for (i = 15 - l; i < 16; i++)
  1858. ctx->aes.ccm.nonce.b[i] = 0;
  1859. s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.buf.b, ctx->aes.ccm.fc,
  1860. ctx->aes.ccm.kmac_param.k);
  1861. ctx->aes.ccm.kmac_param.icv.g[0] ^= ctx->aes.ccm.buf.g[0];
  1862. ctx->aes.ccm.kmac_param.icv.g[1] ^= ctx->aes.ccm.buf.g[1];
  1863. ctx->aes.ccm.nonce.b[0] = flags; /* restore flags field */
  1864. return 0;
  1865. }
  1866. /*-
  1867. * En/de-crypt and authenticate TLS packet. Returns the number of bytes written
  1868. * if successful. Otherwise -1 is returned.
  1869. */
  1870. static int s390x_aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1871. const unsigned char *in, size_t len)
  1872. {
  1873. S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
  1874. unsigned char *ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
  1875. unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
  1876. const int enc = EVP_CIPHER_CTX_encrypting(ctx);
  1877. if (out != in
  1878. || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->aes.ccm.m))
  1879. return -1;
  1880. if (enc) {
  1881. /* Set explicit iv (sequence number). */
  1882. memcpy(out, buf, EVP_CCM_TLS_EXPLICIT_IV_LEN);
  1883. }
  1884. len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
  1885. /*-
  1886. * Get explicit iv (sequence number). We already have fixed iv
  1887. * (server/client_write_iv) here.
  1888. */
  1889. memcpy(ivec + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN);
  1890. s390x_aes_ccm_setiv(cctx, ivec, len);
  1891. /* Process aad (sequence number|type|version|length) */
  1892. s390x_aes_ccm_aad(cctx, buf, cctx->aes.ccm.tls_aad_len);
  1893. in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
  1894. out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
  1895. if (enc) {
  1896. if (s390x_aes_ccm(cctx, in, out, len, enc))
  1897. return -1;
  1898. memcpy(out + len, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
  1899. return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
  1900. } else {
  1901. if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
  1902. if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, in + len,
  1903. cctx->aes.ccm.m))
  1904. return len;
  1905. }
  1906. OPENSSL_cleanse(out, len);
  1907. return -1;
  1908. }
  1909. }
  1910. /*-
  1911. * Set key and flag field and/or iv. Returns 1 if successful. Otherwise 0 is
  1912. * returned.
  1913. */
  1914. static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx,
  1915. const unsigned char *key,
  1916. const unsigned char *iv, int enc)
  1917. {
  1918. S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
  1919. unsigned char *ivec;
  1920. int keylen;
  1921. if (iv == NULL && key == NULL)
  1922. return 1;
  1923. if (key != NULL) {
  1924. keylen = EVP_CIPHER_CTX_key_length(ctx);
  1925. cctx->aes.ccm.fc = S390X_AES_FC(keylen);
  1926. memcpy(cctx->aes.ccm.kmac_param.k, key, keylen);
  1927. /* Store encoded m and l. */
  1928. cctx->aes.ccm.nonce.b[0] = ((cctx->aes.ccm.l - 1) & 0x7)
  1929. | (((cctx->aes.ccm.m - 2) >> 1) & 0x7) << 3;
  1930. memset(cctx->aes.ccm.nonce.b + 1, 0,
  1931. sizeof(cctx->aes.ccm.nonce.b));
  1932. cctx->aes.ccm.blocks = 0;
  1933. cctx->aes.ccm.key_set = 1;
  1934. }
  1935. if (iv != NULL) {
  1936. ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
  1937. memcpy(ivec, iv, 15 - cctx->aes.ccm.l);
  1938. cctx->aes.ccm.iv_set = 1;
  1939. }
  1940. return 1;
  1941. }
  1942. /*-
  1943. * Called from EVP layer to initialize context, process additional
  1944. * authenticated data, en/de-crypt plain/cipher-text and authenticate
  1945. * plaintext or process a TLS packet, depending on context. Returns bytes
  1946. * written on success. Otherwise -1 is returned.
  1947. */
  1948. static int s390x_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1949. const unsigned char *in, size_t len)
  1950. {
  1951. S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
  1952. const int enc = EVP_CIPHER_CTX_encrypting(ctx);
  1953. int rv;
  1954. unsigned char *buf, *ivec;
  1955. if (!cctx->aes.ccm.key_set)
  1956. return -1;
  1957. if (cctx->aes.ccm.tls_aad_len >= 0)
  1958. return s390x_aes_ccm_tls_cipher(ctx, out, in, len);
  1959. /*-
  1960. * Final(): Does not return any data. Recall that ccm is mac-then-encrypt
  1961. * so integrity must be checked already at Update() i.e., before
  1962. * potentially corrupted data is output.
  1963. */
  1964. if (in == NULL && out != NULL)
  1965. return 0;
  1966. if (!cctx->aes.ccm.iv_set)
  1967. return -1;
  1968. if (out == NULL) {
  1969. /* Update(): Pass message length. */
  1970. if (in == NULL) {
  1971. ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
  1972. s390x_aes_ccm_setiv(cctx, ivec, len);
  1973. cctx->aes.ccm.len_set = 1;
  1974. return len;
  1975. }
  1976. /* Update(): Process aad. */
  1977. if (!cctx->aes.ccm.len_set && len)
  1978. return -1;
  1979. s390x_aes_ccm_aad(cctx, in, len);
  1980. return len;
  1981. }
  1982. /* The tag must be set before actually decrypting data */
  1983. if (!enc && !cctx->aes.ccm.tag_set)
  1984. return -1;
  1985. /* Update(): Process message. */
  1986. if (!cctx->aes.ccm.len_set) {
  1987. /*-
  1988. * In case message length was not previously set explicitly via
  1989. * Update(), set it now.
  1990. */
  1991. ivec = EVP_CIPHER_CTX_iv_noconst(ctx);
  1992. s390x_aes_ccm_setiv(cctx, ivec, len);
  1993. cctx->aes.ccm.len_set = 1;
  1994. }
  1995. if (enc) {
  1996. if (s390x_aes_ccm(cctx, in, out, len, enc))
  1997. return -1;
  1998. cctx->aes.ccm.tag_set = 1;
  1999. return len;
  2000. } else {
  2001. rv = -1;
  2002. if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
  2003. buf = EVP_CIPHER_CTX_buf_noconst(ctx);
  2004. if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, buf,
  2005. cctx->aes.ccm.m))
  2006. rv = len;
  2007. }
  2008. if (rv == -1)
  2009. OPENSSL_cleanse(out, len);
  2010. cctx->aes.ccm.iv_set = 0;
  2011. cctx->aes.ccm.tag_set = 0;
  2012. cctx->aes.ccm.len_set = 0;
  2013. return rv;
  2014. }
  2015. }
  2016. /*-
  2017. * Performs various operations on the context structure depending on control
  2018. * type. Returns 1 for success, 0 for failure and -1 for unknown control type.
  2019. * Code is big-endian.
