mpint.c 80 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337
  1. #include <assert.h>
  2. #include <limits.h>
  3. #include <stdio.h>
  4. #include "defs.h"
  5. #include "misc.h"
  6. #include "puttymem.h"
  7. #include "mpint.h"
  8. #include "mpint_i.h"
  9. #define SIZE_T_BITS (CHAR_BIT * sizeof(size_t))
  10. /*
  11. * Inline helpers to take min and max of size_t values, used
  12. * throughout this code.
  13. */
  14. static inline size_t size_t_min(size_t a, size_t b)
  15. {
  16. return a < b ? a : b;
  17. }
  18. static inline size_t size_t_max(size_t a, size_t b)
  19. {
  20. return a > b ? a : b;
  21. }
  22. /*
  23. * Helper to fetch a word of data from x with array overflow checking.
  24. * If x is too short to have that word, 0 is returned.
  25. */
  26. static inline BignumInt mp_word(mp_int *x, size_t i)
  27. {
  28. return i < x->nw ? x->w[i] : 0;
  29. }
  30. static mp_int *mp_make_sized(size_t nw)
  31. {
  32. mp_int *x = snew_plus(mp_int, nw * sizeof(BignumInt));
  33. x->nw = nw;
  34. x->w = snew_plus_get_aux(x);
  35. mp_clear(x);
  36. return x;
  37. }
  38. mp_int *mp_new(size_t maxbits)
  39. {
  40. size_t words = (maxbits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  41. return mp_make_sized(words);
  42. }
  43. mp_int *mp_from_integer(uintmax_t n)
  44. {
  45. mp_int *x = mp_make_sized(
  46. (sizeof(n) + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES);
  47. for (size_t i = 0; i < x->nw; i++)
  48. x->w[i] = n >> (i * BIGNUM_INT_BITS);
  49. return x;
  50. }
  51. size_t mp_max_bytes(mp_int *x)
  52. {
  53. return x->nw * BIGNUM_INT_BYTES;
  54. }
  55. size_t mp_max_bits(mp_int *x)
  56. {
  57. return x->nw * BIGNUM_INT_BITS;
  58. }
  59. void mp_free(mp_int *x)
  60. {
  61. mp_clear(x);
  62. smemclr(x, sizeof(*x));
  63. sfree(x);
  64. }
  65. void mp_dump(FILE *fp, const char *prefix, mp_int *x, const char *suffix)
  66. {
  67. fprintf(fp, "%s0x", prefix);
  68. for (size_t i = mp_max_bytes(x); i-- > 0 ;)
  69. fprintf(fp, "%02X", mp_get_byte(x, i));
  70. fputs(suffix, fp);
  71. }
  72. void mp_copy_into(mp_int *dest, mp_int *src)
  73. {
  74. size_t copy_nw = size_t_min(dest->nw, src->nw);
  75. memmove(dest->w, src->w, copy_nw * sizeof(BignumInt));
  76. smemclr(dest->w + copy_nw, (dest->nw - copy_nw) * sizeof(BignumInt));
  77. }
  78. /*
  79. * Conditional selection is done by negating 'which', to give a mask
  80. * word which is all 1s if which==1 and all 0s if which==0. Then you
  81. * can select between two inputs a,b without data-dependent control
  82. * flow by XORing them to get their difference; ANDing with the mask
  83. * word to replace that difference with 0 if which==0; and XORing that
  84. * into a, which will either turn it into b or leave it alone.
  85. *
  86. * This trick will be used throughout this code and taken as read the
  87. * rest of the time (or else I'd be here all week typing comments),
  88. * but I felt I ought to explain it in words _once_.
  89. */
  90. void mp_select_into(mp_int *dest, mp_int *src0, mp_int *src1,
  91. unsigned which)
  92. {
  93. BignumInt mask = -(BignumInt)(1 & which);
  94. for (size_t i = 0; i < dest->nw; i++) {
  95. BignumInt srcword0 = mp_word(src0, i), srcword1 = mp_word(src1, i);
  96. dest->w[i] = srcword0 ^ ((srcword1 ^ srcword0) & mask);
  97. }
  98. }
  99. void mp_cond_swap(mp_int *x0, mp_int *x1, unsigned swap)
  100. {
  101. assert(x0->nw == x1->nw);
  102. BignumInt mask = -(BignumInt)(1 & swap);
  103. for (size_t i = 0; i < x0->nw; i++) {
  104. BignumInt diff = (x0->w[i] ^ x1->w[i]) & mask;
  105. x0->w[i] ^= diff;
  106. x1->w[i] ^= diff;
  107. }
  108. }
  109. void mp_clear(mp_int *x)
  110. {
  111. smemclr(x->w, x->nw * sizeof(BignumInt));
  112. }
  113. void mp_cond_clear(mp_int *x, unsigned clear)
  114. {
  115. BignumInt mask = ~-(BignumInt)(1 & clear);
  116. for (size_t i = 0; i < x->nw; i++)
  117. x->w[i] &= mask;
  118. }
  119. /*
  120. * Common code between mp_from_bytes_{le,be} which reads bytes in an
  121. * arbitrary arithmetic progression.
  122. */
  123. static mp_int *mp_from_bytes_int(ptrlen bytes, size_t m, size_t c)
  124. {
  125. mp_int *n = mp_make_sized(
  126. (bytes.len + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES);
  127. for (size_t i = 0; i < bytes.len; i++)
  128. n->w[i / BIGNUM_INT_BYTES] |=
  129. (BignumInt)(((const unsigned char *)bytes.ptr)[m*i+c]) <<
  130. (8 * (i % BIGNUM_INT_BYTES));
  131. return n;
  132. }
  133. mp_int *mp_from_bytes_le(ptrlen bytes)
  134. {
  135. return mp_from_bytes_int(bytes, 1, 0);
  136. }
  137. mp_int *mp_from_bytes_be(ptrlen bytes)
  138. {
  139. return mp_from_bytes_int(bytes, -1, bytes.len - 1);
  140. }
  141. static mp_int *mp_from_words(size_t nw, const BignumInt *w)
  142. {
  143. mp_int *x = mp_make_sized(nw);
  144. memcpy(x->w, w, x->nw * sizeof(BignumInt));
  145. return x;
  146. }
  147. /*
  148. * Decimal-to-binary conversion: just go through the input string
  149. * adding on the decimal value of each digit, and then multiplying the
  150. * number so far by 10.
  151. */
  152. mp_int *mp_from_decimal_pl(ptrlen decimal)
  153. {
  154. /* 196/59 is an upper bound (and also a continued-fraction
  155. * convergent) for log2(10), so this conservatively estimates the
  156. * number of bits that will be needed to store any number that can
  157. * be written in this many decimal digits. */
  158. assert(decimal.len < (~(size_t)0) / 196);
  159. size_t bits = 196 * decimal.len / 59;
  160. /* Now round that up to words. */
  161. size_t words = bits / BIGNUM_INT_BITS + 1;
  162. mp_int *x = mp_make_sized(words);
  163. for (size_t i = 0;; i++) {
  164. mp_add_integer_into(x, x, ((char *)decimal.ptr)[i] - '0');
  165. if (i+1 == decimal.len)
  166. break;
  167. mp_mul_integer_into(x, x, 10);
  168. }
  169. return x;
  170. }
  171. mp_int *mp_from_decimal(const char *decimal)
  172. {
  173. return mp_from_decimal_pl(ptrlen_from_asciz(decimal));
  174. }
  175. /*
  176. * Hex-to-binary conversion: _algorithmically_ simpler than decimal
  177. * (none of those multiplications by 10), but there's some fiddly
  178. * bit-twiddling needed to process each hex digit without diverging
  179. * control flow depending on whether it's a letter or a number.
  180. */
  181. mp_int *mp_from_hex_pl(ptrlen hex)
  182. {
  183. assert(hex.len <= (~(size_t)0) / 4);
  184. size_t bits = hex.len * 4;
  185. size_t words = (bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  186. mp_int *x = mp_make_sized(words);
  187. for (size_t nibble = 0; nibble < hex.len; nibble++) {
  188. BignumInt digit = ((char *)hex.ptr)[hex.len-1 - nibble];
  189. BignumInt lmask = ~-((BignumInt)((digit-'a')|('f'-digit))
  190. >> (BIGNUM_INT_BITS-1));
  191. BignumInt umask = ~-((BignumInt)((digit-'A')|('F'-digit))
  192. >> (BIGNUM_INT_BITS-1));
  193. BignumInt digitval = digit - '0';
  194. digitval ^= (digitval ^ (digit - 'a' + 10)) & lmask;
  195. digitval ^= (digitval ^ (digit - 'A' + 10)) & umask;
  196. digitval &= 0xF; /* at least be _slightly_ nice about weird input */
  197. size_t word_idx = nibble / (BIGNUM_INT_BYTES*2);
  198. size_t nibble_within_word = nibble % (BIGNUM_INT_BYTES*2);
  199. x->w[word_idx] |= digitval << (nibble_within_word * 4);
  200. }
  201. return x;
  202. }
  203. mp_int *mp_from_hex(const char *hex)
  204. {
  205. return mp_from_hex_pl(ptrlen_from_asciz(hex));
  206. }
  207. mp_int *mp_copy(mp_int *x)
  208. {
  209. return mp_from_words(x->nw, x->w);
  210. }
  211. uint8_t mp_get_byte(mp_int *x, size_t byte)
  212. {
  213. return 0xFF & (mp_word(x, byte / BIGNUM_INT_BYTES) >>
  214. (8 * (byte % BIGNUM_INT_BYTES)));
  215. }
  216. unsigned mp_get_bit(mp_int *x, size_t bit)
  217. {
  218. return 1 & (mp_word(x, bit / BIGNUM_INT_BITS) >>
  219. (bit % BIGNUM_INT_BITS));
  220. }
  221. void mp_set_bit(mp_int *x, size_t bit, unsigned val)
  222. {
  223. size_t word = bit / BIGNUM_INT_BITS;
  224. assert(word < x->nw);
  225. unsigned shift = (bit % BIGNUM_INT_BITS);
  226. x->w[word] &= ~((BignumInt)1 << shift);
  227. x->w[word] |= (BignumInt)(val & 1) << shift;
  228. }
  229. /*
  230. * Helper function used here and there to normalise any nonzero input
  231. * value to 1.
  232. */
  233. static inline unsigned normalise_to_1(BignumInt n)
  234. {
  235. n = (n >> 1) | (n & 1); /* ensure top bit is clear */
  236. n = (BignumInt)(-n) >> (BIGNUM_INT_BITS - 1); /* normalise to 0 or 1 */
  237. return n;
  238. }
  239. static inline unsigned normalise_to_1_u64(uint64_t n)
  240. {
  241. n = (n >> 1) | (n & 1); /* ensure top bit is clear */
  242. n = (-n) >> 63; /* normalise to 0 or 1 */
  243. return n;
  244. }
  245. /*
  246. * Find the highest nonzero word in a number. Returns the index of the
  247. * word in x->w, and also a pair of output uint64_t in which that word
  248. * appears in the high one shifted left by 'shift_wanted' bits, the
  249. * words immediately below it occupy the space to the right, and the
  250. * words below _that_ fill up the low one.
  251. *
  252. * If there is no nonzero word at all, the passed-by-reference output
  253. * variables retain their original values.
  254. */
  255. static inline void mp_find_highest_nonzero_word_pair(
  256. mp_int *x, size_t shift_wanted, size_t *index,
  257. uint64_t *hi, uint64_t *lo)
  258. {
  259. uint64_t curr_hi = 0, curr_lo = 0;
  260. for (size_t curr_index = 0; curr_index < x->nw; curr_index++) {
  261. BignumInt curr_word = x->w[curr_index];
  262. unsigned indicator = normalise_to_1(curr_word);
  263. curr_lo = (BIGNUM_INT_BITS < 64 ? (curr_lo >> BIGNUM_INT_BITS) : 0) |
  264. (curr_hi << (64 - BIGNUM_INT_BITS));
  265. curr_hi = (BIGNUM_INT_BITS < 64 ? (curr_hi >> BIGNUM_INT_BITS) : 0) |
  266. ((uint64_t)curr_word << shift_wanted);
  267. if (hi) *hi ^= (curr_hi ^ *hi ) & -(uint64_t)indicator;
  268. if (lo) *lo ^= (curr_lo ^ *lo ) & -(uint64_t)indicator;
  269. if (index) *index ^= (curr_index ^ *index) & -(size_t) indicator;
  270. }
  271. }
  272. size_t mp_get_nbits(mp_int *x)
  273. {
  274. /* Sentinel values in case there are no bits set at all: we
  275. * imagine that there's a word at position -1 (i.e. the topmost
  276. * fraction word) which is all 1s, because that way, we handle a
  277. * zero input by considering its highest set bit to be the top one
  278. * of that word, i.e. just below the units digit, i.e. at bit
  279. * index -1, i.e. so we'll return 0 on output. */
  280. size_t hiword_index = -(size_t)1;
  281. uint64_t hiword64 = ~(BignumInt)0;
  282. /*
  283. * Find the highest nonzero word and its index.