  2020. */
  2021. static int s390x_aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  2022. {
  2023. S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, c);
  2024. unsigned char *buf, *iv;
  2025. int enc, len;
  2026. switch (type) {
  2027. case EVP_CTRL_INIT:
  2028. cctx->aes.ccm.key_set = 0;
  2029. cctx->aes.ccm.iv_set = 0;
  2030. cctx->aes.ccm.l = 8;
  2031. cctx->aes.ccm.m = 12;
  2032. cctx->aes.ccm.tag_set = 0;
  2033. cctx->aes.ccm.len_set = 0;
  2034. cctx->aes.ccm.tls_aad_len = -1;
  2035. return 1;
  2036. case EVP_CTRL_GET_IVLEN:
  2037. *(int *)ptr = 15 - cctx->aes.ccm.l;
  2038. return 1;
  2039. case EVP_CTRL_AEAD_TLS1_AAD:
  2040. if (arg != EVP_AEAD_TLS1_AAD_LEN)
  2041. return 0;
  2042. /* Save the aad for later use. */
  2043. buf = EVP_CIPHER_CTX_buf_noconst(c);
  2044. memcpy(buf, ptr, arg);
  2045. cctx->aes.ccm.tls_aad_len = arg;
  2046. len = buf[arg - 2] << 8 | buf[arg - 1];
  2047. if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
  2048. return 0;
  2049. /* Correct length for explicit iv. */
  2050. len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
  2051. enc = EVP_CIPHER_CTX_encrypting(c);
  2052. if (!enc) {
  2053. if (len < cctx->aes.ccm.m)
  2054. return 0;
  2055. /* Correct length for tag. */
  2056. len -= cctx->aes.ccm.m;
  2057. }
  2058. buf[arg - 2] = len >> 8;
  2059. buf[arg - 1] = len & 0xff;
  2060. /* Extra padding: tag appended to record. */
  2061. return cctx->aes.ccm.m;
  2062. case EVP_CTRL_CCM_SET_IV_FIXED:
  2063. if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
  2064. return 0;
  2065. /* Copy to first part of the iv. */
  2066. iv = EVP_CIPHER_CTX_iv_noconst(c);
  2067. memcpy(iv, ptr, arg);
  2068. return 1;
  2069. case EVP_CTRL_AEAD_SET_IVLEN:
  2070. arg = 15 - arg;
  2071. /* fall-through */
  2072. case EVP_CTRL_CCM_SET_L:
  2073. if (arg < 2 || arg > 8)
  2074. return 0;
  2075. cctx->aes.ccm.l = arg;
  2076. return 1;
  2077. case EVP_CTRL_AEAD_SET_TAG:
  2078. if ((arg & 1) || arg < 4 || arg > 16)
  2079. return 0;
  2080. enc = EVP_CIPHER_CTX_encrypting(c);
  2081. if (enc && ptr)
  2082. return 0;
  2083. if (ptr) {
  2084. cctx->aes.ccm.tag_set = 1;
  2085. buf = EVP_CIPHER_CTX_buf_noconst(c);
  2086. memcpy(buf, ptr, arg);
  2087. }
  2088. cctx->aes.ccm.m = arg;
  2089. return 1;
  2090. case EVP_CTRL_AEAD_GET_TAG:
  2091. enc = EVP_CIPHER_CTX_encrypting(c);
  2092. if (!enc || !cctx->aes.ccm.tag_set)
  2093. return 0;
  2094. if(arg < cctx->aes.ccm.m)
  2095. return 0;
  2096. memcpy(ptr, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
  2097. cctx->aes.ccm.tag_set = 0;
  2098. cctx->aes.ccm.iv_set = 0;
  2099. cctx->aes.ccm.len_set = 0;
  2100. return 1;
  2101. case EVP_CTRL_COPY:
  2102. return 1;
  2103. default:
  2104. return -1;
  2105. }
  2106. }
  2107. # define s390x_aes_ccm_cleanup aes_ccm_cleanup
  2108. # ifndef OPENSSL_NO_OCB
  2109. # define S390X_AES_OCB_CTX EVP_AES_OCB_CTX
  2110. # define S390X_aes_128_ocb_CAPABLE 0
  2111. # define S390X_aes_192_ocb_CAPABLE 0
  2112. # define S390X_aes_256_ocb_CAPABLE 0
  2113. # define s390x_aes_ocb_init_key aes_ocb_init_key
  2114. static int s390x_aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  2115. const unsigned char *iv, int enc);
  2116. # define s390x_aes_ocb_cipher aes_ocb_cipher
  2117. static int s390x_aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2118. const unsigned char *in, size_t len);
  2119. # define s390x_aes_ocb_cleanup aes_ocb_cleanup
  2120. static int s390x_aes_ocb_cleanup(EVP_CIPHER_CTX *);
  2121. # define s390x_aes_ocb_ctrl aes_ocb_ctrl
  2122. static int s390x_aes_ocb_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
  2123. # endif
  2124. # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode, \
  2125. MODE,flags) \
  2126. static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \
  2127. nid##_##keylen##_##nmode,blocksize, \
  2128. keylen / 8, \
  2129. ivlen, \
  2130. flags | EVP_CIPH_##MODE##_MODE, \
  2131. s390x_aes_##mode##_init_key, \
  2132. s390x_aes_##mode##_cipher, \
  2133. NULL, \
  2134. sizeof(S390X_AES_##MODE##_CTX), \
  2135. NULL, \
  2136. NULL, \
  2137. NULL, \
  2138. NULL \
  2139. }; \
  2140. static const EVP_CIPHER aes_##keylen##_##mode = { \
  2141. nid##_##keylen##_##nmode, \
  2142. blocksize, \
  2143. keylen / 8, \
  2144. ivlen, \
  2145. flags | EVP_CIPH_##MODE##_MODE, \
  2146. aes_init_key, \
  2147. aes_##mode##_cipher, \
  2148. NULL, \
  2149. sizeof(EVP_AES_KEY), \
  2150. NULL, \
  2151. NULL, \
  2152. NULL, \
  2153. NULL \
  2154. }; \
  2155. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  2156. { \
  2157. return S390X_aes_##keylen##_##mode##_CAPABLE ? \
  2158. &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \
  2159. }
  2160. # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags)\
  2161. static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \
  2162. nid##_##keylen##_##mode, \
  2163. blocksize, \
  2164. (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * keylen / 8, \
  2165. ivlen, \
  2166. flags | EVP_CIPH_##MODE##_MODE, \
  2167. s390x_aes_##mode##_init_key, \
  2168. s390x_aes_##mode##_cipher, \
  2169. s390x_aes_##mode##_cleanup, \
  2170. sizeof(S390X_AES_##MODE##_CTX), \
  2171. NULL, \
  2172. NULL, \
  2173. s390x_aes_##mode##_ctrl, \
  2174. NULL \
  2175. }; \
  2176. static const EVP_CIPHER aes_##keylen##_##mode = { \
  2177. nid##_##keylen##_##mode,blocksize, \
  2178. (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) * keylen / 8, \
  2179. ivlen, \
  2180. flags | EVP_CIPH_##MODE##_MODE, \
  2181. aes_##mode##_init_key, \
  2182. aes_##mode##_cipher, \
  2183. aes_##mode##_cleanup, \
  2184. sizeof(EVP_AES_##MODE##_CTX), \
  2185. NULL, \
  2186. NULL, \
  2187. aes_##mode##_ctrl, \
  2188. NULL \
  2189. }; \
  2190. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  2191. { \
  2192. return S390X_aes_##keylen##_##mode##_CAPABLE ? \
  2193. &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \
  2194. }
  2195. #else
  2196. # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
  2197. static const EVP_CIPHER aes_##keylen##_##mode = { \
  2198. nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
  2199. flags|EVP_CIPH_##MODE##_MODE, \
  2200. aes_init_key, \
  2201. aes_##mode##_cipher, \
  2202. NULL, \
  2203. sizeof(EVP_AES_KEY), \
  2204. NULL,NULL,NULL,NULL }; \
  2205. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  2206. { return &aes_##keylen##_##mode; }
  2207. # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
  2208. static const EVP_CIPHER aes_##keylen##_##mode = { \
  2209. nid##_##keylen##_##mode,blocksize, \
  2210. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  2211. flags|EVP_CIPH_##MODE##_MODE, \
  2212. aes_##mode##_init_key, \
  2213. aes_##mode##_cipher, \
  2214. aes_##mode##_cleanup, \
  2215. sizeof(EVP_AES_##MODE##_CTX), \
  2216. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  2217. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  2218. { return &aes_##keylen##_##mode; }
  2219. #endif
  2220. #if defined(OPENSSL_CPUID_OBJ) && (defined(__arm__) || defined(__arm) || defined(__aarch64__))
  2221. # include "arm_arch.h"
  2222. # if __ARM_MAX_ARCH__>=7
  2223. # if defined(BSAES_ASM)
  2224. # define BSAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
  2225. # endif
  2226. # if defined(VPAES_ASM)
  2227. # define VPAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
  2228. # endif
  2229. # define HWAES_CAPABLE (OPENSSL_armcap_P & ARMV8_AES)
  2230. # define HWAES_set_encrypt_key aes_v8_set_encrypt_key
  2231. # define HWAES_set_decrypt_key aes_v8_set_decrypt_key
  2232. # define HWAES_encrypt aes_v8_encrypt
  2233. # define HWAES_decrypt aes_v8_decrypt
  2234. # define HWAES_cbc_encrypt aes_v8_cbc_encrypt
  2235. # define HWAES_ctr32_encrypt_blocks aes_v8_ctr32_encrypt_blocks
  2236. # endif
  2237. #endif
  2238. #if defined(HWAES_CAPABLE)
  2239. int HWAES_set_encrypt_key(const unsigned char *userKey, const int bits,
  2240. AES_KEY *key);
  2241. int HWAES_set_decrypt_key(const unsigned char *userKey, const int bits,
  2242. AES_KEY *key);
  2243. void HWAES_encrypt(const unsigned char *in, unsigned char *out,
  2244. const AES_KEY *key);
  2245. void HWAES_decrypt(const unsigned char *in, unsigned char *out,
  2246. const AES_KEY *key);
  2247. void HWAES_cbc_encrypt(const unsigned char *in, unsigned char *out,
  2248. size_t length, const AES_KEY *key,
  2249. unsigned char *ivec, const int enc);
  2250. void HWAES_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
  2251. size_t len, const AES_KEY *key,
  2252. const unsigned char ivec[16]);
  2253. void HWAES_xts_encrypt(const unsigned char *inp, unsigned char *out,
  2254. size_t len, const AES_KEY *key1,
  2255. const AES_KEY *key2, const unsigned char iv[16]);
  2256. void HWAES_xts_decrypt(const unsigned char *inp, unsigned char *out,
  2257. size_t len, const AES_KEY *key1,
  2258. const AES_KEY *key2, const unsigned char iv[16]);
  2259. #endif
  2260. #define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \
  2261. BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
  2262. BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
  2263. BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
  2264. BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
  2265. BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \
  2266. BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \
  2267. BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)
  2268. static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  2269. const unsigned char *iv, int enc)
  2270. {
  2271. int ret, mode;
  2272. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2273. mode = EVP_CIPHER_CTX_mode(ctx);