  284. */
  285. mp_find_highest_nonzero_word_pair(x, 0, &hiword_index, &hiword64, NULL);
  286. BignumInt hiword = hiword64; /* in case BignumInt is a narrower type */
  287. /*
  288. * Find the index of the highest set bit within hiword.
  289. */
  290. BignumInt hibit_index = 0;
  291. for (size_t i = (1 << (BIGNUM_INT_BITS_BITS-1)); i != 0; i >>= 1) {
  292. BignumInt shifted_word = hiword >> i;
  293. BignumInt indicator =
  294. (BignumInt)(-shifted_word) >> (BIGNUM_INT_BITS-1);
  295. hiword ^= (shifted_word ^ hiword ) & -indicator;
  296. hibit_index += i & -(size_t)indicator;
  297. }
  298. /*
  299. * Put together the result.
  300. */
  301. return (hiword_index << BIGNUM_INT_BITS_BITS) + hibit_index + 1;
  302. }
  303. /*
  304. * Shared code between the hex and decimal output functions to get rid
  305. * of leading zeroes on the output string. The idea is that we wrote
  306. * out a fixed number of digits and a trailing \0 byte into 'buf', and
  307. * now we want to shift it all left so that the first nonzero digit
  308. * moves to buf[0] (or, if there are no nonzero digits at all, we move
  309. * up by 'maxtrim', so that we return 0 as "0" instead of "").
  310. */
  311. static void trim_leading_zeroes(char *buf, size_t bufsize, size_t maxtrim)
  312. {
  313. size_t trim = maxtrim;
  314. /*
  315. * Look for the first character not equal to '0', to find the
  316. * shift count.
  317. */
  318. if (trim > 0) {
  319. for (size_t pos = trim; pos-- > 0 ;) {
  320. uint8_t diff = buf[pos] ^ '0';
  321. size_t mask = -((((size_t)diff) - 1) >> (SIZE_T_BITS - 1));
  322. trim ^= (trim ^ pos) & ~mask;
  323. }
  324. }
  325. /*
  326. * Now do the shift, in log n passes each of which does a
  327. * conditional shift by 2^i bytes if bit i is set in the shift
  328. * count.
  329. */
  330. uint8_t *ubuf = (uint8_t *)buf;
  331. for (size_t logd = 0; bufsize >> logd; logd++) {
  332. uint8_t mask = -(uint8_t)((trim >> logd) & 1);
  333. size_t d = (size_t)1 << logd;
  334. for (size_t i = 0; i+d < bufsize; i++) {
  335. uint8_t diff = mask & (ubuf[i] ^ ubuf[i+d]);
  336. ubuf[i] ^= diff;
  337. ubuf[i+d] ^= diff;
  338. }
  339. }
  340. }
  341. /*
  342. * Binary to decimal conversion. Our strategy here is to extract each
  343. * decimal digit by finding the input number's residue mod 10, then
  344. * subtract that off to give an exact multiple of 10, which then means
  345. * you can safely divide by 10 by means of shifting right one bit and
  346. * then multiplying by the inverse of 5 mod 2^n.
  347. */
  348. char *mp_get_decimal(mp_int *x_orig)
  349. {
  350. mp_int *x = mp_copy(x_orig), *y = mp_make_sized(x->nw);
  351. /*
  352. * The inverse of 5 mod 2^lots is 0xccccccccccccccccccccd, for an
  353. * appropriate number of 'c's. Manually construct an integer the
  354. * right size.
  355. */
  356. mp_int *inv5 = mp_make_sized(x->nw);
  357. assert(BIGNUM_INT_BITS % 8 == 0);
  358. for (size_t i = 0; i < inv5->nw; i++)
  359. inv5->w[i] = BIGNUM_INT_MASK / 5 * 4;
  360. inv5->w[0]++;
  361. /*
  362. * 146/485 is an upper bound (and also a continued-fraction
  363. * convergent) of log10(2), so this is a conservative estimate of
  364. * the number of decimal digits needed to store a value that fits
  365. * in this many binary bits.
  366. */
  367. assert(x->nw < (~(size_t)1) / (146 * BIGNUM_INT_BITS));
  368. size_t bufsize = size_t_max(x->nw * (146 * BIGNUM_INT_BITS) / 485, 1) + 2;
  369. char *outbuf = snewn(bufsize, char);
  370. outbuf[bufsize - 1] = '\0';
  371. /*
  372. * Loop over the number generating digits from the least
  373. * significant upwards, so that we write to outbuf in reverse
  374. * order.
  375. */
  376. for (size_t pos = bufsize - 1; pos-- > 0 ;) {
  377. /*
  378. * Find the current residue mod 10. We do this by first
  379. * summing the bytes of the number, with all but the lowest
  380. * one multiplied by 6 (because 256^i == 6 mod 10 for all
  381. * i>0). That gives us a single word congruent mod 10 to the
  382. * input number, and then we reduce it further by manual
  383. * multiplication and shifting, just in case the compiler
  384. * target implements the C division operator in a way that has
  385. * input-dependent timing.
  386. */
  387. uint32_t low_digit = 0, maxval = 0, mult = 1;
  388. for (size_t i = 0; i < x->nw; i++) {
  389. for (unsigned j = 0; j < BIGNUM_INT_BYTES; j++) {
  390. low_digit += mult * (0xFF & (x->w[i] >> (8*j)));
  391. maxval += mult * 0xFF;
  392. mult = 6;
  393. }
  394. /*
  395. * For _really_ big numbers, prevent overflow of t by
  396. * periodically folding the top half of the accumulator
  397. * into the bottom half, using the same rule 'multiply by
  398. * 6 when shifting down by one or more whole bytes'.
  399. */
  400. if (maxval > UINT32_MAX - (6 * 0xFF * BIGNUM_INT_BYTES)) {
  401. low_digit = (low_digit & 0xFFFF) + 6 * (low_digit >> 16);
  402. maxval = (maxval & 0xFFFF) + 6 * (maxval >> 16);
  403. }
  404. }
  405. /*
  406. * Final reduction of low_digit. We multiply by 2^32 / 10
  407. * (that's the constant 0x19999999) to get a 64-bit value
  408. * whose top 32 bits are the approximate quotient
  409. * low_digit/10; then we subtract off 10 times that; and
  410. * finally we do one last trial subtraction of 10 by adding 6
  411. * (which sets bit 4 if the number was just over 10) and then
  412. * testing bit 4.
  413. */
  414. low_digit -= 10 * ((0x19999999ULL * low_digit) >> 32);
  415. low_digit -= 10 * ((low_digit + 6) >> 4);
  416. assert(low_digit < 10); /* make sure we did reduce fully */
  417. outbuf[pos] = '0' + low_digit;
  418. /*
  419. * Now subtract off that digit, divide by 2 (using a right
  420. * shift) and by 5 (using the modular inverse), to get the
  421. * next output digit into the units position.
  422. */
  423. mp_sub_integer_into(x, x, low_digit);
  424. mp_rshift_fixed_into(y, x, 1);
  425. mp_mul_into(x, y, inv5);
  426. }
  427. mp_free(x);
  428. mp_free(y);
  429. mp_free(inv5);
  430. trim_leading_zeroes(outbuf, bufsize, bufsize - 2);
  431. return outbuf;
  432. }
  433. /*
  434. * Binary to hex conversion. Reasonably simple (only a spot of bit
  435. * twiddling to choose whether to output a digit or a letter for each
  436. * nibble).
  437. */
  438. static char *mp_get_hex_internal(mp_int *x, uint8_t letter_offset)
  439. {
  440. size_t nibbles = x->nw * BIGNUM_INT_BYTES * 2;
  441. size_t bufsize = nibbles + 1;
  442. char *outbuf = snewn(bufsize, char);
  443. outbuf[nibbles] = '\0';
  444. for (size_t nibble = 0; nibble < nibbles; nibble++) {
  445. size_t word_idx = nibble / (BIGNUM_INT_BYTES*2);
  446. size_t nibble_within_word = nibble % (BIGNUM_INT_BYTES*2);
  447. uint8_t digitval = 0xF & (x->w[word_idx] >> (nibble_within_word * 4));
  448. uint8_t mask = -((digitval + 6) >> 4);
  449. char digit = digitval + '0' + (letter_offset & mask);
  450. outbuf[nibbles-1 - nibble] = digit;
  451. }
  452. trim_leading_zeroes(outbuf, bufsize, nibbles - 1);
  453. return outbuf;
  454. }
  455. char *mp_get_hex(mp_int *x)
  456. {
  457. return mp_get_hex_internal(x, 'a' - ('0'+10));
  458. }
  459. char *mp_get_hex_uppercase(mp_int *x)
  460. {
  461. return mp_get_hex_internal(x, 'A' - ('0'+10));
  462. }
  463. /*
  464. * Routines for reading and writing the SSH-1 and SSH-2 wire formats
  465. * for multiprecision integers, declared in marshal.h.
  466. *
  467. * These can't avoid having control flow dependent on the true bit
  468. * size of the number, because the wire format requires the number of
  469. * output bytes to depend on that.
  470. */
  471. void BinarySink_put_mp_ssh1(BinarySink *bs, mp_int *x)
  472. {
  473. size_t bits = mp_get_nbits(x);
  474. size_t bytes = (bits + 7) / 8;
  475. assert(bits < 0x10000);
  476. put_uint16(bs, bits);
  477. for (size_t i = bytes; i-- > 0 ;)
  478. put_byte(bs, mp_get_byte(x, i));
  479. }
  480. void BinarySink_put_mp_ssh2(BinarySink *bs, mp_int *x)
  481. {
  482. size_t bytes = (mp_get_nbits(x) + 8) / 8;
  483. put_uint32(bs, bytes);
  484. for (size_t i = bytes; i-- > 0 ;)
  485. put_byte(bs, mp_get_byte(x, i));
  486. }
  487. mp_int *BinarySource_get_mp_ssh1(BinarySource *src)
  488. {
  489. unsigned bitc = get_uint16(src);
  490. ptrlen bytes = get_data(src, (bitc + 7) / 8);
  491. if (get_err(src)) {
  492. return mp_from_integer(0);
  493. } else {
  494. mp_int *toret = mp_from_bytes_be(bytes);
  495. /* SSH-1.5 spec says that it's OK for the prefix uint16 to be
  496. * _greater_ than the actual number of bits */
  497. if (mp_get_nbits(toret) > bitc) {
  498. src->err = BSE_INVALID;
  499. mp_free(toret);
  500. toret = mp_from_integer(0);
  501. }
  502. return toret;
  503. }
  504. }
  505. mp_int *BinarySource_get_mp_ssh2(BinarySource *src)
  506. {
  507. ptrlen bytes = get_string(src);
  508. if (get_err(src)) {
  509. return mp_from_integer(0);
  510. } else {
  511. const unsigned char *p = bytes.ptr;
  512. if ((bytes.len > 0 &&
  513. ((p[0] & 0x80) ||
  514. (p[0] == 0 && (bytes.len <= 1 || !(p[1] & 0x80)))))) {
  515. src->err = BSE_INVALID;
  516. return mp_from_integer(0);
  517. }
  518. return mp_from_bytes_be(bytes);
  519. }
  520. }
  521. /*
  522. * Make an mp_int structure whose words array aliases a subinterval of
  523. * some other mp_int. This makes it easy to read or write just the low
  524. * or high words of a number, e.g. to add a number starting from a
  525. * high bit position, or to reduce mod 2^{n*BIGNUM_INT_BITS}.
  526. *
  527. * The convention throughout this code is that when we store an mp_int
  528. * directly by value, we always expect it to be an alias of some kind,
  529. * so its words array won't ever need freeing. Whereas an 'mp_int *'
  530. * has an owner, who knows whether it needs freeing or whether it was
  531. * created by address-taking an alias.
  532. */
  533. static mp_int mp_make_alias(mp_int *in, size_t offset, size_t len)
  534. {
  535. /*
  536. * Bounds-check the offset and length so that we always return
  537. * something valid, even if it's not necessarily the length the
  538. * caller asked for.