  2274. if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
  2275. && !enc) {
  2276. #ifdef HWAES_CAPABLE
  2277. if (HWAES_CAPABLE) {
  2278. ret = HWAES_set_decrypt_key(key,
  2279. EVP_CIPHER_CTX_key_length(ctx) * 8,
  2280. &dat->ks.ks);
  2281. dat->block = (block128_f) HWAES_decrypt;
  2282. dat->stream.cbc = NULL;
  2283. # ifdef HWAES_cbc_encrypt
  2284. if (mode == EVP_CIPH_CBC_MODE)
  2285. dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
  2286. # endif
  2287. } else
  2288. #endif
  2289. #ifdef BSAES_CAPABLE
  2290. if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) {
  2291. ret = AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  2292. &dat->ks.ks);
  2293. dat->block = (block128_f) AES_decrypt;
  2294. dat->stream.cbc = (cbc128_f) bsaes_cbc_encrypt;
  2295. } else
  2296. #endif
  2297. #ifdef VPAES_CAPABLE
  2298. if (VPAES_CAPABLE) {
  2299. ret = vpaes_set_decrypt_key(key,
  2300. EVP_CIPHER_CTX_key_length(ctx) * 8,
  2301. &dat->ks.ks);
  2302. dat->block = (block128_f) vpaes_decrypt;
  2303. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  2304. (cbc128_f) vpaes_cbc_encrypt : NULL;
  2305. } else
  2306. #endif
  2307. {
  2308. ret = AES_set_decrypt_key(key,
  2309. EVP_CIPHER_CTX_key_length(ctx) * 8,
  2310. &dat->ks.ks);
  2311. dat->block = (block128_f) AES_decrypt;
  2312. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  2313. (cbc128_f) AES_cbc_encrypt : NULL;
  2314. }
  2315. } else
  2316. #ifdef HWAES_CAPABLE
  2317. if (HWAES_CAPABLE) {
  2318. ret = HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  2319. &dat->ks.ks);
  2320. dat->block = (block128_f) HWAES_encrypt;
  2321. dat->stream.cbc = NULL;
  2322. # ifdef HWAES_cbc_encrypt
  2323. if (mode == EVP_CIPH_CBC_MODE)
  2324. dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
  2325. else
  2326. # endif
  2327. # ifdef HWAES_ctr32_encrypt_blocks
  2328. if (mode == EVP_CIPH_CTR_MODE)
  2329. dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
  2330. else
  2331. # endif
  2332. (void)0; /* terminate potentially open 'else' */
  2333. } else
  2334. #endif
  2335. #ifdef BSAES_CAPABLE
  2336. if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) {
  2337. ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  2338. &dat->ks.ks);
  2339. dat->block = (block128_f) AES_encrypt;
  2340. dat->stream.ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
  2341. } else
  2342. #endif
  2343. #ifdef VPAES_CAPABLE
  2344. if (VPAES_CAPABLE) {
  2345. ret = vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  2346. &dat->ks.ks);
  2347. dat->block = (block128_f) vpaes_encrypt;
  2348. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  2349. (cbc128_f) vpaes_cbc_encrypt : NULL;
  2350. } else
  2351. #endif
  2352. {
  2353. ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  2354. &dat->ks.ks);
  2355. dat->block = (block128_f) AES_encrypt;
  2356. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  2357. (cbc128_f) AES_cbc_encrypt : NULL;
  2358. #ifdef AES_CTR_ASM
  2359. if (mode == EVP_CIPH_CTR_MODE)
  2360. dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt;
  2361. #endif
  2362. }
  2363. if (ret < 0) {
  2364. EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
  2365. return 0;
  2366. }
  2367. return 1;
  2368. }
  2369. static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2370. const unsigned char *in, size_t len)
  2371. {
  2372. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2373. if (dat->stream.cbc)
  2374. (*dat->stream.cbc) (in, out, len, &dat->ks,
  2375. EVP_CIPHER_CTX_iv_noconst(ctx),
  2376. EVP_CIPHER_CTX_encrypting(ctx));
  2377. else if (EVP_CIPHER_CTX_encrypting(ctx))
  2378. CRYPTO_cbc128_encrypt(in, out, len, &dat->ks,
  2379. EVP_CIPHER_CTX_iv_noconst(ctx), dat->block);
  2380. else
  2381. CRYPTO_cbc128_decrypt(in, out, len, &dat->ks,
  2382. EVP_CIPHER_CTX_iv_noconst(ctx), dat->block);
  2383. return 1;
  2384. }
  2385. static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2386. const unsigned char *in, size_t len)
  2387. {
  2388. size_t bl = EVP_CIPHER_CTX_block_size(ctx);
  2389. size_t i;
  2390. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2391. if (len < bl)
  2392. return 1;
  2393. for (i = 0, len -= bl; i <= len; i += bl)
  2394. (*dat->block) (in + i, out + i, &dat->ks);
  2395. return 1;
  2396. }
  2397. static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2398. const unsigned char *in, size_t len)
  2399. {
  2400. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2401. int num = EVP_CIPHER_CTX_num(ctx);
  2402. CRYPTO_ofb128_encrypt(in, out, len, &dat->ks,
  2403. EVP_CIPHER_CTX_iv_noconst(ctx), &num, dat->block);
  2404. EVP_CIPHER_CTX_set_num(ctx, num);
  2405. return 1;
  2406. }
  2407. static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2408. const unsigned char *in, size_t len)
  2409. {
  2410. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2411. int num = EVP_CIPHER_CTX_num(ctx);
  2412. CRYPTO_cfb128_encrypt(in, out, len, &dat->ks,
  2413. EVP_CIPHER_CTX_iv_noconst(ctx), &num,
  2414. EVP_CIPHER_CTX_encrypting(ctx), dat->block);
  2415. EVP_CIPHER_CTX_set_num(ctx, num);
  2416. return 1;
  2417. }
  2418. static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2419. const unsigned char *in, size_t len)
  2420. {
  2421. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2422. int num = EVP_CIPHER_CTX_num(ctx);
  2423. CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks,
  2424. EVP_CIPHER_CTX_iv_noconst(ctx), &num,
  2425. EVP_CIPHER_CTX_encrypting(ctx), dat->block);
  2426. EVP_CIPHER_CTX_set_num(ctx, num);
  2427. return 1;
  2428. }
  2429. static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2430. const unsigned char *in, size_t len)
  2431. {
  2432. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2433. if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) {
  2434. int num = EVP_CIPHER_CTX_num(ctx);
  2435. CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks,
  2436. EVP_CIPHER_CTX_iv_noconst(ctx), &num,
  2437. EVP_CIPHER_CTX_encrypting(ctx), dat->block);
  2438. EVP_CIPHER_CTX_set_num(ctx, num);
  2439. return 1;
  2440. }
  2441. while (len >= MAXBITCHUNK) {
  2442. int num = EVP_CIPHER_CTX_num(ctx);
  2443. CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks,
  2444. EVP_CIPHER_CTX_iv_noconst(ctx), &num,
  2445. EVP_CIPHER_CTX_encrypting(ctx), dat->block);
  2446. EVP_CIPHER_CTX_set_num(ctx, num);
  2447. len -= MAXBITCHUNK;
  2448. out += MAXBITCHUNK;
  2449. in += MAXBITCHUNK;
  2450. }
  2451. if (len) {
  2452. int num = EVP_CIPHER_CTX_num(ctx);
  2453. CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks,
  2454. EVP_CIPHER_CTX_iv_noconst(ctx), &num,
  2455. EVP_CIPHER_CTX_encrypting(ctx), dat->block);
  2456. EVP_CIPHER_CTX_set_num(ctx, num);
  2457. }
  2458. return 1;
  2459. }
  2460. static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2461. const unsigned char *in, size_t len)
  2462. {
  2463. unsigned int num = EVP_CIPHER_CTX_num(ctx);
  2464. EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
  2465. if (dat->stream.ctr)
  2466. CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks,
  2467. EVP_CIPHER_CTX_iv_noconst(ctx),
  2468. EVP_CIPHER_CTX_buf_noconst(ctx),
  2469. &num, dat->stream.ctr);
  2470. else
  2471. CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,
  2472. EVP_CIPHER_CTX_iv_noconst(ctx),
  2473. EVP_CIPHER_CTX_buf_noconst(ctx), &num,
  2474. dat->block);
  2475. EVP_CIPHER_CTX_set_num(ctx, num);
  2476. return 1;
  2477. }
  2478. BLOCK_CIPHER_generic_pack(NID_aes, 128, 0)
  2479. BLOCK_CIPHER_generic_pack(NID_aes, 192, 0)
  2480. BLOCK_CIPHER_generic_pack(NID_aes, 256, 0)
  2481. static int aes_gcm_cleanup(EVP_CIPHER_CTX *c)
  2482. {
  2483. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
  2484. if (gctx == NULL)
  2485. return 0;
  2486. OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
  2487. if (gctx->iv != EVP_CIPHER_CTX_iv_noconst(c))
  2488. OPENSSL_free(gctx->iv);
  2489. return 1;
  2490. }
  2491. static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  2492. {
  2493. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
  2494. switch (type) {
  2495. case EVP_CTRL_INIT:
  2496. gctx->key_set = 0;
  2497. gctx->iv_set = 0;
  2498. gctx->ivlen = EVP_CIPHER_iv_length(c->cipher);
  2499. gctx->iv = c->iv;
  2500. gctx->taglen = -1;
  2501. gctx->iv_gen = 0;
  2502. gctx->tls_aad_len = -1;
  2503. return 1;
  2504. case EVP_CTRL_GET_IVLEN:
  2505. *(int *)ptr = gctx->ivlen;
  2506. return 1;
  2507. case EVP_CTRL_AEAD_SET_IVLEN:
  2508. if (arg <= 0)
  2509. return 0;
  2510. /* Allocate memory for IV if needed */
  2511. if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) {
  2512. if (gctx->iv != c->iv)
  2513. OPENSSL_free(gctx->iv);
  2514. if ((gctx->iv = OPENSSL_malloc(arg)) == NULL) {
  2515. EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
  2516. return 0;
  2517. }
  2518. }
  2519. gctx->ivlen = arg;
  2520. return 1;
  2521. case EVP_CTRL_AEAD_SET_TAG:
  2522. if (arg <= 0 || arg > 16 || c->encrypt)
  2523. return 0;
  2524. memcpy(c->buf, ptr, arg);
  2525. gctx->taglen = arg;
  2526. return 1;
  2527. case EVP_CTRL_AEAD_GET_TAG:
  2528. if (arg <= 0 || arg > 16 || !c->encrypt
  2529. || gctx->taglen < 0)
  2530. return 0;
  2531. memcpy(ptr, c->buf, arg);
  2532. return 1;
  2533. case EVP_CTRL_GCM_SET_IV_FIXED:
  2534. /* Special case: -1 length restores whole IV */
  2535. if (arg == -1) {
  2536. memcpy(gctx->iv, ptr, gctx->ivlen);
  2537. gctx->iv_gen = 1;
  2538. return 1;
  2539. }
  2540. /*
  2541. * Fixed field must be at least 4 bytes and invocation field at least
  2542. * 8.
  2543. */
  2544. if ((arg < 4) || (gctx->ivlen - arg) < 8)
  2545. return 0;
  2546. if (arg)
  2547. memcpy(gctx->iv, ptr, arg);
  2548. if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
  2549. return 0;
  2550. gctx->iv_gen = 1;
  2551. return 1;
  2552. case EVP_CTRL_GCM_IV_GEN:
  2553. if (gctx->iv_gen == 0 || gctx->key_set == 0)
  2554. return 0;
  2555. CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
  2556. if (arg <= 0 || arg > gctx->ivlen)
  2557. arg = gctx->ivlen;
  2558. memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
  2559. /*
  2560. * Invocation field will be at least 8 bytes in size and so no need
  2561. * to check wrap around or increment more than last 8 bytes.
  2562. */
  2563. ctr64_inc(gctx->iv + gctx->ivlen - 8);
  2564. gctx->iv_set = 1;
  2565. return 1;
  2566. case EVP_CTRL_GCM_SET_IV_INV:
  2567. if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)
  2568. return 0;
  2569. memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
  2570. CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
  2571. gctx->iv_set = 1;
  2572. return 1;
  2573. case EVP_CTRL_AEAD_TLS1_AAD:
  2574. /* Save the AAD for later use */
  2575. if (arg != EVP_AEAD_TLS1_AAD_LEN)
  2576. return 0;
  2577. memcpy(c->buf, ptr, arg);
  2578. gctx->tls_aad_len = arg;
  2579. {
  2580. unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1];
  2581. /* Correct length for explicit IV */
  2582. if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
  2583. return 0;
  2584. len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
  2585. /* If decrypting correct for tag too */
  2586. if (!c->encrypt) {
  2587. if (len < EVP_GCM_TLS_TAG_LEN)
  2588. return 0;
  2589. len -= EVP_GCM_TLS_TAG_LEN;
  2590. }
  2591. c->buf[arg - 2] = len >> 8;
  2592. c->buf[arg - 1] = len & 0xff;
  2593. }
  2594. /* Extra padding: tag appended to record */
  2595. return EVP_GCM_TLS_TAG_LEN;
  2596. case EVP_CTRL_COPY:
  2597. {
  2598. EVP_CIPHER_CTX *out = ptr;
  2599. EVP_AES_GCM_CTX *gctx_out = EVP_C_DATA(EVP_AES_GCM_CTX,out);
  2600. if (gctx->gcm.key) {
  2601. if (gctx->gcm.key != &gctx->ks)
  2602. return 0;
  2603. gctx_out->gcm.key = &gctx_out->ks;
  2604. }
  2605. if (gctx->iv == c->iv)
  2606. gctx_out->iv = out->iv;
  2607. else {
  2608. if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL) {
  2609. EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE);
  2610. return 0;
  2611. }
  2612. memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
  2613. }
  2614. return 1;
  2615. }
  2616. default:
  2617. return -1;
  2618. }
  2619. }
  2620. static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  2621. const unsigned char *iv, int enc)
  2622. {
  2623. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
  2624. if (!iv && !key)
  2625. return 1;
  2626. if (key) {
  2627. do {
  2628. #ifdef HWAES_CAPABLE
  2629. if (HWAES_CAPABLE) {
  2630. HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  2631. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  2632. (block128_f) HWAES_encrypt);
  2633. # ifdef HWAES_ctr32_encrypt_blocks
  2634. gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
  2635. # else
  2636. gctx->ctr = NULL;
  2637. # endif
  2638. break;
  2639. } else
  2640. #endif
  2641. #ifdef BSAES_CAPABLE
  2642. if (BSAES_CAPABLE) {
  2643. AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  2644. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  2645. (block128_f) AES_encrypt);
  2646. gctx->ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
  2647. break;
  2648. } else
  2649. #endif
  2650. #ifdef VPAES_CAPABLE
  2651. if (VPAES_CAPABLE) {
  2652. vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  2653. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  2654. (block128_f) vpaes_encrypt);
  2655. gctx->ctr = NULL;
  2656. break;
  2657. } else
  2658. #endif
  2659. (void)0; /* terminate potentially open 'else' */
  2660. AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  2661. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  2662. (block128_f) AES_encrypt);
  2663. #ifdef AES_CTR_ASM
  2664. gctx->ctr = (ctr128_f) AES_ctr32_encrypt;
  2665. #else
  2666. gctx->ctr = NULL;
  2667. #endif
  2668. } while (0);
  2669. /*
  2670. * If we have an iv can set it directly, otherwise use saved IV.
  2671. */
  2672. if (iv == NULL && gctx->iv_set)
  2673. iv = gctx->iv;
  2674. if (iv) {
  2675. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  2676. gctx->iv_set = 1;
  2677. }
  2678. gctx->key_set = 1;
  2679. } else {
  2680. /* If key set use IV, otherwise copy */
  2681. if (gctx->key_set)
  2682. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  2683. else
  2684. memcpy(gctx->iv, iv, gctx->ivlen);
  2685. gctx->iv_set = 1;
  2686. gctx->iv_gen = 0;
  2687. }
  2688. return 1;
  2689. }
  2690. /*
  2691. * Handle TLS GCM packet format. This consists of the last portion of the IV
  2692. * followed by the payload and finally the tag. On encrypt generate IV,
  2693. * encrypt payload and write the tag. On verify retrieve IV, decrypt payload
  2694. * and verify tag.
  2695. */
  2696. static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2697. const unsigned char *in, size_t len)
  2698. {
  2699. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
  2700. int rv = -1;
  2701. /* Encrypt/decrypt must be performed in place */
  2702. if (out != in
  2703. || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
  2704. return -1;
  2705. /*
  2706. * Set IV from start of buffer or generate IV and write to start of
  2707. * buffer.
  2708. */
  2709. if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN
  2710. : EVP_CTRL_GCM_SET_IV_INV,
  2711. EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
  2712. goto err;
  2713. /* Use saved AAD */
  2714. if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len))
  2715. goto err;
  2716. /* Fix buffer and length to point to payload */
  2717. in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
  2718. out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
  2719. len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
  2720. if (ctx->encrypt) {
  2721. /* Encrypt payload */
  2722. if (gctx->ctr) {
  2723. size_t bulk = 0;
  2724. #if defined(AES_GCM_ASM)
  2725. if (len >= 32 && AES_GCM_ASM(gctx)) {
  2726. if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
  2727. return -1;
  2728. bulk = AES_gcm_encrypt(in, out, len,
  2729. gctx->gcm.key,
  2730. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2731. gctx->gcm.len.u[1] += bulk;
  2732. }
  2733. #endif
  2734. if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
  2735. in + bulk,
  2736. out + bulk,
  2737. len - bulk, gctx->ctr))
  2738. goto err;
  2739. } else {
  2740. size_t bulk = 0;
  2741. #if defined(AES_GCM_ASM2)
  2742. if (len >= 32 && AES_GCM_ASM2(gctx)) {
  2743. if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
  2744. return -1;
  2745. bulk = AES_gcm_encrypt(in, out, len,
  2746. gctx->gcm.key,
  2747. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2748. gctx->gcm.len.u[1] += bulk;
  2749. }
  2750. #endif
  2751. if (CRYPTO_gcm128_encrypt(&gctx->gcm,
  2752. in + bulk, out + bulk, len - bulk))
  2753. goto err;
  2754. }
  2755. out += len;
  2756. /* Finally write tag */
  2757. CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);
  2758. rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
  2759. } else {
  2760. /* Decrypt */
  2761. if (gctx->ctr) {
  2762. size_t bulk = 0;
  2763. #if defined(AES_GCM_ASM)
  2764. if (len >= 16 && AES_GCM_ASM(gctx)) {
  2765. if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
  2766. return -1;
  2767. bulk = AES_gcm_decrypt(in, out, len,
  2768. gctx->gcm.key,
  2769. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2770. gctx->gcm.len.u[1] += bulk;
  2771. }
  2772. #endif
  2773. if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
  2774. in + bulk,
  2775. out + bulk,
  2776. len - bulk, gctx->ctr))
  2777. goto err;
  2778. } else {
  2779. size_t bulk = 0;
  2780. #if defined(AES_GCM_ASM2)
  2781. if (len >= 16 && AES_GCM_ASM2(gctx)) {
  2782. if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
  2783. return -1;
  2784. bulk = AES_gcm_decrypt(in, out, len,
  2785. gctx->gcm.key,
  2786. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2787. gctx->gcm.len.u[1] += bulk;
  2788. }
  2789. #endif
  2790. if (CRYPTO_gcm128_decrypt(&gctx->gcm,
  2791. in + bulk, out + bulk, len - bulk))
  2792. goto err;
  2793. }
  2794. /* Retrieve tag */
  2795. CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN);
  2796. /* If tag mismatch wipe buffer */
  2797. if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) {
  2798. OPENSSL_cleanse(out, len);
  2799. goto err;
  2800. }
  2801. rv = len;
  2802. }
  2803. err:
  2804. gctx->iv_set = 0;
  2805. gctx->tls_aad_len = -1;
  2806. return rv;
  2807. }