  539. */
  540. if (offset > in->nw)
  541. offset = in->nw;
  542. if (len > in->nw - offset)
  543. len = in->nw - offset;
  544. mp_int toret;
  545. toret.nw = len;
  546. toret.w = in->w + offset;
  547. return toret;
  548. }
  549. /*
  550. * A special case of mp_make_alias: in some cases we preallocate a
  551. * large mp_int to use as scratch space (to avoid pointless
  552. * malloc/free churn in recursive or iterative work).
  553. *
  554. * mp_alloc_from_scratch creates an alias of size 'len' to part of
  555. * 'pool', and adjusts 'pool' itself so that further allocations won't
  556. * overwrite that space.
  557. *
  558. * There's no free function to go with this. Typically you just copy
  559. * the pool mp_int by value, allocate from the copy, and when you're
  560. * done with those allocations, throw the copy away and go back to the
  561. * original value of pool. (A mark/release system.)
  562. */
  563. static mp_int mp_alloc_from_scratch(mp_int *pool, size_t len)
  564. {
  565. assert(len <= pool->nw);
  566. mp_int toret = mp_make_alias(pool, 0, len);
  567. *pool = mp_make_alias(pool, len, pool->nw);
  568. return toret;
  569. }
  570. /*
  571. * Internal component common to lots of assorted add/subtract code.
  572. * Reads words from a,b; writes into w_out (which might be NULL if the
  573. * output isn't even needed). Takes an input carry flag in 'carry',
  574. * and returns the output carry. Each word read from b is ANDed with
  575. * b_and and then XORed with b_xor.
  576. *
  577. * So you can implement addition by setting b_and to all 1s and b_xor
  578. * to 0; you can subtract by making b_xor all 1s too (effectively
  579. * bit-flipping b) and also passing 1 as the input carry (to turn
  580. * one's complement into two's complement). And you can do conditional
  581. * add/subtract by choosing b_and to be all 1s or all 0s based on a
  582. * condition, because the value of b will be totally ignored if b_and
  583. * == 0.
  584. */
  585. static BignumCarry mp_add_masked_into(
  586. BignumInt *w_out, size_t rw, mp_int *a, mp_int *b,
  587. BignumInt b_and, BignumInt b_xor, BignumCarry carry)
  588. {
  589. for (size_t i = 0; i < rw; i++) {
  590. BignumInt aword = mp_word(a, i), bword = mp_word(b, i), out;
  591. bword = (bword & b_and) ^ b_xor;
  592. BignumADC(out, carry, aword, bword, carry);
  593. if (w_out)
  594. w_out[i] = out;
  595. }
  596. return carry;
  597. }
  598. /*
  599. * Like the public mp_add_into except that it returns the output carry.
  600. */
  601. static inline BignumCarry mp_add_into_internal(mp_int *r, mp_int *a, mp_int *b)
  602. {
  603. return mp_add_masked_into(r->w, r->nw, a, b, ~(BignumInt)0, 0, 0);
  604. }
  605. void mp_add_into(mp_int *r, mp_int *a, mp_int *b)
  606. {
  607. mp_add_into_internal(r, a, b);
  608. }
  609. void mp_sub_into(mp_int *r, mp_int *a, mp_int *b)
  610. {
  611. mp_add_masked_into(r->w, r->nw, a, b, ~(BignumInt)0, ~(BignumInt)0, 1);
  612. }
  613. static void mp_cond_negate(mp_int *r, mp_int *x, unsigned yes)
  614. {
  615. BignumCarry carry = yes;
  616. BignumInt flip = -(BignumInt)yes;
  617. for (size_t i = 0; i < r->nw; i++) {
  618. BignumInt xword = mp_word(x, i);
  619. xword ^= flip;
  620. BignumADC(r->w[i], carry, 0, xword, carry);
  621. }
  622. }
  623. /*
  624. * Similar to mp_add_masked_into, but takes a C integer instead of an
  625. * mp_int as the masked operand.
  626. */
  627. static BignumCarry mp_add_masked_integer_into(
  628. BignumInt *w_out, size_t rw, mp_int *a, uintmax_t b,
  629. BignumInt b_and, BignumInt b_xor, BignumCarry carry)
  630. {
  631. for (size_t i = 0; i < rw; i++) {
  632. BignumInt aword = mp_word(a, i);
  633. size_t shift = i * BIGNUM_INT_BITS;
  634. BignumInt bword = shift < BIGNUM_INT_BYTES ? b >> shift : 0;
  635. BignumInt out;
  636. bword = (bword ^ b_xor) & b_and;
  637. BignumADC(out, carry, aword, bword, carry);
  638. if (w_out)
  639. w_out[i] = out;
  640. }
  641. return carry;
  642. }
  643. void mp_add_integer_into(mp_int *r, mp_int *a, uintmax_t n)
  644. {
  645. mp_add_masked_integer_into(r->w, r->nw, a, n, ~(BignumInt)0, 0, 0);
  646. }
  647. void mp_sub_integer_into(mp_int *r, mp_int *a, uintmax_t n)
  648. {
  649. mp_add_masked_integer_into(r->w, r->nw, a, n,
  650. ~(BignumInt)0, ~(BignumInt)0, 1);
  651. }
  652. /*
  653. * Sets r to a + n << (word_index * BIGNUM_INT_BITS), treating
  654. * word_index as secret data.
  655. */
  656. static void mp_add_integer_into_shifted_by_words(
  657. mp_int *r, mp_int *a, uintmax_t n, size_t word_index)
  658. {
  659. unsigned indicator = 0;
  660. BignumCarry carry = 0;
  661. for (size_t i = 0; i < r->nw; i++) {
  662. /* indicator becomes 1 when we reach the index that the least
  663. * significant bits of n want to be placed at, and it stays 1
  664. * thereafter. */
  665. indicator |= 1 ^ normalise_to_1(i ^ word_index);
  666. /* If indicator is 1, we add the low bits of n into r, and
  667. * shift n down. If it's 0, we add zero bits into r, and
  668. * leave n alone. */
  669. BignumInt bword = n & -(BignumInt)indicator;
  670. uintmax_t new_n = (BIGNUM_INT_BITS < 64 ? n >> BIGNUM_INT_BITS : 0);
  671. n ^= (n ^ new_n) & -(uintmax_t)indicator;
  672. BignumInt aword = mp_word(a, i);
  673. BignumInt out;
  674. BignumADC(out, carry, aword, bword, carry);
  675. r->w[i] = out;
  676. }
  677. }
  678. void mp_mul_integer_into(mp_int *r, mp_int *a, uint16_t n)
  679. {
  680. BignumInt carry = 0, mult = n;
  681. for (size_t i = 0; i < r->nw; i++) {
  682. BignumInt aword = mp_word(a, i);
  683. BignumMULADD(carry, r->w[i], aword, mult, carry);
  684. }
  685. assert(!carry);
  686. }
  687. void mp_cond_add_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes)
  688. {
  689. BignumInt mask = -(BignumInt)(yes & 1);
  690. mp_add_masked_into(r->w, r->nw, a, b, mask, 0, 0);
  691. }
  692. void mp_cond_sub_into(mp_int *r, mp_int *a, mp_int *b, unsigned yes)
  693. {
  694. BignumInt mask = -(BignumInt)(yes & 1);
  695. mp_add_masked_into(r->w, r->nw, a, b, mask, mask, 1 & mask);
  696. }
  697. /*
  698. * Ordered comparison between unsigned numbers is done by subtracting
  699. * one from the other and looking at the output carry.
  700. */
  701. unsigned mp_cmp_hs(mp_int *a, mp_int *b)
  702. {
  703. size_t rw = size_t_max(a->nw, b->nw);
  704. return mp_add_masked_into(NULL, rw, a, b, ~(BignumInt)0, ~(BignumInt)0, 1);
  705. }
  706. unsigned mp_hs_integer(mp_int *x, uintmax_t n)
  707. {
  708. BignumInt carry = 1;
  709. for (size_t i = 0; i < x->nw; i++) {
  710. size_t shift = i * BIGNUM_INT_BITS;
  711. BignumInt nword = shift < CHAR_BIT*sizeof(n) ? n >> shift : 0;
  712. BignumInt dummy_out;
  713. BignumADC(dummy_out, carry, x->w[i], ~nword, carry);
  714. (void)dummy_out;
  715. }
  716. return carry;
  717. }
  718. /*
  719. * Equality comparison is done by bitwise XOR of the input numbers,
  720. * ORing together all the output words, and normalising the result
  721. * using our careful normalise_to_1 helper function.
  722. */
  723. unsigned mp_cmp_eq(mp_int *a, mp_int *b)
  724. {
  725. BignumInt diff = 0;
  726. for (size_t i = 0, limit = size_t_max(a->nw, b->nw); i < limit; i++)
  727. diff |= mp_word(a, i) ^ mp_word(b, i);
  728. return 1 ^ normalise_to_1(diff); /* return 1 if diff _is_ zero */
  729. }
  730. unsigned mp_eq_integer(mp_int *x, uintmax_t n)
  731. {
  732. BignumInt diff = 0;
  733. for (size_t i = 0; i < x->nw; i++) {
  734. size_t shift = i * BIGNUM_INT_BITS;
  735. BignumInt nword = shift < CHAR_BIT*sizeof(n) ? n >> shift : 0;
  736. diff |= x->w[i] ^ nword;
  737. }
  738. return 1 ^ normalise_to_1(diff); /* return 1 if diff _is_ zero */
  739. }
  740. void mp_neg_into(mp_int *r, mp_int *a)
  741. {
  742. mp_int zero;
  743. zero.nw = 0;
  744. mp_sub_into(r, &zero, a);
  745. }
  746. mp_int *mp_add(mp_int *x, mp_int *y)
  747. {
  748. mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw) + 1);
  749. mp_add_into(r, x, y);
  750. return r;
  751. }
  752. mp_int *mp_sub(mp_int *x, mp_int *y)
  753. {
  754. mp_int *r = mp_make_sized(size_t_max(x->nw, y->nw));
  755. mp_sub_into(r, x, y);
  756. return r;
  757. }
  758. mp_int *mp_neg(mp_int *a)
  759. {
  760. mp_int *r = mp_make_sized(a->nw);
  761. mp_neg_into(r, a);
  762. return r;
  763. }
  764. /*
  765. * Internal routine: multiply and accumulate in the trivial O(N^2)
  766. * way. Sets r <- r + a*b.
  767. */
  768. static void mp_mul_add_simple(mp_int *r, mp_int *a, mp_int *b)
  769. {
  770. BignumInt *aend = a->w + a->nw, *bend = b->w + b->nw, *rend = r->w + r->nw;
  771. for (BignumInt *ap = a->w, *rp = r->w;
  772. ap < aend && rp < rend; ap++, rp++) {
  773. BignumInt adata = *ap, carry = 0, *rq = rp;
  774. for (BignumInt *bp = b->w; bp < bend && rq < rend; bp++, rq++) {
  775. BignumInt bdata = bp < bend ? *bp : 0;
  776. BignumMULADD2(carry, *rq, adata, bdata, *rq, carry);
  777. }
  778. for (; rq < rend; rq++)
  779. BignumADC(*rq, carry, carry, *rq, 0);
  780. }
  781. }
  782. #ifndef KARATSUBA_THRESHOLD /* allow redefinition via -D for testing */
  783. #define KARATSUBA_THRESHOLD 24
  784. #endif
  785. static inline size_t mp_mul_scratchspace_unary(size_t n)
  786. {
  787. /*
  788. * Simplistic and overcautious bound on the amount of scratch
  789. * space that the recursive multiply function will need.
  790. *
  791. * The rationale is: on the main Karatsuba branch of
  792. * mp_mul_internal, which is the most space-intensive one, we
  793. * allocate space for (a0+a1) and (b0+b1) (each just over half the
  794. * input length n) and their product (the sum of those sizes, i.e.
  795. * just over n itself). Then in order to actually compute the
  796. * product, we do a recursive multiplication of size just over n.
  797. *
  798. * If all those 'just over' weren't there, and everything was
  799. * _exactly_ half the length, you'd get the amount of space for a
  800. * size-n multiply defined by the recurrence M(n) = 2n + M(n/2),
  801. * which is satisfied by M(n) = 4n. But instead it's (2n plus a
  802. * word or two) and M(n/2 plus a word or two). On the assumption
  803. * that there's still some constant k such that M(n) <= kn, this
  804. * gives us kn = 2n + w + k(n/2 + w), where w is a small constant
  805. * (one or two words). That simplifies to kn/2 = 2n + (k+1)w, and
  806. * since we don't even _start_ needing scratch space until n is at
  807. * least 50, we can bound 2n + (k+1)w above by 3n, giving k=6.