  2808. static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  2809. const unsigned char *in, size_t len)
  2810. {
  2811. EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
  2812. /* If not set up, return error */
  2813. if (!gctx->key_set)
  2814. return -1;
  2815. if (gctx->tls_aad_len >= 0)
  2816. return aes_gcm_tls_cipher(ctx, out, in, len);
  2817. if (!gctx->iv_set)
  2818. return -1;
  2819. if (in) {
  2820. if (out == NULL) {
  2821. if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
  2822. return -1;
  2823. } else if (ctx->encrypt) {
  2824. if (gctx->ctr) {
  2825. size_t bulk = 0;
  2826. #if defined(AES_GCM_ASM)
  2827. if (len >= 32 && AES_GCM_ASM(gctx)) {
  2828. size_t res = (16 - gctx->gcm.mres) % 16;
  2829. if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
  2830. return -1;
  2831. bulk = AES_gcm_encrypt(in + res,
  2832. out + res, len - res,
  2833. gctx->gcm.key, gctx->gcm.Yi.c,
  2834. gctx->gcm.Xi.u);
  2835. gctx->gcm.len.u[1] += bulk;
  2836. bulk += res;
  2837. }
  2838. #endif
  2839. if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
  2840. in + bulk,
  2841. out + bulk,
  2842. len - bulk, gctx->ctr))
  2843. return -1;
  2844. } else {
  2845. size_t bulk = 0;
  2846. #if defined(AES_GCM_ASM2)
  2847. if (len >= 32 && AES_GCM_ASM2(gctx)) {
  2848. size_t res = (16 - gctx->gcm.mres) % 16;
  2849. if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
  2850. return -1;
  2851. bulk = AES_gcm_encrypt(in + res,
  2852. out + res, len - res,
  2853. gctx->gcm.key, gctx->gcm.Yi.c,
  2854. gctx->gcm.Xi.u);
  2855. gctx->gcm.len.u[1] += bulk;
  2856. bulk += res;
  2857. }
  2858. #endif
  2859. if (CRYPTO_gcm128_encrypt(&gctx->gcm,
  2860. in + bulk, out + bulk, len - bulk))
  2861. return -1;
  2862. }
  2863. } else {
  2864. if (gctx->ctr) {
  2865. size_t bulk = 0;
  2866. #if defined(AES_GCM_ASM)
  2867. if (len >= 16 && AES_GCM_ASM(gctx)) {
  2868. size_t res = (16 - gctx->gcm.mres) % 16;
  2869. if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
  2870. return -1;
  2871. bulk = AES_gcm_decrypt(in + res,
  2872. out + res, len - res,
  2873. gctx->gcm.key,
  2874. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2875. gctx->gcm.len.u[1] += bulk;
  2876. bulk += res;
  2877. }
  2878. #endif
  2879. if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
  2880. in + bulk,
  2881. out + bulk,
  2882. len - bulk, gctx->ctr))
  2883. return -1;
  2884. } else {
  2885. size_t bulk = 0;
  2886. #if defined(AES_GCM_ASM2)
  2887. if (len >= 16 && AES_GCM_ASM2(gctx)) {
  2888. size_t res = (16 - gctx->gcm.mres) % 16;
  2889. if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
  2890. return -1;
  2891. bulk = AES_gcm_decrypt(in + res,
  2892. out + res, len - res,
  2893. gctx->gcm.key,
  2894. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  2895. gctx->gcm.len.u[1] += bulk;
  2896. bulk += res;
  2897. }
  2898. #endif
  2899. if (CRYPTO_gcm128_decrypt(&gctx->gcm,
  2900. in + bulk, out + bulk, len - bulk))
  2901. return -1;
  2902. }
  2903. }
  2904. return len;
  2905. } else {
  2906. if (!ctx->encrypt) {
  2907. if (gctx->taglen < 0)
  2908. return -1;
  2909. if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0)
  2910. return -1;
  2911. gctx->iv_set = 0;
  2912. return 0;
  2913. }
  2914. CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
  2915. gctx->taglen = 16;
  2916. /* Don't reuse the IV */
  2917. gctx->iv_set = 0;
  2918. return 0;
  2919. }
  2920. }
  2921. #define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \
  2922. | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
  2923. | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
  2924. | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_CUSTOM_IV_LENGTH)
  2925. BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM,
  2926. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  2927. BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM,
  2928. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  2929. BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM,
  2930. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  2931. static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  2932. {
  2933. EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, c);
  2934. if (type == EVP_CTRL_COPY) {
  2935. EVP_CIPHER_CTX *out = ptr;
  2936. EVP_AES_XTS_CTX *xctx_out = EVP_C_DATA(EVP_AES_XTS_CTX,out);
  2937. if (xctx->xts.key1) {
  2938. if (xctx->xts.key1 != &xctx->ks1)
  2939. return 0;
  2940. xctx_out->xts.key1 = &xctx_out->ks1;
  2941. }
  2942. if (xctx->xts.key2) {
  2943. if (xctx->xts.key2 != &xctx->ks2)
  2944. return 0;
  2945. xctx_out->xts.key2 = &xctx_out->ks2;
  2946. }
  2947. return 1;
  2948. } else if (type != EVP_CTRL_INIT)
  2949. return -1;
  2950. /* key1 and key2 are used as an indicator both key and IV are set */
  2951. xctx->xts.key1 = NULL;
  2952. xctx->xts.key2 = NULL;
  2953. return 1;
  2954. }
  2955. static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  2956. const unsigned char *iv, int enc)
  2957. {
  2958. EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
  2959. if (!iv && !key)
  2960. return 1;
  2961. if (key)
  2962. do {
  2963. /* The key is two half length keys in reality */
  2964. const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2;
  2965. /*
  2966. * Verify that the two keys are different.
  2967. *
  2968. * This addresses the vulnerability described in Rogaway's
  2969. * September 2004 paper:
  2970. *
  2971. * "Efficient Instantiations of Tweakable Blockciphers and
  2972. * Refinements to Modes OCB and PMAC".
  2973. * (http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf)
  2974. *
  2975. * FIPS 140-2 IG A.9 XTS-AES Key Generation Requirements states
  2976. * that:
  2977. * "The check for Key_1 != Key_2 shall be done at any place
  2978. * BEFORE using the keys in the XTS-AES algorithm to process
  2979. * data with them."
  2980. */
  2981. if (enc && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
  2982. EVPerr(EVP_F_AES_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS);
  2983. return 0;
  2984. }
  2985. #ifdef AES_XTS_ASM
  2986. xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;
  2987. #else
  2988. xctx->stream = NULL;
  2989. #endif
  2990. /* key_len is two AES keys */
  2991. #ifdef HWAES_CAPABLE
  2992. if (HWAES_CAPABLE) {
  2993. if (enc) {
  2994. HWAES_set_encrypt_key(key,
  2995. EVP_CIPHER_CTX_key_length(ctx) * 4,
  2996. &xctx->ks1.ks);
  2997. xctx->xts.block1 = (block128_f) HWAES_encrypt;
  2998. # ifdef HWAES_xts_encrypt
  2999. xctx->stream = HWAES_xts_encrypt;
  3000. # endif
  3001. } else {
  3002. HWAES_set_decrypt_key(key,
  3003. EVP_CIPHER_CTX_key_length(ctx) * 4,
  3004. &xctx->ks1.ks);
  3005. xctx->xts.block1 = (block128_f) HWAES_decrypt;
  3006. # ifdef HWAES_xts_decrypt
  3007. xctx->stream = HWAES_xts_decrypt;
  3008. #endif
  3009. }
  3010. HWAES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
  3011. EVP_CIPHER_CTX_key_length(ctx) * 4,
  3012. &xctx->ks2.ks);
  3013. xctx->xts.block2 = (block128_f) HWAES_encrypt;
  3014. xctx->xts.key1 = &xctx->ks1;
  3015. break;
  3016. } else
  3017. #endif
  3018. #ifdef BSAES_CAPABLE
  3019. if (BSAES_CAPABLE)
  3020. xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt;
  3021. else
  3022. #endif
  3023. #ifdef VPAES_CAPABLE
  3024. if (VPAES_CAPABLE) {
  3025. if (enc) {
  3026. vpaes_set_encrypt_key(key,
  3027. EVP_CIPHER_CTX_key_length(ctx) * 4,
  3028. &xctx->ks1.ks);
  3029. xctx->xts.block1 = (block128_f) vpaes_encrypt;
  3030. } else {
  3031. vpaes_set_decrypt_key(key,
  3032. EVP_CIPHER_CTX_key_length(ctx) * 4,
  3033. &xctx->ks1.ks);
  3034. xctx->xts.block1 = (block128_f) vpaes_decrypt;
  3035. }
  3036. vpaes_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
  3037. EVP_CIPHER_CTX_key_length(ctx) * 4,
  3038. &xctx->ks2.ks);
  3039. xctx->xts.block2 = (block128_f) vpaes_encrypt;
  3040. xctx->xts.key1 = &xctx->ks1;
  3041. break;
  3042. } else
  3043. #endif
  3044. (void)0; /* terminate potentially open 'else' */
  3045. if (enc) {
  3046. AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
  3047. &xctx->ks1.ks);
  3048. xctx->xts.block1 = (block128_f) AES_encrypt;
  3049. } else {
  3050. AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 4,
  3051. &xctx->ks1.ks);
  3052. xctx->xts.block1 = (block128_f) AES_decrypt;
  3053. }
  3054. AES_set_encrypt_key(key + EVP_CIPHER_CTX_key_length(ctx) / 2,
  3055. EVP_CIPHER_CTX_key_length(ctx) * 4,
  3056. &xctx->ks2.ks);
  3057. xctx->xts.block2 = (block128_f) AES_encrypt;
  3058. xctx->xts.key1 = &xctx->ks1;
  3059. } while (0);
  3060. if (iv) {
  3061. xctx->xts.key2 = &xctx->ks2;
  3062. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 16);
  3063. }
  3064. return 1;
  3065. }
  3066. static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  3067. const unsigned char *in, size_t len)
  3068. {