  808. *
  809. * So I claim that 6n words of scratch space will suffice, and I
  810. * check that by assertion at every stage of the recursion.
  811. */
  812. return n * 6;
  813. }
  814. static size_t mp_mul_scratchspace(size_t rw, size_t aw, size_t bw)
  815. {
  816. size_t inlen = size_t_min(rw, size_t_max(aw, bw));
  817. return mp_mul_scratchspace_unary(inlen);
  818. }
  819. static void mp_mul_internal(mp_int *r, mp_int *a, mp_int *b, mp_int scratch)
  820. {
  821. size_t inlen = size_t_min(r->nw, size_t_max(a->nw, b->nw));
  822. assert(scratch.nw >= mp_mul_scratchspace_unary(inlen));
  823. mp_clear(r);
  824. if (inlen < KARATSUBA_THRESHOLD || a->nw == 0 || b->nw == 0) {
  825. /*
  826. * The input numbers are too small to bother optimising. Go
  827. * straight to the simple primitive approach.
  828. */
  829. mp_mul_add_simple(r, a, b);
  830. return;
  831. }
  832. /*
  833. * Karatsuba divide-and-conquer algorithm. We cut each input in
  834. * half, so that it's expressed as two big 'digits' in a giant
  835. * base D:
  836. *
  837. * a = a_1 D + a_0
  838. * b = b_1 D + b_0
  839. *
  840. * Then the product is of course
  841. *
  842. * ab = a_1 b_1 D^2 + (a_1 b_0 + a_0 b_1) D + a_0 b_0
  843. *
  844. * and we compute the three coefficients by recursively calling
  845. * ourself to do half-length multiplications.
  846. *
  847. * The clever bit that makes this worth doing is that we only need
  848. * _one_ half-length multiplication for the central coefficient
  849. * rather than the two that it obviouly looks like, because we can
  850. * use a single multiplication to compute
  851. *
  852. * (a_1 + a_0) (b_1 + b_0) = a_1 b_1 + a_1 b_0 + a_0 b_1 + a_0 b_0
  853. *
  854. * and then we subtract the other two coefficients (a_1 b_1 and
  855. * a_0 b_0) which we were computing anyway.
  856. *
  857. * Hence we get to multiply two numbers of length N in about three
  858. * times as much work as it takes to multiply numbers of length
  859. * N/2, which is obviously better than the four times as much work
  860. * it would take if we just did a long conventional multiply.
  861. */
  862. /* Break up the input as botlen + toplen, with botlen >= toplen.
  863. * The 'base' D is equal to 2^{botlen * BIGNUM_INT_BITS}. */
  864. size_t toplen = inlen / 2;
  865. size_t botlen = inlen - toplen;
  866. /* Alias bignums that address the two halves of a,b, and useful
  867. * pieces of r. */
  868. mp_int a0 = mp_make_alias(a, 0, botlen);
  869. mp_int b0 = mp_make_alias(b, 0, botlen);
  870. mp_int a1 = mp_make_alias(a, botlen, toplen);
  871. mp_int b1 = mp_make_alias(b, botlen, toplen);
  872. mp_int r0 = mp_make_alias(r, 0, botlen*2);
  873. mp_int r1 = mp_make_alias(r, botlen, r->nw);
  874. mp_int r2 = mp_make_alias(r, botlen*2, r->nw);
  875. /* Recurse to compute a0*b0 and a1*b1, in their correct positions
  876. * in the output bignum. They can't overlap. */
  877. mp_mul_internal(&r0, &a0, &b0, scratch);
  878. mp_mul_internal(&r2, &a1, &b1, scratch);
  879. if (r->nw < inlen*2) {
  880. /*
  881. * The output buffer isn't large enough to require the whole
  882. * product, so some of a1*b1 won't have been stored. In that
  883. * case we won't try to do the full Karatsuba optimisation;
  884. * we'll just recurse again to compute a0*b1 and a1*b0 - or at
  885. * least as much of them as the output buffer size requires -
  886. * and add each one in.
  887. */
  888. mp_int s = mp_alloc_from_scratch(
  889. &scratch, size_t_min(botlen+toplen, r1.nw));
  890. mp_mul_internal(&s, &a0, &b1, scratch);
  891. mp_add_into(&r1, &r1, &s);
  892. mp_mul_internal(&s, &a1, &b0, scratch);
  893. mp_add_into(&r1, &r1, &s);
  894. return;
  895. }
  896. /* a0+a1 and b0+b1 */
  897. mp_int asum = mp_alloc_from_scratch(&scratch, botlen+1);
  898. mp_int bsum = mp_alloc_from_scratch(&scratch, botlen+1);
  899. mp_add_into(&asum, &a0, &a1);
  900. mp_add_into(&bsum, &b0, &b1);
  901. /* Their product */
  902. mp_int product = mp_alloc_from_scratch(&scratch, botlen*2+1);
  903. mp_mul_internal(&product, &asum, &bsum, scratch);
  904. /* Subtract off the outer terms we already have */
  905. mp_sub_into(&product, &product, &r0);
  906. mp_sub_into(&product, &product, &r2);
  907. /* And add it in with the right offset. */
  908. mp_add_into(&r1, &r1, &product);
  909. }
  910. void mp_mul_into(mp_int *r, mp_int *a, mp_int *b)
  911. {
  912. mp_int *scratch = mp_make_sized(mp_mul_scratchspace(r->nw, a->nw, b->nw));
  913. mp_mul_internal(r, a, b, *scratch);
  914. mp_free(scratch);
  915. }
  916. mp_int *mp_mul(mp_int *x, mp_int *y)
  917. {
  918. mp_int *r = mp_make_sized(x->nw + y->nw);
  919. mp_mul_into(r, x, y);
  920. return r;
  921. }
  922. void mp_lshift_fixed_into(mp_int *r, mp_int *a, size_t bits)
  923. {
  924. size_t words = bits / BIGNUM_INT_BITS;
  925. size_t bitoff = bits % BIGNUM_INT_BITS;
  926. for (size_t i = r->nw; i-- > 0 ;) {
  927. if (i < words) {
  928. r->w[i] = 0;
  929. } else {
  930. r->w[i] = mp_word(a, i - words);
  931. if (bitoff != 0) {
  932. r->w[i] <<= bitoff;
  933. if (i > words)
  934. r->w[i] |= mp_word(a, i - words - 1) >>
  935. (BIGNUM_INT_BITS - bitoff);
  936. }
  937. }
  938. }
  939. }
  940. void mp_rshift_fixed_into(mp_int *r, mp_int *a, size_t bits)
  941. {
  942. size_t words = bits / BIGNUM_INT_BITS;
  943. size_t bitoff = bits % BIGNUM_INT_BITS;
  944. for (size_t i = 0; i < r->nw; i++) {
  945. r->w[i] = mp_word(a, i + words);
  946. if (bitoff != 0) {
  947. r->w[i] >>= bitoff;
  948. r->w[i] |= mp_word(a, i + words + 1) << (BIGNUM_INT_BITS - bitoff);
  949. }
  950. }
  951. }
  952. mp_int *mp_rshift_fixed(mp_int *x, size_t bits)
  953. {
  954. size_t words = bits / BIGNUM_INT_BITS;
  955. mp_int *r = mp_make_sized(x->nw - size_t_min(x->nw, words));
  956. mp_rshift_fixed_into(r, x, bits);
  957. return r;
  958. }
  959. /*
  960. * Safe right shift is done using the same technique as
  961. * trim_leading_zeroes above: you make an n-word left shift by
  962. * composing an appropriate subset of power-of-2-sized shifts, so it
  963. * takes log_2(n) loop iterations each of which does a different shift
  964. * by a power of 2 words, using the usual bit twiddling to make the
  965. * whole shift conditional on the appropriate bit of n.
  966. */
  967. mp_int *mp_rshift_safe(mp_int *x, size_t bits)
  968. {
  969. size_t wordshift = bits / BIGNUM_INT_BITS;
  970. size_t bitshift = bits % BIGNUM_INT_BITS;
  971. mp_int *r = mp_copy(x);
  972. unsigned clear = (r->nw - wordshift) >> (CHAR_BIT * sizeof(size_t) - 1);
  973. mp_cond_clear(r, clear);
  974. for (unsigned bit = 0; r->nw >> bit; bit++) {
  975. size_t word_offset = 1 << bit;
  976. BignumInt mask = -(BignumInt)((wordshift >> bit) & 1);
  977. for (size_t i = 0; i < r->nw; i++) {
  978. BignumInt w = mp_word(r, i + word_offset);
  979. r->w[i] ^= (r->w[i] ^ w) & mask;
  980. }
  981. }
  982. /*
  983. * That's done the shifting by words; now we do the shifting by
  984. * bits.
  985. */
  986. for (unsigned bit = 0; bit < BIGNUM_INT_BITS_BITS; bit++) {
  987. unsigned shift = 1 << bit, upshift = BIGNUM_INT_BITS - shift;
  988. BignumInt mask = -(BignumInt)((bitshift >> bit) & 1);
  989. for (size_t i = 0; i < r->nw; i++) {
  990. BignumInt w = ((r->w[i] >> shift) | (mp_word(r, i+1) << upshift));
  991. r->w[i] ^= (r->w[i] ^ w) & mask;
  992. }
  993. }
  994. return r;
  995. }
  996. void mp_reduce_mod_2to(mp_int *x, size_t p)
  997. {
  998. size_t word = p / BIGNUM_INT_BITS;
  999. size_t mask = ((size_t)1 << (p % BIGNUM_INT_BITS)) - 1;
  1000. for (; word < x->nw; word++) {
  1001. x->w[word] &= mask;
  1002. mask = 0;
  1003. }
  1004. }
  1005. /*
  1006. * Inverse mod 2^n is computed by an iterative technique which doubles
  1007. * the number of bits at each step.
  1008. */
  1009. mp_int *mp_invert_mod_2to(mp_int *x, size_t p)
  1010. {
  1011. /* Input checks: x must be coprime to the modulus, i.e. odd, and p
  1012. * can't be zero */
  1013. assert(x->nw > 0);
  1014. assert(x->w[0] & 1);
  1015. assert(p > 0);
  1016. size_t rw = (p + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1017. mp_int *r = mp_make_sized(rw);
  1018. size_t mul_scratchsize = mp_mul_scratchspace(2*rw, rw, rw);
  1019. mp_int *scratch_orig = mp_make_sized(6 * rw + mul_scratchsize);
  1020. mp_int scratch_per_iter = *scratch_orig;
  1021. mp_int mul_scratch = mp_alloc_from_scratch(
  1022. &scratch_per_iter, mul_scratchsize);
  1023. r->w[0] = 1;
  1024. for (size_t b = 1; b < p; b <<= 1) {
  1025. /*
  1026. * In each step of this iteration, we have the inverse of x
  1027. * mod 2^b, and we want the inverse of x mod 2^{2b}.
  1028. *
  1029. * Write B = 2^b for convenience, so we want x^{-1} mod B^2.
  1030. * Let x = x_0 + B x_1 + k B^2, with 0 <= x_0,x_1 < B.
  1031. *
  1032. * We want to find r_0 and r_1 such that
  1033. * (r_1 B + r_0) (x_1 B + x_0) == 1 (mod B^2)
  1034. *
  1035. * To begin with, we know r_0 must be the inverse mod B of
  1036. * x_0, i.e. of x, i.e. it is the inverse we computed in the
  1037. * previous iteration. So now all we need is r_1.
  1038. *
  1039. * Multiplying out, neglecting multiples of B^2, and writing
  1040. * x_0 r_0 = K B + 1, we have
  1041. *
  1042. * r_1 x_0 B + r_0 x_1 B + K B == 0 (mod B^2)
  1043. * => r_1 x_0 B == - r_0 x_1 B - K B (mod B^2)
  1044. * => r_1 x_0 == - r_0 x_1 - K (mod B)
  1045. * => r_1 == r_0 (- r_0 x_1 - K) (mod B)
  1046. *
  1047. * (the last step because we multiply through by the inverse
  1048. * of x_0, which we already know is r_0).
  1049. */
  1050. mp_int scratch_this_iter = scratch_per_iter;
  1051. size_t Bw = (b + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1052. size_t B2w = (2*b + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1053. /* Start by finding K: multiply x_0 by r_0, and shift down. */
  1054. mp_int x0 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1055. mp_copy_into(&x0, x);
  1056. mp_reduce_mod_2to(&x0, b);
  1057. mp_int r0 = mp_make_alias(r, 0, Bw);
  1058. mp_int Kshift = mp_alloc_from_scratch(&scratch_this_iter, B2w);
  1059. mp_mul_internal(&Kshift, &x0, &r0, mul_scratch);
  1060. mp_int K = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1061. mp_rshift_fixed_into(&K, &Kshift, b);
  1062. /* Now compute the product r_0 x_1, reusing the space of Kshift. */
  1063. mp_int x1 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1064. mp_rshift_fixed_into(&x1, x, b);
  1065. mp_reduce_mod_2to(&x1, b);
  1066. mp_int r0x1 = mp_make_alias(&Kshift, 0, Bw);
  1067. mp_mul_internal(&r0x1, &r0, &x1, mul_scratch);
  1068. /* Add K to that. */
  1069. mp_add_into(&r0x1, &r0x1, &K);
  1070. /* Negate it. */
  1071. mp_neg_into(&r0x1, &r0x1);
  1072. /* Multiply by r_0. */
  1073. mp_int r1 = mp_alloc_from_scratch(&scratch_this_iter, Bw);
  1074. mp_mul_internal(&r1, &r0, &r0x1, mul_scratch);
  1075. mp_reduce_mod_2to(&r1, b);
  1076. /* That's our r_1, so add it on to r_0 to get the full inverse
  1077. * output from this iteration. */
  1078. mp_lshift_fixed_into(&K, &r1, (b % BIGNUM_INT_BITS));
  1079. size_t Bpos = b / BIGNUM_INT_BITS;
  1080. mp_int r1_position = mp_make_alias(r, Bpos, B2w-Bpos);
  1081. mp_add_into(&r1_position, &r1_position, &K);
  1082. }
  1083. /* Finally, reduce mod the precise desired number of bits. */
  1084. mp_reduce_mod_2to(r, p);
  1085. mp_free(scratch_orig);
  1086. return r;
  1087. }
  1088. static size_t monty_scratch_size(MontyContext *mc)
  1089. {
  1090. return 3*mc->rw + mc->pw + mp_mul_scratchspace(mc->pw, mc->rw, mc->rw);
  1091. }
  1092. MontyContext *monty_new(mp_int *modulus)
  1093. {
  1094. MontyContext *mc = snew(MontyContext);
  1095. mc->rw = modulus->nw;
  1096. mc->rbits = mc->rw * BIGNUM_INT_BITS;
  1097. mc->pw = mc->rw * 2 + 1;
  1098. mc->m = mp_copy(modulus);
  1099. mc->minus_minv_mod_r = mp_invert_mod_2to(mc->m, mc->rbits);
  1100. mp_neg_into(mc->minus_minv_mod_r, mc->minus_minv_mod_r);
  1101. mp_int *r = mp_make_sized(mc->rw + 1);
  1102. r->w[mc->rw] = 1;
  1103. mc->powers_of_r_mod_m[0] = mp_mod(r, mc->m);
  1104. mp_free(r);
  1105. for (size_t j = 1; j < lenof(mc->powers_of_r_mod_m); j++)
  1106. mc->powers_of_r_mod_m[j] = mp_modmul(
  1107. mc->powers_of_r_mod_m[0], mc->powers_of_r_mod_m[j-1], mc->m);
  1108. mc->scratch = mp_make_sized(monty_scratch_size(mc));
  1109. return mc;
  1110. }
  1111. void monty_free(MontyContext *mc)
  1112. {
  1113. mp_free(mc->m);
  1114. for (size_t j = 0; j < 3; j++)
  1115. mp_free(mc->powers_of_r_mod_m[j]);
  1116. mp_free(mc->minus_minv_mod_r);
  1117. mp_free(mc->scratch);
  1118. smemclr(mc, sizeof(*mc));
  1119. sfree(mc);
  1120. }
  1121. /*
  1122. * The main Montgomery reduction step.
  1123. */
  1124. static mp_int monty_reduce_internal(MontyContext *mc, mp_int *x, mp_int scratch)
  1125. {
  1126. /*
  1127. * The trick with Montgomery reduction is that on the one hand we
  1128. * want to reduce the size of the input by a factor of about r,
  1129. * and on the other hand, the two numbers we just multiplied were
  1130. * both stored with an extra factor of r multiplied in. So we
  1131. * computed ar*br = ab r^2, but we want to return abr, so we need
  1132. * to divide by r - and if we can do that by _actually dividing_
  1133. * by r then this also reduces the size of the number.
  1134. *
  1135. * But we can only do that if the number we're dividing by r is a
  1136. * multiple of r. So first we must add an adjustment to it which
  1137. * clears its bottom 'rbits' bits. That adjustment must be a
  1138. * multiple of m in order to leave the residue mod n unchanged, so
  1139. * the question is, what multiple of m can we add to x to make it
  1140. * congruent to 0 mod r? And the answer is, x * (-m)^{-1} mod r.
  1141. */
  1142. /* x mod r */
  1143. mp_int x_lo = mp_make_alias(x, 0, mc->rbits);
  1144. /* x * (-m)^{-1}, i.e. the number we want to multiply by m */
  1145. mp_int k = mp_alloc_from_scratch(&scratch, mc->rw);
  1146. mp_mul_internal(&k, &x_lo, mc->minus_minv_mod_r, scratch);
  1147. /* m times that, i.e. the number we want to add to x */
  1148. mp_int mk = mp_alloc_from_scratch(&scratch, mc->pw);
  1149. mp_mul_internal(&mk, mc->m, &k, scratch);
  1150. /* Add it to x */
  1151. mp_add_into(&mk, x, &mk);
  1152. /* Reduce mod r, by simply making an alias to the upper words of x */
  1153. mp_int toret = mp_make_alias(&mk, mc->rw, mk.nw - mc->rw);
  1154. /*
  1155. * We'll generally be doing this after a multiplication of two
  1156. * fully reduced values. So our input could be anything up to m^2,
  1157. * and then we added up to rm to it. Hence, the maximum value is
  1158. * rm+m^2, and after dividing by r, that becomes r + m(m/r) < 2r.
  1159. * So a single trial-subtraction will finish reducing to the
  1160. * interval [0,m).
  1161. */
  1162. mp_cond_sub_into(&toret, &toret, mc->m, mp_cmp_hs(&toret, mc->m));
  1163. return toret;
  1164. }
  1165. void monty_mul_into(MontyContext *mc, mp_int *r, mp_int *x, mp_int *y)
  1166. {
  1167. assert(x->nw <= mc->rw);
  1168. assert(y->nw <= mc->rw);
  1169. mp_int scratch = *mc->scratch;
  1170. mp_int tmp = mp_alloc_from_scratch(&scratch, 2*mc->rw);
  1171. mp_mul_into(&tmp, x, y);
  1172. mp_int reduced = monty_reduce_internal(mc, &tmp, scratch);
  1173. mp_copy_into(r, &reduced);
  1174. mp_clear(mc->scratch);
  1175. }
  1176. mp_int *monty_mul(MontyContext *mc, mp_int *x, mp_int *y)
  1177. {
  1178. mp_int *toret = mp_make_sized(mc->rw);
  1179. monty_mul_into(mc, toret, x, y);
  1180. return toret;
  1181. }
  1182. mp_int *monty_modulus(MontyContext *mc)
  1183. {
  1184. return mc->m;
  1185. }
  1186. mp_int *monty_identity(MontyContext *mc)
  1187. {
  1188. return mc->powers_of_r_mod_m[0];
  1189. }
  1190. mp_int *monty_invert(MontyContext *mc, mp_int *x)
  1191. {
  1192. /* Given xr, we want to return x^{-1}r = (xr)^{-1} r^2 =
  1193. * monty_reduce((xr)^{-1} r^3) */
  1194. mp_int *tmp = mp_invert(x, mc->m);
  1195. mp_int *toret = monty_mul(mc, tmp, mc->powers_of_r_mod_m[2]);
  1196. mp_free(tmp);
  1197. return toret;
  1198. }
  1199. /*
  1200. * Importing a number into Montgomery representation involves
  1201. * multiplying it by r and reducing mod m. We could do this using the
  1202. * straightforward mp_modmul, but since we have the machinery to avoid
  1203. * division, why don't we use it? If we multiply the number not by r
  1204. * itself, but by the residue of r^2 mod m, then we can do an actual
  1205. * Montgomery reduction to reduce the result and remove the extra
  1206. * factor of r.
  1207. */
  1208. void monty_import_into(MontyContext *mc, mp_int *r, mp_int *x)
  1209. {
  1210. monty_mul_into(mc, r, x, mc->powers_of_r_mod_m[1]);
  1211. }
  1212. mp_int *monty_import(MontyContext *mc, mp_int *x)
  1213. {
  1214. return monty_mul(mc, x, mc->powers_of_r_mod_m[1]);
  1215. }
  1216. /*
  1217. * Exporting a number means multiplying it by r^{-1}, which is exactly
  1218. * what monty_reduce does anyway, so we just do that.
  1219. */
  1220. void monty_export_into(MontyContext *mc, mp_int *r, mp_int *x)
  1221. {
  1222. assert(x->nw <= 2*mc->rw);
  1223. mp_int reduced = monty_reduce_internal(mc, x, *mc->scratch);
  1224. mp_copy_into(r, &reduced);
  1225. mp_clear(mc->scratch);
  1226. }
  1227. mp_int *monty_export(MontyContext *mc, mp_int *x)
  1228. {
  1229. mp_int *toret = mp_make_sized(mc->rw);
  1230. monty_export_into(mc, toret, x);
  1231. return toret;
  1232. }
  1233. static void monty_reduce(MontyContext *mc, mp_int *x)
  1234. {
  1235. mp_int reduced = monty_reduce_internal(mc, x, *mc->scratch);
  1236. mp_copy_into(x, &reduced);
  1237. mp_clear(mc->scratch);
  1238. }
  1239. mp_int *monty_pow(MontyContext *mc, mp_int *base, mp_int *exponent)
  1240. {
  1241. /* square builds up powers of the form base^{2^i}. */
  1242. mp_int *square = mp_copy(base);
  1243. size_t i = 0;
  1244. /* out accumulates the output value. Starts at 1 (in Montgomery
  1245. * representation) and we multiply in each base^{2^i}. */
  1246. mp_int *out = mp_copy(mc->powers_of_r_mod_m[0]);
  1247. /* tmp holds each product we compute and reduce. */
  1248. mp_int *tmp = mp_make_sized(mc->rw * 2);
  1249. while (true) {
  1250. mp_mul_into(tmp, out, square);
  1251. monty_reduce(mc, tmp);
  1252. mp_select_into(out, out, tmp, mp_get_bit(exponent, i));
  1253. if (++i >= exponent->nw * BIGNUM_INT_BITS)
  1254. break;
  1255. mp_mul_into(tmp, square, square);
  1256. monty_reduce(mc, tmp);
  1257. mp_copy_into(square, tmp);
  1258. }
  1259. mp_free(square);
  1260. mp_free(tmp);
  1261. mp_clear(mc->scratch);
  1262. return out;
  1263. }
  1264. mp_int *mp_modpow(mp_int *base, mp_int *exponent, mp_int *modulus)
  1265. {
  1266. assert(base->nw <= modulus->nw);
  1267. assert(modulus->nw > 0);
  1268. assert(modulus->w[0] & 1);
  1269. MontyContext *mc = monty_new(modulus);
  1270. mp_int *m_base = monty_import(mc, base);
  1271. mp_int *m_out = monty_pow(mc, m_base, exponent);
  1272. mp_int *out = monty_export(mc, m_out);
  1273. mp_free(m_base);
  1274. mp_free(m_out);
  1275. monty_free(mc);
  1276. return out;
  1277. }
  1278. /*
  1279. * Given two coprime nonzero input integers a,b, returns two integers
  1280. * A,B such that A*a - B*b = 1. A,B will be the minimal non-negative
  1281. * pair satisfying that criterion, which is equivalent to saying that
  1282. * 0<=A<b and 0<=B<a.
  1283. *
  1284. * This algorithm is an adapted form of Stein's algorithm, which
  1285. * computes gcd(a,b) using only addition and bit shifts (i.e. without
  1286. * needing general division), using the following rules:
  1287. *
  1288. * - if both of a,b are even, divide off a common factor of 2
  1289. * - if one of a,b (WLOG a) is even, then gcd(a,b) = gcd(a/2,b), so
  1290. * just divide a by 2
  1291. * - if both of a,b are odd, then WLOG a>b, and gcd(a,b) =
  1292. * gcd(b,(a-b)/2).