  3069. EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
  3070. if (!xctx->xts.key1 || !xctx->xts.key2)
  3071. return 0;
  3072. if (!out || !in || len < AES_BLOCK_SIZE)
  3073. return 0;
  3074. if (xctx->stream)
  3075. (*xctx->stream) (in, out, len,
  3076. xctx->xts.key1, xctx->xts.key2,
  3077. EVP_CIPHER_CTX_iv_noconst(ctx));
  3078. else if (CRYPTO_xts128_encrypt(&xctx->xts, EVP_CIPHER_CTX_iv_noconst(ctx),
  3079. in, out, len,
  3080. EVP_CIPHER_CTX_encrypting(ctx)))
  3081. return 0;
  3082. return 1;
  3083. }
  3084. #define aes_xts_cleanup NULL
  3085. #define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \
  3086. | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
  3087. | EVP_CIPH_CUSTOM_COPY)
  3088. BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS)
  3089. BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS)
  3090. static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  3091. {
  3092. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,c);
  3093. switch (type) {
  3094. case EVP_CTRL_INIT:
  3095. cctx->key_set = 0;
  3096. cctx->iv_set = 0;
  3097. cctx->L = 8;
  3098. cctx->M = 12;
  3099. cctx->tag_set = 0;
  3100. cctx->len_set = 0;
  3101. cctx->tls_aad_len = -1;
  3102. return 1;
  3103. case EVP_CTRL_GET_IVLEN:
  3104. *(int *)ptr = 15 - cctx->L;
  3105. return 1;
  3106. case EVP_CTRL_AEAD_TLS1_AAD:
  3107. /* Save the AAD for later use */
  3108. if (arg != EVP_AEAD_TLS1_AAD_LEN)
  3109. return 0;
  3110. memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
  3111. cctx->tls_aad_len = arg;
  3112. {
  3113. uint16_t len =
  3114. EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8
  3115. | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1];
  3116. /* Correct length for explicit IV */
  3117. if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
  3118. return 0;
  3119. len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
  3120. /* If decrypting correct for tag too */
  3121. if (!EVP_CIPHER_CTX_encrypting(c)) {
  3122. if (len < cctx->M)
  3123. return 0;
  3124. len -= cctx->M;
  3125. }
  3126. EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8;
  3127. EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff;
  3128. }
  3129. /* Extra padding: tag appended to record */
  3130. return cctx->M;
  3131. case EVP_CTRL_CCM_SET_IV_FIXED:
  3132. /* Sanity check length */
  3133. if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
  3134. return 0;
  3135. /* Just copy to first part of IV */
  3136. memcpy(EVP_CIPHER_CTX_iv_noconst(c), ptr, arg);
  3137. return 1;
  3138. case EVP_CTRL_AEAD_SET_IVLEN:
  3139. arg = 15 - arg;
  3140. /* fall thru */
  3141. case EVP_CTRL_CCM_SET_L:
  3142. if (arg < 2 || arg > 8)
  3143. return 0;
  3144. cctx->L = arg;
  3145. return 1;
  3146. case EVP_CTRL_AEAD_SET_TAG:
  3147. if ((arg & 1) || arg < 4 || arg > 16)
  3148. return 0;
  3149. if (EVP_CIPHER_CTX_encrypting(c) && ptr)
  3150. return 0;
  3151. if (ptr) {
  3152. cctx->tag_set = 1;
  3153. memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
  3154. }
  3155. cctx->M = arg;
  3156. return 1;
  3157. case EVP_CTRL_AEAD_GET_TAG:
  3158. if (!EVP_CIPHER_CTX_encrypting(c) || !cctx->tag_set)
  3159. return 0;
  3160. if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
  3161. return 0;
  3162. cctx->tag_set = 0;
  3163. cctx->iv_set = 0;
  3164. cctx->len_set = 0;
  3165. return 1;
  3166. case EVP_CTRL_COPY:
  3167. {
  3168. EVP_CIPHER_CTX *out = ptr;
  3169. EVP_AES_CCM_CTX *cctx_out = EVP_C_DATA(EVP_AES_CCM_CTX,out);
  3170. if (cctx->ccm.key) {
  3171. if (cctx->ccm.key != &cctx->ks)
  3172. return 0;
  3173. cctx_out->ccm.key = &cctx_out->ks;
  3174. }
  3175. return 1;
  3176. }
  3177. default:
  3178. return -1;
  3179. }
  3180. }
  3181. static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  3182. const unsigned char *iv, int enc)
  3183. {
  3184. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
  3185. if (!iv && !key)
  3186. return 1;
  3187. if (key)
  3188. do {
  3189. #ifdef HWAES_CAPABLE
  3190. if (HWAES_CAPABLE) {
  3191. HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3192. &cctx->ks.ks);
  3193. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  3194. &cctx->ks, (block128_f) HWAES_encrypt);
  3195. cctx->str = NULL;
  3196. cctx->key_set = 1;
  3197. break;
  3198. } else
  3199. #endif
  3200. #ifdef VPAES_CAPABLE
  3201. if (VPAES_CAPABLE) {
  3202. vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3203. &cctx->ks.ks);
  3204. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  3205. &cctx->ks, (block128_f) vpaes_encrypt);
  3206. cctx->str = NULL;
  3207. cctx->key_set = 1;
  3208. break;
  3209. }
  3210. #endif
  3211. AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3212. &cctx->ks.ks);
  3213. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  3214. &cctx->ks, (block128_f) AES_encrypt);
  3215. cctx->str = NULL;
  3216. cctx->key_set = 1;
  3217. } while (0);
  3218. if (iv) {
  3219. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, 15 - cctx->L);
  3220. cctx->iv_set = 1;
  3221. }
  3222. return 1;
  3223. }
  3224. static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  3225. const unsigned char *in, size_t len)
  3226. {
  3227. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
  3228. CCM128_CONTEXT *ccm = &cctx->ccm;
  3229. /* Encrypt/decrypt must be performed in place */
  3230. if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M))
  3231. return -1;
  3232. /* If encrypting set explicit IV from sequence number (start of AAD) */
  3233. if (EVP_CIPHER_CTX_encrypting(ctx))
  3234. memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx),
  3235. EVP_CCM_TLS_EXPLICIT_IV_LEN);
  3236. /* Get rest of IV from explicit IV */
  3237. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx) + EVP_CCM_TLS_FIXED_IV_LEN, in,
  3238. EVP_CCM_TLS_EXPLICIT_IV_LEN);
  3239. /* Correct length value */
  3240. len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
  3241. if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx), 15 - cctx->L,
  3242. len))
  3243. return -1;
  3244. /* Use saved AAD */
  3245. CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx), cctx->tls_aad_len);
  3246. /* Fix buffer to point to payload */
  3247. in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
  3248. out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
  3249. if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3250. if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
  3251. cctx->str) :
  3252. CRYPTO_ccm128_encrypt(ccm, in, out, len))
  3253. return -1;
  3254. if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M))
  3255. return -1;
  3256. return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
  3257. } else {
  3258. if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
  3259. cctx->str) :
  3260. !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
  3261. unsigned char tag[16];
  3262. if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
  3263. if (!CRYPTO_memcmp(tag, in + len, cctx->M))
  3264. return len;
  3265. }
  3266. }
  3267. OPENSSL_cleanse(out, len);
  3268. return -1;
  3269. }
  3270. }
  3271. static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  3272. const unsigned char *in, size_t len)
  3273. {
  3274. EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
  3275. CCM128_CONTEXT *ccm = &cctx->ccm;
  3276. /* If not set up, return error */
  3277. if (!cctx->key_set)
  3278. return -1;
  3279. if (cctx->tls_aad_len >= 0)
  3280. return aes_ccm_tls_cipher(ctx, out, in, len);
  3281. /* EVP_*Final() doesn't return any data */
  3282. if (in == NULL && out != NULL)
  3283. return 0;
  3284. if (!cctx->iv_set)
  3285. return -1;
  3286. if (!out) {
  3287. if (!in) {
  3288. if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx),
  3289. 15 - cctx->L, len))
  3290. return -1;
  3291. cctx->len_set = 1;
  3292. return len;
  3293. }
  3294. /* If have AAD need message length */
  3295. if (!cctx->len_set && len)
  3296. return -1;
  3297. CRYPTO_ccm128_aad(ccm, in, len);
  3298. return len;
  3299. }
  3300. /* The tag must be set before actually decrypting data */
  3301. if (!EVP_CIPHER_CTX_encrypting(ctx) && !cctx->tag_set)
  3302. return -1;
  3303. /* If not set length yet do it */
  3304. if (!cctx->len_set) {
  3305. if (CRYPTO_ccm128_setiv(ccm, EVP_CIPHER_CTX_iv_noconst(ctx),
  3306. 15 - cctx->L, len))
  3307. return -1;
  3308. cctx->len_set = 1;
  3309. }
  3310. if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3311. if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
  3312. cctx->str) :
  3313. CRYPTO_ccm128_encrypt(ccm, in, out, len))
  3314. return -1;
  3315. cctx->tag_set = 1;
  3316. return len;
  3317. } else {
  3318. int rv = -1;
  3319. if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
  3320. cctx->str) :
  3321. !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
  3322. unsigned char tag[16];
  3323. if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
  3324. if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx),
  3325. cctx->M))
  3326. rv = len;
  3327. }
  3328. }
  3329. if (rv == -1)
  3330. OPENSSL_cleanse(out, len);
  3331. cctx->iv_set = 0;
  3332. cctx->tag_set = 0;
  3333. cctx->len_set = 0;
  3334. return rv;
  3335. }
  3336. }
  3337. #define aes_ccm_cleanup NULL
  3338. BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM,
  3339. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3340. BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM,
  3341. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3342. BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM,
  3343. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3344. typedef struct {
  3345. union {
  3346. double align;
  3347. AES_KEY ks;
  3348. } ks;
  3349. /* Indicates if IV has been set */
  3350. unsigned char *iv;
  3351. } EVP_AES_WRAP_CTX;
  3352. static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  3353. const unsigned char *iv, int enc)
  3354. {
  3355. EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
  3356. if (!iv && !key)
  3357. return 1;
  3358. if (key) {
  3359. if (EVP_CIPHER_CTX_encrypting(ctx))
  3360. AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3361. &wctx->ks.ks);
  3362. else
  3363. AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3364. &wctx->ks.ks);
  3365. if (!iv)
  3366. wctx->iv = NULL;
  3367. }
  3368. if (iv) {
  3369. memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), iv, EVP_CIPHER_CTX_iv_length(ctx));
  3370. wctx->iv = EVP_CIPHER_CTX_iv_noconst(ctx);
  3371. }
  3372. return 1;
  3373. }
  3374. static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  3375. const unsigned char *in, size_t inlen)
  3376. {
  3377. EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
  3378. size_t rv;
  3379. /* AES wrap with padding has IV length of 4, without padding 8 */
  3380. int pad = EVP_CIPHER_CTX_iv_length(ctx) == 4;
  3381. /* No final operation so always return zero length */
  3382. if (!in)
  3383. return 0;
  3384. /* Input length must always be non-zero */
  3385. if (!inlen)
  3386. return -1;
  3387. /* If decrypting need at least 16 bytes and multiple of 8 */
  3388. if (!EVP_CIPHER_CTX_encrypting(ctx) && (inlen < 16 || inlen & 0x7))
  3389. return -1;
  3390. /* If not padding input must be multiple of 8 */
  3391. if (!pad && inlen & 0x7)
  3392. return -1;
  3393. if (is_partially_overlapping(out, in, inlen)) {
  3394. EVPerr(EVP_F_AES_WRAP_CIPHER, EVP_R_PARTIALLY_OVERLAPPING);
  3395. return 0;
  3396. }
  3397. if (!out) {
  3398. if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3399. /* If padding round up to multiple of 8 */
  3400. if (pad)
  3401. inlen = (inlen + 7) / 8 * 8;
  3402. /* 8 byte prefix */
  3403. return inlen + 8;
  3404. } else {
  3405. /*
  3406. * If not padding output will be exactly 8 bytes smaller than
  3407. * input. If padding it will be at least 8 bytes smaller but we
  3408. * don't know how much.
  3409. */
  3410. return inlen - 8;
  3411. }
  3412. }
  3413. if (pad) {
  3414. if (EVP_CIPHER_CTX_encrypting(ctx))
  3415. rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv,
  3416. out, in, inlen,
  3417. (block128_f) AES_encrypt);
  3418. else
  3419. rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv,
  3420. out, in, inlen,
  3421. (block128_f) AES_decrypt);
  3422. } else {
  3423. if (EVP_CIPHER_CTX_encrypting(ctx))
  3424. rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv,
  3425. out, in, inlen, (block128_f) AES_encrypt);
  3426. else
  3427. rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv,
  3428. out, in, inlen, (block128_f) AES_decrypt);
  3429. }
  3430. return rv ? (int)rv : -1;
  3431. }
  3432. #define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \
  3433. | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
  3434. | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1)
  3435. static const EVP_CIPHER aes_128_wrap = {
  3436. NID_id_aes128_wrap,
  3437. 8, 16, 8, WRAP_FLAGS,
  3438. aes_wrap_init_key, aes_wrap_cipher,
  3439. NULL,
  3440. sizeof(EVP_AES_WRAP_CTX),
  3441. NULL, NULL, NULL, NULL
  3442. };
  3443. const EVP_CIPHER *EVP_aes_128_wrap(void)
  3444. {
  3445. return &aes_128_wrap;
  3446. }
  3447. static const EVP_CIPHER aes_192_wrap = {
  3448. NID_id_aes192_wrap,
  3449. 8, 24, 8, WRAP_FLAGS,
  3450. aes_wrap_init_key, aes_wrap_cipher,
  3451. NULL,
  3452. sizeof(EVP_AES_WRAP_CTX),
  3453. NULL, NULL, NULL, NULL
  3454. };
  3455. const EVP_CIPHER *EVP_aes_192_wrap(void)
  3456. {
  3457. return &aes_192_wrap;
  3458. }
  3459. static const EVP_CIPHER aes_256_wrap = {
  3460. NID_id_aes256_wrap,
  3461. 8, 32, 8, WRAP_FLAGS,
  3462. aes_wrap_init_key, aes_wrap_cipher,
  3463. NULL,
  3464. sizeof(EVP_AES_WRAP_CTX),
  3465. NULL, NULL, NULL, NULL
  3466. };
  3467. const EVP_CIPHER *EVP_aes_256_wrap(void)
  3468. {
  3469. return &aes_256_wrap;
  3470. }
  3471. static const EVP_CIPHER aes_128_wrap_pad = {
  3472. NID_id_aes128_wrap_pad,
  3473. 8, 16, 4, WRAP_FLAGS,
  3474. aes_wrap_init_key, aes_wrap_cipher,
  3475. NULL,
  3476. sizeof(EVP_AES_WRAP_CTX),
  3477. NULL, NULL, NULL, NULL
  3478. };
  3479. const EVP_CIPHER *EVP_aes_128_wrap_pad(void)
  3480. {
  3481. return &aes_128_wrap_pad;
  3482. }
  3483. static const EVP_CIPHER aes_192_wrap_pad = {
  3484. NID_id_aes192_wrap_pad,
  3485. 8, 24, 4, WRAP_FLAGS,
  3486. aes_wrap_init_key, aes_wrap_cipher,
  3487. NULL,
  3488. sizeof(EVP_AES_WRAP_CTX),
  3489. NULL, NULL, NULL, NULL
  3490. };
  3491. const EVP_CIPHER *EVP_aes_192_wrap_pad(void)
  3492. {
  3493. return &aes_192_wrap_pad;
  3494. }
  3495. static const EVP_CIPHER aes_256_wrap_pad = {
  3496. NID_id_aes256_wrap_pad,
  3497. 8, 32, 4, WRAP_FLAGS,
  3498. aes_wrap_init_key, aes_wrap_cipher,
  3499. NULL,
  3500. sizeof(EVP_AES_WRAP_CTX),
  3501. NULL, NULL, NULL, NULL
  3502. };
  3503. const EVP_CIPHER *EVP_aes_256_wrap_pad(void)
  3504. {
  3505. return &aes_256_wrap_pad;
  3506. }
  3507. #ifndef OPENSSL_NO_OCB
  3508. static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  3509. {
  3510. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
  3511. EVP_CIPHER_CTX *newc;
  3512. EVP_AES_OCB_CTX *new_octx;
  3513. switch (type) {
  3514. case EVP_CTRL_INIT:
  3515. octx->key_set = 0;
  3516. octx->iv_set = 0;
  3517. octx->ivlen = EVP_CIPHER_iv_length(c->cipher);
  3518. octx->iv = EVP_CIPHER_CTX_iv_noconst(c);
  3519. octx->taglen = 16;
  3520. octx->data_buf_len = 0;
  3521. octx->aad_buf_len = 0;
  3522. return 1;
  3523. case EVP_CTRL_GET_IVLEN:
  3524. *(int *)ptr = octx->ivlen;
  3525. return 1;
  3526. case EVP_CTRL_AEAD_SET_IVLEN:
  3527. /* IV len must be 1 to 15 */
  3528. if (arg <= 0 || arg > 15)
  3529. return 0;
  3530. octx->ivlen = arg;
  3531. return 1;
  3532. case EVP_CTRL_AEAD_SET_TAG:
  3533. if (!ptr) {
  3534. /* Tag len must be 0 to 16 */
  3535. if (arg < 0 || arg > 16)
  3536. return 0;
  3537. octx->taglen = arg;
  3538. return 1;
  3539. }
  3540. if (arg != octx->taglen || EVP_CIPHER_CTX_encrypting(c))
  3541. return 0;
  3542. memcpy(octx->tag, ptr, arg);
  3543. return 1;
  3544. case EVP_CTRL_AEAD_GET_TAG:
  3545. if (arg != octx->taglen || !EVP_CIPHER_CTX_encrypting(c))
  3546. return 0;
  3547. memcpy(ptr, octx->tag, arg);
  3548. return 1;
  3549. case EVP_CTRL_COPY:
  3550. newc = (EVP_CIPHER_CTX *)ptr;
  3551. new_octx = EVP_C_DATA(EVP_AES_OCB_CTX,newc);
  3552. return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb,
  3553. &new_octx->ksenc.ks,
  3554. &new_octx->ksdec.ks);
  3555. default:
  3556. return -1;
  3557. }
  3558. }
  3559. # ifdef HWAES_CAPABLE
  3560. # ifdef HWAES_ocb_encrypt
  3561. void HWAES_ocb_encrypt(const unsigned char *in, unsigned char *out,
  3562. size_t blocks, const void *key,
  3563. size_t start_block_num,
  3564. unsigned char offset_i[16],
  3565. const unsigned char L_[][16],
  3566. unsigned char checksum[16]);
  3567. # else
  3568. # define HWAES_ocb_encrypt ((ocb128_f)NULL)
  3569. # endif
  3570. # ifdef HWAES_ocb_decrypt
  3571. void HWAES_ocb_decrypt(const unsigned char *in, unsigned char *out,
  3572. size_t blocks, const void *key,
  3573. size_t start_block_num,
  3574. unsigned char offset_i[16],
  3575. const unsigned char L_[][16],
  3576. unsigned char checksum[16]);
  3577. # else
  3578. # define HWAES_ocb_decrypt ((ocb128_f)NULL)
  3579. # endif
  3580. # endif
  3581. static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  3582. const unsigned char *iv, int enc)
  3583. {
  3584. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
  3585. if (!iv && !key)
  3586. return 1;
  3587. if (key) {
  3588. do {
  3589. /*
  3590. * We set both the encrypt and decrypt key here because decrypt
  3591. * needs both. We could possibly optimise to remove setting the
  3592. * decrypt for an encryption operation.