  1293. *
  1294. * For this application, I always expect the actual gcd to be coprime,
  1295. * so we can rule out the 'both even' initial case. So this function
  1296. * just performs a sequence of reductions in the following form:
  1297. *
  1298. * - if a,b are both odd, sort them so that a > b, and replace a with
  1299. * b-a; otherwise sort them so that a is the even one
  1300. * - either way, now a is even and b is odd, so divide a by 2.
  1301. *
  1302. * The big change to Stein's algorithm is that we need the Bezout
  1303. * coefficients as output, not just the gcd. So we need to know how to
  1304. * generate those in each case, based on the coefficients from the
  1305. * reduced pair of numbers:
  1306. *
  1307. * - If a is even, and u,v are such that u*(a/2) + v*b = 1:
  1308. * + if u is also even, then this is just (u/2)*a + v*b = 1
  1309. * + otherwise, (u+b)*(a/2) + (v-a/2)*b is also equal to 1, and
  1310. * since u and b are both odd, (u+b)/2 is an integer, so we have
  1311. * ((u+b)/2)*a + (v-a/2)*b = 1.
  1312. *
  1313. * - If a,b are both odd, and u,v are such that u*b + v*(a-b) = 1,
  1314. * then v*a + (u-v)*b = 1.
  1315. *
  1316. * In the case where we passed from (a,b) to (b,(a-b)/2), we regard it
  1317. * as having first subtracted b from a and then halved a, so both of
  1318. * these transformations must be done in sequence.
  1319. *
  1320. * The code below transforms this from a recursive to an iterative
  1321. * algorithm. We first reduce a,b to 0,1, recording at each stage
  1322. * whether we did the initial subtraction, and whether we had to swap
  1323. * the two values; then we iterate backwards over that record of what
  1324. * we did, applying the above rules for building up the Bezout
  1325. * coefficients as we go. Of course, all the case analysis is done by
  1326. * the usual bit-twiddling conditionalisation to avoid data-dependent
  1327. * control flow.
  1328. *
  1329. * Also, since these mp_ints are generally treated as unsigned, we
  1330. * store the coefficients by absolute value, with the semantics that
  1331. * they always have opposite sign, and in the unwinding loop we keep a
  1332. * bit indicating whether Aa-Bb is currently expected to be +1 or -1,
  1333. * so that we can do one final conditional adjustment if it's -1.
  1334. *
  1335. * Once the reduction rules have managed to reduce the input numbers
  1336. * to (0,1), then they are stable (the next reduction will always
  1337. * divide the even one by 2, which maps 0 to 0). So it doesn't matter
  1338. * if we do more steps of the algorithm than necessary; hence, for
  1339. * constant time, we just need to find the maximum number we could
  1340. * _possibly_ require, and do that many.
  1341. *
  1342. * If a,b < 2^n, at most 2n iterations are required. Proof: consider
  1343. * the quantity Q = log_2(a) + log_2(b). Every step halves one of the
  1344. * numbers (and may also reduce one of them further by doing a
  1345. * subtraction beforehand, but in the worst case, not by much or not
  1346. * at all). So Q reduces by at least 1 per iteration, and it starts
  1347. * off with a value at most 2n.
  1348. *
  1349. * The worst case inputs (I think) are where x=2^{n-1} and y=2^n-1
  1350. * (i.e. x is a power of 2 and y is all 1s). In that situation, the
  1351. * first n-1 steps repeatedly halve x until it's 1, and then there are
  1352. * n further steps each of which subtracts 1 from y and halves it.
  1353. */
  1354. static void mp_bezout_into(mp_int *a_coeff_out, mp_int *b_coeff_out,
  1355. mp_int *a_in, mp_int *b_in)
  1356. {
  1357. size_t nw = size_t_max(1, size_t_max(a_in->nw, b_in->nw));
  1358. /* Make mutable copies of the input numbers */
  1359. mp_int *a = mp_make_sized(nw), *b = mp_make_sized(nw);
  1360. mp_copy_into(a, a_in);
  1361. mp_copy_into(b, b_in);
  1362. /* Space to build up the output coefficients, with an extra word
  1363. * so that intermediate values can overflow off the top and still
  1364. * right-shift back down to the correct value */
  1365. mp_int *ac = mp_make_sized(nw + 1), *bc = mp_make_sized(nw + 1);
  1366. /* And a general-purpose temp register */
  1367. mp_int *tmp = mp_make_sized(nw);
  1368. /* Space to record the sequence of reduction steps to unwind. We
  1369. * make it a BignumInt for no particular reason except that (a)
  1370. * mp_make_sized conveniently zeroes the allocation and mp_free
  1371. * wipes it, and (b) this way I can use mp_dump() if I have to
  1372. * debug this code. */
  1373. size_t steps = 2 * nw * BIGNUM_INT_BITS;
  1374. mp_int *record = mp_make_sized(
  1375. (steps*2 + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS);
  1376. for (size_t step = 0; step < steps; step++) {
  1377. /*
  1378. * If a and b are both odd, we want to sort them so that a is
  1379. * larger. But if one is even, we want to sort them so that a
  1380. * is the even one.
  1381. */
  1382. unsigned swap_if_both_odd = mp_cmp_hs(b, a);
  1383. unsigned swap_if_one_even = a->w[0] & 1;
  1384. unsigned both_odd = a->w[0] & b->w[0] & 1;
  1385. unsigned swap = swap_if_one_even ^ (
  1386. (swap_if_both_odd ^ swap_if_one_even) & both_odd);
  1387. mp_cond_swap(a, b, swap);
  1388. /*
  1389. * If a,b are both odd, then a is the larger number, so
  1390. * subtract the smaller one from it.
  1391. */
  1392. mp_cond_sub_into(a, a, b, both_odd);
  1393. /*
  1394. * Now a is even, so divide it by two.
  1395. */
  1396. mp_rshift_fixed_into(a, a, 1);
  1397. /*
  1398. * Record the two 1-bit values both_odd and swap.
  1399. */
  1400. mp_set_bit(record, step*2, both_odd);
  1401. mp_set_bit(record, step*2+1, swap);
  1402. }
  1403. /*
  1404. * Now we expect to have reduced the two numbers to 0 and 1,
  1405. * although we don't know which way round. (But we avoid checking
  1406. * this by assertion; sometimes we'll need to do this computation
  1407. * without giving away that we already know the inputs were bogus.
  1408. * So we'd prefer to just press on and return nonsense.)
  1409. */
  1410. /*
  1411. * So their Bezout coefficients at this point are simply
  1412. * themselves.
  1413. */
  1414. mp_copy_into(ac, a);
  1415. mp_copy_into(bc, b);
  1416. /*
  1417. * We'll maintain the invariant as we unwind that ac * a - bc * b
  1418. * is either +1 or -1, and we'll remember which. (We _could_ keep
  1419. * it at +1 the whole time, but it would cost more work every time
  1420. * round the loop, so it's cheaper to fix that up once at the
  1421. * end.)
  1422. *
  1423. * Initially, the result is +1 if a was the nonzero value after
  1424. * reduction, and -1 if b was.
  1425. */
  1426. unsigned minus_one = b->w[0];
  1427. for (size_t step = steps; step-- > 0 ;) {
  1428. /*
  1429. * Recover the data from the step we're unwinding.
  1430. */
  1431. unsigned both_odd = mp_get_bit(record, step*2);
  1432. unsigned swap = mp_get_bit(record, step*2+1);
  1433. /*
  1434. * Unwind the division: if our coefficient of a is odd, we
  1435. * adjust the coefficients by +b and +a respectively.
  1436. */
  1437. unsigned adjust = ac->w[0] & 1;
  1438. mp_cond_add_into(ac, ac, b, adjust);
  1439. mp_cond_add_into(bc, bc, a, adjust);
  1440. /*
  1441. * Now ac is definitely even, so we divide it by two.
  1442. */
  1443. mp_rshift_fixed_into(ac, ac, 1);
  1444. /*
  1445. * Now unwind the subtraction, if there was one, by adding
  1446. * ac to bc.
  1447. */
  1448. mp_cond_add_into(bc, bc, ac, both_odd);
  1449. /*
  1450. * Undo the transformation of the input numbers, by
  1451. * multiplying a by 2 and then adding b to a (the latter
  1452. * only if both_odd).
  1453. */
  1454. mp_lshift_fixed_into(a, a, 1);
  1455. mp_cond_add_into(a, a, b, both_odd);
  1456. /*
  1457. * Finally, undo the swap. If we do swap, this also
  1458. * reverses the sign of the current result ac*a+bc*b.
  1459. */
  1460. mp_cond_swap(a, b, swap);
  1461. mp_cond_swap(ac, bc, swap);
  1462. minus_one ^= swap;
  1463. }
  1464. /*
  1465. * Now we expect to have recovered the input a,b.
  1466. */
  1467. assert(mp_cmp_eq(a, a_in) & mp_cmp_eq(b, b_in));
  1468. /*
  1469. * But we might find that our current result is -1 instead of +1,
  1470. * that is, we have A',B' such that A'a - B'b = -1.
  1471. *
  1472. * In that situation, we set A = b-A' and B = a-B', giving us
  1473. * Aa-Bb = ab - A'a - ab + B'b = +1.
  1474. */
  1475. mp_sub_into(tmp, b, ac);
  1476. mp_select_into(ac, ac, tmp, minus_one);
  1477. mp_sub_into(tmp, a, bc);
  1478. mp_select_into(bc, bc, tmp, minus_one);
  1479. /*
  1480. * Now we really are done. Return the outputs.
  1481. */
  1482. if (a_coeff_out)
  1483. mp_copy_into(a_coeff_out, ac);
  1484. if (b_coeff_out)
  1485. mp_copy_into(b_coeff_out, bc);
  1486. mp_free(a);
  1487. mp_free(b);
  1488. mp_free(ac);
  1489. mp_free(bc);
  1490. mp_free(tmp);
  1491. mp_free(record);
  1492. }
  1493. mp_int *mp_invert(mp_int *x, mp_int *m)
  1494. {
  1495. mp_int *result = mp_make_sized(m->nw);
  1496. mp_bezout_into(result, NULL, x, m);
  1497. return result;
  1498. }
  1499. static uint32_t recip_approx_32(uint32_t x)
  1500. {
  1501. /*
  1502. * Given an input x in [2^31,2^32), i.e. a uint32_t with its high
  1503. * bit set, this function returns an approximation to 2^63/x,
  1504. * computed using only multiplications and bit shifts just in case
  1505. * the C divide operator has non-constant time (either because the
  1506. * underlying machine instruction does, or because the operator
  1507. * expands to a library function on a CPU without hardware
  1508. * division).
  1509. *
  1510. * The coefficients are derived from those of the degree-9
  1511. * polynomial which is the minimax-optimal approximation to that
  1512. * function on the given interval (generated using the Remez
  1513. * algorithm), converted into integer arithmetic with shifts used
  1514. * to maximise the number of significant bits at every state. (A
  1515. * sort of 'static floating point' - the exponent is statically
  1516. * known at every point in the code, so it never needs to be
  1517. * stored at run time or to influence runtime decisions.)
  1518. *
  1519. * Exhaustive iteration over the whole input space shows the
  1520. * largest possible error to be 1686.54. (The input value
  1521. * attaining that bound is 4226800006 == 0xfbefd986, whose true
  1522. * reciprocal is 2182116973.540... == 0x8210766d.8a6..., whereas
  1523. * this function returns 2182115287 == 0x82106fd7.)
  1524. */
  1525. uint64_t r = 0x92db03d6ULL;
  1526. r = 0xf63e71eaULL - ((r*x) >> 34);
  1527. r = 0xb63721e8ULL - ((r*x) >> 34);
  1528. r = 0x9c2da00eULL - ((r*x) >> 33);
  1529. r = 0xaada0bb8ULL - ((r*x) >> 32);
  1530. r = 0xf75cd403ULL - ((r*x) >> 31);
  1531. r = 0xecf97a41ULL - ((r*x) >> 31);
  1532. r = 0x90d876cdULL - ((r*x) >> 31);
  1533. r = 0x6682799a0ULL - ((r*x) >> 26);
  1534. return r;
  1535. }
  1536. void mp_divmod_into(mp_int *n, mp_int *d, mp_int *q_out, mp_int *r_out)
  1537. {
  1538. assert(!mp_eq_integer(d, 0));
  1539. /*
  1540. * We do division by using Newton-Raphson iteration to converge to
  1541. * the reciprocal of d (or rather, R/d for R a sufficiently large
  1542. * power of 2); then we multiply that reciprocal by n; and we
  1543. * finish up with conditional subtraction.