  3593. */
  3594. # ifdef HWAES_CAPABLE
  3595. if (HWAES_CAPABLE) {
  3596. HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3597. &octx->ksenc.ks);
  3598. HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3599. &octx->ksdec.ks);
  3600. if (!CRYPTO_ocb128_init(&octx->ocb,
  3601. &octx->ksenc.ks, &octx->ksdec.ks,
  3602. (block128_f) HWAES_encrypt,
  3603. (block128_f) HWAES_decrypt,
  3604. enc ? HWAES_ocb_encrypt
  3605. : HWAES_ocb_decrypt))
  3606. return 0;
  3607. break;
  3608. }
  3609. # endif
  3610. # ifdef VPAES_CAPABLE
  3611. if (VPAES_CAPABLE) {
  3612. vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3613. &octx->ksenc.ks);
  3614. vpaes_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3615. &octx->ksdec.ks);
  3616. if (!CRYPTO_ocb128_init(&octx->ocb,
  3617. &octx->ksenc.ks, &octx->ksdec.ks,
  3618. (block128_f) vpaes_encrypt,
  3619. (block128_f) vpaes_decrypt,
  3620. NULL))
  3621. return 0;
  3622. break;
  3623. }
  3624. # endif
  3625. AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3626. &octx->ksenc.ks);
  3627. AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
  3628. &octx->ksdec.ks);
  3629. if (!CRYPTO_ocb128_init(&octx->ocb,
  3630. &octx->ksenc.ks, &octx->ksdec.ks,
  3631. (block128_f) AES_encrypt,
  3632. (block128_f) AES_decrypt,
  3633. NULL))
  3634. return 0;
  3635. }
  3636. while (0);
  3637. /*
  3638. * If we have an iv we can set it directly, otherwise use saved IV.
  3639. */
  3640. if (iv == NULL && octx->iv_set)
  3641. iv = octx->iv;
  3642. if (iv) {
  3643. if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
  3644. != 1)
  3645. return 0;
  3646. octx->iv_set = 1;
  3647. }
  3648. octx->key_set = 1;
  3649. } else {
  3650. /* If key set use IV, otherwise copy */
  3651. if (octx->key_set)
  3652. CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
  3653. else
  3654. memcpy(octx->iv, iv, octx->ivlen);
  3655. octx->iv_set = 1;
  3656. }
  3657. return 1;
  3658. }
  3659. static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  3660. const unsigned char *in, size_t len)
  3661. {
  3662. unsigned char *buf;
  3663. int *buf_len;
  3664. int written_len = 0;
  3665. size_t trailing_len;
  3666. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
  3667. /* If IV or Key not set then return error */
  3668. if (!octx->iv_set)
  3669. return -1;
  3670. if (!octx->key_set)
  3671. return -1;
  3672. if (in != NULL) {
  3673. /*
  3674. * Need to ensure we are only passing full blocks to low level OCB
  3675. * routines. We do it here rather than in EVP_EncryptUpdate/
  3676. * EVP_DecryptUpdate because we need to pass full blocks of AAD too
  3677. * and those routines don't support that
  3678. */
  3679. /* Are we dealing with AAD or normal data here? */
  3680. if (out == NULL) {
  3681. buf = octx->aad_buf;
  3682. buf_len = &(octx->aad_buf_len);
  3683. } else {
  3684. buf = octx->data_buf;
  3685. buf_len = &(octx->data_buf_len);
  3686. if (is_partially_overlapping(out + *buf_len, in, len)) {
  3687. EVPerr(EVP_F_AES_OCB_CIPHER, EVP_R_PARTIALLY_OVERLAPPING);
  3688. return 0;
  3689. }
  3690. }
  3691. /*
  3692. * If we've got a partially filled buffer from a previous call then
  3693. * use that data first
  3694. */
  3695. if (*buf_len > 0) {
  3696. unsigned int remaining;
  3697. remaining = AES_BLOCK_SIZE - (*buf_len);
  3698. if (remaining > len) {
  3699. memcpy(buf + (*buf_len), in, len);
  3700. *(buf_len) += len;
  3701. return 0;
  3702. }
  3703. memcpy(buf + (*buf_len), in, remaining);
  3704. /*
  3705. * If we get here we've filled the buffer, so process it
  3706. */
  3707. len -= remaining;
  3708. in += remaining;
  3709. if (out == NULL) {
  3710. if (!CRYPTO_ocb128_aad(&octx->ocb, buf, AES_BLOCK_SIZE))
  3711. return -1;
  3712. } else if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3713. if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out,
  3714. AES_BLOCK_SIZE))
  3715. return -1;
  3716. } else {
  3717. if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out,
  3718. AES_BLOCK_SIZE))
  3719. return -1;
  3720. }
  3721. written_len = AES_BLOCK_SIZE;
  3722. *buf_len = 0;
  3723. if (out != NULL)
  3724. out += AES_BLOCK_SIZE;
  3725. }
  3726. /* Do we have a partial block to handle at the end? */
  3727. trailing_len = len % AES_BLOCK_SIZE;
  3728. /*
  3729. * If we've got some full blocks to handle, then process these first
  3730. */
  3731. if (len != trailing_len) {
  3732. if (out == NULL) {
  3733. if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len))
  3734. return -1;
  3735. } else if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3736. if (!CRYPTO_ocb128_encrypt
  3737. (&octx->ocb, in, out, len - trailing_len))
  3738. return -1;
  3739. } else {
  3740. if (!CRYPTO_ocb128_decrypt
  3741. (&octx->ocb, in, out, len - trailing_len))
  3742. return -1;
  3743. }
  3744. written_len += len - trailing_len;
  3745. in += len - trailing_len;
  3746. }
  3747. /* Handle any trailing partial block */
  3748. if (trailing_len > 0) {
  3749. memcpy(buf, in, trailing_len);
  3750. *buf_len = trailing_len;
  3751. }
  3752. return written_len;
  3753. } else {
  3754. /*
  3755. * First of all empty the buffer of any partial block that we might
  3756. * have been provided - both for data and AAD
  3757. */
  3758. if (octx->data_buf_len > 0) {
  3759. if (EVP_CIPHER_CTX_encrypting(ctx)) {
  3760. if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out,
  3761. octx->data_buf_len))
  3762. return -1;
  3763. } else {
  3764. if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out,
  3765. octx->data_buf_len))
  3766. return -1;
  3767. }
  3768. written_len = octx->data_buf_len;
  3769. octx->data_buf_len = 0;
  3770. }
  3771. if (octx->aad_buf_len > 0) {
  3772. if (!CRYPTO_ocb128_aad
  3773. (&octx->ocb, octx->aad_buf, octx->aad_buf_len))
  3774. return -1;
  3775. octx->aad_buf_len = 0;
  3776. }
  3777. /* If decrypting then verify */
  3778. if (!EVP_CIPHER_CTX_encrypting(ctx)) {
  3779. if (octx->taglen < 0)
  3780. return -1;
  3781. if (CRYPTO_ocb128_finish(&octx->ocb,
  3782. octx->tag, octx->taglen) != 0)
  3783. return -1;
  3784. octx->iv_set = 0;
  3785. return written_len;
  3786. }
  3787. /* If encrypting then just get the tag */
  3788. if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1)
  3789. return -1;
  3790. /* Don't reuse the IV */
  3791. octx->iv_set = 0;
  3792. return written_len;
  3793. }
  3794. }
  3795. static int aes_ocb_cleanup(EVP_CIPHER_CTX *c)
  3796. {
  3797. EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
  3798. CRYPTO_ocb128_cleanup(&octx->ocb);
  3799. return 1;
  3800. }
  3801. BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB,
  3802. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3803. BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB,
  3804. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3805. BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB,
  3806. EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
  3807. #endif /* OPENSSL_NO_OCB */