  1544. *
  1545. * But we have to do it in a fixed number of N-R iterations, so we
  1546. * need some error analysis to know how many we might need.
  1547. *
  1548. * The iteration is derived by defining f(r) = d - R/r.
  1549. * Differentiating gives f'(r) = R/r^2, and the Newton-Raphson
  1550. * formula applied to those functions gives
  1551. *
  1552. * r_{i+1} = r_i - f(r_i) / f'(r_i)
  1553. * = r_i - (d - R/r_i) r_i^2 / R
  1554. * = r_i (2 R - d r_i) / R
  1555. *
  1556. * Now let e_i be the error in a given iteration, in the sense
  1557. * that
  1558. *
  1559. * d r_i = R + e_i
  1560. * i.e. e_i/R = (r_i - r_true) / r_true
  1561. *
  1562. * so e_i is the _relative_ error in r_i.
  1563. *
  1564. * We must also introduce a rounding-error term, because the
  1565. * division by R always gives an integer. This might make the
  1566. * output off by up to 1 (in the negative direction, because
  1567. * right-shifting gives floor of the true quotient). So when we
  1568. * divide by R, we must imagine adding some f in [0,1). Then we
  1569. * have
  1570. *
  1571. * d r_{i+1} = d r_i (2 R - d r_i) / R - d f
  1572. * = (R + e_i) (R - e_i) / R - d f
  1573. * = (R^2 - e_i^2) / R - d f
  1574. * = R - (e_i^2 / R + d f)
  1575. * => e_{i+1} = - (e_i^2 / R + d f)
  1576. *
  1577. * The sum of two positive quantities is bounded above by twice
  1578. * their max, and max |f| = 1, so we can bound this as follows:
  1579. *
  1580. * |e_{i+1}| <= 2 max (e_i^2/R, d)
  1581. * |e_{i+1}/R| <= 2 max ((e_i/R)^2, d/R)
  1582. * log2 |R/e_{i+1}| <= min (2 log2 |R/e_i|, log2 |R/d|) - 1
  1583. *
  1584. * which tells us that the number of 'good' bits - i.e.
  1585. * log2(R/e_i) - very nearly doubles at every iteration (apart
  1586. * from that subtraction of 1), until it gets to the same size as
  1587. * log2(R/d). In other words, the size of R in bits has to be the
  1588. * size of denominator we're putting in, _plus_ the amount of
  1589. * precision we want to get back out.
  1590. *
  1591. * So when we multiply n (the input numerator) by our final
  1592. * reciprocal approximation r, but actually r differs from R/d by
  1593. * up to 2, then it follows that
  1594. *
  1595. * n/d - nr/R = n/d - [ n (R/d + e) ] / R
  1596. * = n/d - [ (n/d) R + n e ] / R
  1597. * = -ne/R
  1598. * => 0 <= n/d - nr/R < 2n/R
  1599. *
  1600. * so our computed quotient can differ from the true n/d by up to
  1601. * 2n/R. Hence, as long as we also choose R large enough that 2n/R
  1602. * is bounded above by a constant, we can guarantee a bounded
  1603. * number of final conditional-subtraction steps.
  1604. */
  1605. /*
  1606. * Get at least 32 of the most significant bits of the input
  1607. * number.
  1608. */
  1609. size_t hiword_index = 0;
  1610. uint64_t hibits = 0, lobits = 0;
  1611. mp_find_highest_nonzero_word_pair(d, 64 - BIGNUM_INT_BITS,
  1612. &hiword_index, &hibits, &lobits);
  1613. /*
  1614. * Make a shifted combination of those two words which puts the
  1615. * topmost bit of the number at bit 63.
  1616. */
  1617. size_t shift_up = 0;
  1618. for (size_t i = BIGNUM_INT_BITS_BITS; i-- > 0;) {
  1619. size_t sl = 1 << i; /* left shift count */
  1620. size_t sr = 64 - sl; /* complementary right-shift count */
  1621. /* Should we shift up? */
  1622. unsigned indicator = 1 ^ normalise_to_1_u64(hibits >> sr);
  1623. /* If we do, what will we get? */
  1624. uint64_t new_hibits = (hibits << sl) | (lobits >> sr);
  1625. uint64_t new_lobits = lobits << sl;
  1626. size_t new_shift_up = shift_up + sl;
  1627. /* Conditionally swap those values in. */
  1628. hibits ^= (hibits ^ new_hibits ) & -(uint64_t)indicator;
  1629. lobits ^= (lobits ^ new_lobits ) & -(uint64_t)indicator;
  1630. shift_up ^= (shift_up ^ new_shift_up ) & -(size_t) indicator;
  1631. }
  1632. /*
  1633. * So now we know the most significant 32 bits of d are at the top
  1634. * of hibits. Approximate the reciprocal of those bits.
  1635. */
  1636. lobits = (uint64_t)recip_approx_32(hibits >> 32) << 32;
  1637. hibits = 0;
  1638. /*
  1639. * And shift that up by as many bits as the input was shifted up
  1640. * just now, so that the product of this approximation and the
  1641. * actual input will be close to a fixed power of two regardless
  1642. * of where the MSB was.
  1643. *
  1644. * I do this in another log n individual passes, partly in case
  1645. * the CPU's register-controlled shift operation isn't
  1646. * time-constant, and also in case the compiler code-generates
  1647. * uint64_t shifts out of a variable number of smaller-word shift
  1648. * instructions, e.g. by splitting up into cases.
  1649. */
  1650. for (size_t i = BIGNUM_INT_BITS_BITS; i-- > 0;) {
  1651. size_t sl = 1 << i; /* left shift count */
  1652. size_t sr = 64 - sl; /* complementary right-shift count */
  1653. /* Should we shift up? */
  1654. unsigned indicator = 1 & (shift_up >> i);
  1655. /* If we do, what will we get? */
  1656. uint64_t new_hibits = (hibits << sl) | (lobits >> sr);
  1657. uint64_t new_lobits = lobits << sl;
  1658. /* Conditionally swap those values in. */
  1659. hibits ^= (hibits ^ new_hibits ) & -(uint64_t)indicator;
  1660. lobits ^= (lobits ^ new_lobits ) & -(uint64_t)indicator;
  1661. }
  1662. /*
  1663. * The product of the 128-bit value now in hibits:lobits with the
  1664. * 128-bit value we originally retrieved in the same variables
  1665. * will be in the vicinity of 2^191. So we'll take log2(R) to be
  1666. * 191, plus a multiple of BIGNUM_INT_BITS large enough to allow R
  1667. * to hold the combined sizes of n and d.
  1668. */
  1669. size_t log2_R;
  1670. {
  1671. size_t max_log2_n = (n->nw + d->nw) * BIGNUM_INT_BITS;
  1672. log2_R = max_log2_n + 3;
  1673. log2_R -= size_t_min(191, log2_R);
  1674. log2_R = (log2_R + BIGNUM_INT_BITS - 1) & ~(BIGNUM_INT_BITS - 1);
  1675. log2_R += 191;
  1676. }
  1677. /* Number of words in a bignum capable of holding numbers the size
  1678. * of twice R. */
  1679. size_t rw = ((log2_R+2) + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS;
  1680. /*
  1681. * Now construct our full-sized starting reciprocal approximation.
  1682. */
  1683. mp_int *r_approx = mp_make_sized(rw);
  1684. size_t output_bit_index;
  1685. {
  1686. /* Where in the input number did the input 128-bit value come from? */
  1687. size_t input_bit_index =
  1688. (hiword_index * BIGNUM_INT_BITS) - (128 - BIGNUM_INT_BITS);
  1689. /* So how far do we need to shift our 64-bit output, if the
  1690. * product of those two fixed-size values is 2^191 and we want
  1691. * to make it 2^log2_R instead? */
  1692. output_bit_index = log2_R - 191 - input_bit_index;
  1693. /* If we've done all that right, it should be a whole number
  1694. * of words. */
  1695. assert(output_bit_index % BIGNUM_INT_BITS == 0);
  1696. size_t output_word_index = output_bit_index / BIGNUM_INT_BITS;
  1697. mp_add_integer_into_shifted_by_words(
  1698. r_approx, r_approx, lobits, output_word_index);
  1699. mp_add_integer_into_shifted_by_words(
  1700. r_approx, r_approx, hibits,
  1701. output_word_index + 64 / BIGNUM_INT_BITS);
  1702. }
  1703. /*
  1704. * Make the constant 2*R, which we'll need in the iteration.
  1705. */
  1706. mp_int *two_R = mp_make_sized(rw);
  1707. mp_add_integer_into_shifted_by_words(
  1708. two_R, two_R, (BignumInt)1 << ((log2_R+1) % BIGNUM_INT_BITS),
  1709. (log2_R+1) / BIGNUM_INT_BITS);
  1710. /*
  1711. * Scratch space.
  1712. */
  1713. mp_int *dr = mp_make_sized(rw + d->nw);
  1714. mp_int *diff = mp_make_sized(size_t_max(rw, dr->nw));
  1715. mp_int *product = mp_make_sized(rw + diff->nw);
  1716. size_t scratchsize = size_t_max(
  1717. mp_mul_scratchspace(dr->nw, r_approx->nw, d->nw),
  1718. mp_mul_scratchspace(product->nw, r_approx->nw, diff->nw));
  1719. mp_int *scratch = mp_make_sized(scratchsize);
  1720. mp_int product_shifted = mp_make_alias(
  1721. product, log2_R / BIGNUM_INT_BITS, product->nw);
  1722. /*
  1723. * Initial error estimate: the 32-bit output of recip_approx_32
  1724. * differs by less than 2048 (== 2^11) from the true top 32 bits
  1725. * of the reciprocal, so the relative error is at most 2^11
  1726. * divided by the 32-bit reciprocal, which at worst is 2^11/2^31 =
  1727. * 2^-20. So even in the worst case, we have 20 good bits of
  1728. * reciprocal to start with.
  1729. */
  1730. size_t good_bits = 31 - 11;
  1731. size_t good_bits_needed = BIGNUM_INT_BITS * n->nw + 4; /* add a few */
  1732. /*
  1733. * Now do Newton-Raphson iterations until we have reason to think
  1734. * they're not converging any more.
  1735. */
  1736. while (good_bits < good_bits_needed) {
  1737. /*
  1738. * Compute the next iterate.
  1739. */
  1740. mp_mul_internal(dr, r_approx, d, *scratch);
  1741. mp_sub_into(diff, two_R, dr);
  1742. mp_mul_internal(product, r_approx, diff, *scratch);
  1743. mp_rshift_fixed_into(r_approx, &product_shifted,
  1744. log2_R % BIGNUM_INT_BITS);
  1745. /*
  1746. * Adjust the error estimate.
  1747. */
  1748. good_bits = good_bits * 2 - 1;
  1749. }
  1750. mp_free(dr);
  1751. mp_free(diff);
  1752. mp_free(product);
  1753. mp_free(scratch);
  1754. /*
  1755. * Now we've got our reciprocal, we can compute the quotient, by
  1756. * multiplying in n and then shifting down by log2_R bits.
  1757. */
  1758. mp_int *quotient_full = mp_mul(r_approx, n);
  1759. mp_int quotient_alias = mp_make_alias(
  1760. quotient_full, log2_R / BIGNUM_INT_BITS, quotient_full->nw);
  1761. mp_int *quotient = mp_make_sized(n->nw);
  1762. mp_rshift_fixed_into(quotient, &quotient_alias, log2_R % BIGNUM_INT_BITS);
  1763. /*
  1764. * Next, compute the remainder.
  1765. */
  1766. mp_int *remainder = mp_make_sized(d->nw);
  1767. mp_mul_into(remainder, quotient, d);
  1768. mp_sub_into(remainder, n, remainder);
  1769. /*
  1770. * Finally, two conditional subtractions to fix up any remaining
  1771. * rounding error. (I _think_ one should be enough, but this
  1772. * routine isn't time-critical enough to take chances.)
  1773. */
  1774. unsigned q_correction = 0;
  1775. for (unsigned iter = 0; iter < 2; iter++) {
  1776. unsigned need_correction = mp_cmp_hs(remainder, d);
  1777. mp_cond_sub_into(remainder, remainder, d, need_correction);
  1778. q_correction += need_correction;
  1779. }
  1780. mp_add_integer_into(quotient, quotient, q_correction);
  1781. /*
  1782. * Now we should have a perfect answer, i.e. 0 <= r < d.
  1783. */
  1784. assert(!mp_cmp_hs(remainder, d));
  1785. if (q_out)
  1786. mp_copy_into(q_out, quotient);
  1787. if (r_out)
  1788. mp_copy_into(r_out, remainder);
  1789. mp_free(r_approx);
  1790. mp_free(two_R);
  1791. mp_free(quotient_full);
  1792. mp_free(quotient);
  1793. mp_free(remainder);
  1794. }
  1795. mp_int *mp_div(mp_int *n, mp_int *d)
  1796. {
  1797. mp_int *q = mp_make_sized(n->nw);
  1798. mp_divmod_into(n, d, q, NULL);
  1799. return q;
  1800. }
  1801. mp_int *mp_mod(mp_int *n, mp_int *d)
  1802. {
  1803. mp_int *r = mp_make_sized(d->nw);
  1804. mp_divmod_into(n, d, NULL, r);
  1805. return r;
  1806. }
  1807. mp_int *mp_modmul(mp_int *x, mp_int *y, mp_int *modulus)
  1808. {
  1809. mp_int *product = mp_mul(x, y);
  1810. mp_int *reduced = mp_mod(product, modulus);
  1811. mp_free(product);
  1812. return reduced;
  1813. }
  1814. mp_int *mp_modadd(mp_int *x, mp_int *y, mp_int *modulus)
  1815. {
  1816. mp_int *sum = mp_add(x, y);
  1817. mp_int *reduced = mp_mod(sum, modulus);
  1818. mp_free(sum);
  1819. return reduced;
  1820. }
  1821. mp_int *mp_modsub(mp_int *x, mp_int *y, mp_int *modulus)
  1822. {
  1823. mp_int *diff = mp_make_sized(size_t_max(x->nw, y->nw));
  1824. mp_sub_into(diff, x, y);
  1825. unsigned negate = mp_cmp_hs(y, x);
  1826. mp_cond_negate(diff, diff, negate);
  1827. mp_int *residue = mp_mod(diff, modulus);
  1828. mp_cond_negate(residue, residue, negate);
  1829. /* If we've just negated the residue, then it will be < 0 and need
  1830. * the modulus adding to it to make it positive - *except* if the
  1831. * residue was zero when we negated it. */
  1832. unsigned make_positive = negate & ~mp_eq_integer(residue, 0);
  1833. mp_cond_add_into(residue, residue, modulus, make_positive);
  1834. mp_free(diff);
  1835. return residue;
  1836. }
  1837. static mp_int *mp_modadd_in_range(mp_int *x, mp_int *y, mp_int *modulus)
  1838. {
  1839. mp_int *sum = mp_make_sized(modulus->nw);
  1840. unsigned carry = mp_add_into_internal(sum, x, y);
  1841. mp_cond_sub_into(sum, sum, modulus, carry | mp_cmp_hs(sum, modulus));
  1842. return sum;
  1843. }
  1844. static mp_int *mp_modsub_in_range(mp_int *x, mp_int *y, mp_int *modulus)
  1845. {
  1846. mp_int *diff = mp_make_sized(modulus->nw);
  1847. mp_sub_into(diff, x, y);
  1848. mp_cond_add_into(diff, diff, modulus, 1 ^ mp_cmp_hs(x, y));
  1849. return diff;
  1850. }
  1851. mp_int *monty_add(MontyContext *mc, mp_int *x, mp_int *y)
  1852. {
  1853. return mp_modadd_in_range(x, y, mc->m);
  1854. }
  1855. mp_int *monty_sub(MontyContext *mc, mp_int *x, mp_int *y)
  1856. {
  1857. return mp_modsub_in_range(x, y, mc->m);
  1858. }
  1859. void mp_min_into(mp_int *r, mp_int *x, mp_int *y)
  1860. {
  1861. mp_select_into(r, x, y, mp_cmp_hs(x, y));
  1862. }
  1863. mp_int *mp_min(mp_int *x, mp_int *y)
  1864. {
  1865. mp_int *r = mp_make_sized(size_t_min(x->nw, y->nw));
  1866. mp_min_into(r, x, y);
  1867. return r;
  1868. }
  1869. mp_int *mp_power_2(size_t power)
  1870. {
  1871. mp_int *x = mp_new(power + 1);
  1872. mp_set_bit(x, power, 1);
  1873. return x;
  1874. }
  1875. struct ModsqrtContext {
  1876. mp_int *p; /* the prime */
  1877. MontyContext *mc; /* for doing arithmetic mod p */
  1878. /* Decompose p-1 as 2^e k, for positive integer e and odd k */
  1879. size_t e;
  1880. mp_int *k;
  1881. mp_int *km1o2; /* (k-1)/2 */
  1882. /* The user-provided value z which is not a quadratic residue mod
  1883. * p, and its kth power. Both in Montgomery form. */
  1884. mp_int *z, *zk;
  1885. };
  1886. ModsqrtContext *modsqrt_new(mp_int *p, mp_int *any_nonsquare_mod_p)
  1887. {
  1888. ModsqrtContext *sc = snew(ModsqrtContext);
  1889. memset(sc, 0, sizeof(ModsqrtContext));
  1890. sc->p = mp_copy(p);
  1891. sc->mc = monty_new(sc->p);
  1892. sc->z = monty_import(sc->mc, any_nonsquare_mod_p);
  1893. /* Find the lowest set bit in p-1. Since this routine expects p to
  1894. * be non-secret (typically a well-known standard elliptic curve
  1895. * parameter), for once we don't need clever bit tricks. */
  1896. for (sc->e = 1; sc->e < BIGNUM_INT_BITS * p->nw; sc->e++)
  1897. if (mp_get_bit(p, sc->e))
  1898. break;
  1899. sc->k = mp_rshift_fixed(p, sc->e);
  1900. sc->km1o2 = mp_rshift_fixed(sc->k, 1);
  1901. /* Leave zk to be filled in lazily, since it's more expensive to
  1902. * compute. If this context turns out never to be needed, we can
  1903. * save the bulk of the setup time this way. */
  1904. return sc;
  1905. }
  1906. static void modsqrt_lazy_setup(ModsqrtContext *sc)
  1907. {
  1908. if (!sc->zk)
  1909. sc->zk = monty_pow(sc->mc, sc->z, sc->k);
  1910. }
  1911. void modsqrt_free(ModsqrtContext *sc)
  1912. {
  1913. monty_free(sc->mc);
  1914. mp_free(sc->p);
  1915. mp_free(sc->z);
  1916. mp_free(sc->k);
  1917. mp_free(sc->km1o2);
  1918. if (sc->zk)
  1919. mp_free(sc->zk);
  1920. sfree(sc);
  1921. }
  1922. mp_int *mp_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success)
  1923. {
  1924. mp_int *mx = monty_import(sc->mc, x);
  1925. mp_int *mroot = monty_modsqrt(sc, mx, success);
  1926. mp_free(mx);
  1927. mp_int *root = monty_export(sc->mc, mroot);
  1928. mp_free(mroot);
  1929. return root;
  1930. }
  1931. /*
  1932. * Modular square root, using an algorithm more or less similar to
  1933. * Tonelli-Shanks but adapted for constant time.
  1934. *
  1935. * The basic idea is to write p-1 = k 2^e, where k is odd and e > 0.
  1936. * Then the multiplicative group mod p (call it G) has a sequence of
  1937. * e+1 nested subgroups G = G_0 > G_1 > G_2 > ... > G_e, where each
  1938. * G_i is exactly half the size of G_{i-1} and consists of all the
  1939. * squares of elements in G_{i-1}. So the innermost group G_e has
  1940. * order k, which is odd, and hence within that group you can take a
  1941. * square root by raising to the power (k+1)/2.
  1942. *
  1943. * Our strategy is to iterate over these groups one by one and make
  1944. * sure the number x we're trying to take the square root of is inside
  1945. * each one, by adjusting it if it isn't.
  1946. *
  1947. * Suppose g is a primitive root of p, i.e. a generator of G_0. (We
  1948. * don't actually need to know what g _is_; we just imagine it for the
  1949. * sake of understanding.) Then G_i consists of precisely the (2^i)th
  1950. * powers of g, and hence, you can tell if a number is in G_i if
  1951. * raising it to the power k 2^{e-i} gives 1. So the conceptual
  1952. * algorithm goes: for each i, test whether x is in G_i by that
  1953. * method. If it isn't, then the previous iteration ensured it's in
  1954. * G_{i-1}, so it will be an odd power of g^{2^{i-1}}, and hence
  1955. * multiplying by any other odd power of g^{2^{i-1}} will give x' in
  1956. * G_i. And we have one of those, because our non-square z is an odd
  1957. * power of g, so z^{2^{i-1}} is an odd power of g^{2^{i-1}}.
  1958. *
  1959. * (There's a special case in the very first iteration, where we don't
  1960. * have a G_{i-1}. If it turns out that x is not even in G_1, that
  1961. * means it's not a square, so we set *success to 0. We still run the
  1962. * rest of the algorithm anyway, for the sake of constant time, but we
  1963. * don't give a hoot what it returns.)
  1964. *
  1965. * When we get to the end and have x in G_e, then we can take its
  1966. * square root by raising to (k+1)/2. But of course that's not the
  1967. * square root of the original input - it's only the square root of
  1968. * the adjusted version we produced during the algorithm. To get the
  1969. * true output answer we also have to multiply by a power of z,
  1970. * namely, z to the power of _half_ whatever we've been multiplying in
  1971. * as we go along. (The power of z we multiplied in must have been
  1972. * even, because the case in which we would have multiplied in an odd
  1973. * power of z is the i=0 case, in which we instead set the failure
  1974. * flag.)
  1975. *
  1976. * The code below is an optimised version of that basic idea, in which
  1977. * we _start_ by computing x^k so as to be able to test membership in
  1978. * G_i by only a few squarings rather than a full from-scratch modpow
  1979. * every time; we also start by computing our candidate output value
  1980. * x^{(k+1)/2}. So when the above description says 'adjust x by z^i'
  1981. * for some i, we have to adjust our running values of x^k and
  1982. * x^{(k+1)/2} by z^{ik} and z^{ik/2} respectively (the latter is safe
  1983. * because, as above, i is always even). And it turns out that we
  1984. * don't actually have to store the adjusted version of x itself at
  1985. * all - we _only_ keep those two powers of it.
  1986. */
  1987. mp_int *monty_modsqrt(ModsqrtContext *sc, mp_int *x, unsigned *success)
  1988. {
  1989. modsqrt_lazy_setup(sc);
  1990. mp_int *scratch_to_free = mp_make_sized(3 * sc->mc->rw);
  1991. mp_int scratch = *scratch_to_free;
  1992. /*
  1993. * Compute toret = x^{(k+1)/2}, our starting point for the output
  1994. * square root, and also xk = x^k which we'll use as we go along
  1995. * for knowing when to apply correction factors. We do this by
  1996. * first computing x^{(k-1)/2}, then multiplying it by x, then
  1997. * multiplying the two together.
  1998. */
  1999. mp_int *toret = monty_pow(sc->mc, x, sc->km1o2);
  2000. mp_int xk = mp_alloc_from_scratch(&scratch, sc->mc->rw);
  2001. mp_copy_into(&xk, toret);
  2002. monty_mul_into(sc->mc, toret, toret, x);
  2003. monty_mul_into(sc->mc, &xk, toret, &xk);
  2004. mp_int tmp = mp_alloc_from_scratch(&scratch, sc->mc->rw);
  2005. mp_int power_of_zk = mp_alloc_from_scratch(&scratch, sc->mc->rw);
  2006. mp_copy_into(&power_of_zk, sc->zk);
  2007. for (size_t i = 0; i < sc->e; i++) {
  2008. mp_copy_into(&tmp, &xk);
  2009. for (size_t j = i+1; j < sc->e; j++)
  2010. monty_mul_into(sc->mc, &tmp, &tmp, &tmp);
  2011. unsigned eq1 = mp_cmp_eq(&tmp, monty_identity(sc->mc));
  2012. if (i == 0) {
  2013. /* One special case: if x=0, then no power of x will ever
  2014. * equal 1, but we should still report success on the
  2015. * grounds that 0 does have a square root mod p. */
  2016. *success = eq1 | mp_eq_integer(x, 0);
  2017. } else {
  2018. monty_mul_into(sc->mc, &tmp, toret, &power_of_zk);
  2019. mp_select_into(toret, &tmp, toret, eq1);
  2020. monty_mul_into(sc->mc, &power_of_zk,
  2021. &power_of_zk, &power_of_zk);
  2022. monty_mul_into(sc->mc, &tmp, &xk, &power_of_zk);
  2023. mp_select_into(&xk, &tmp, &xk, eq1);
  2024. }
  2025. }
  2026. mp_free(scratch_to_free);
  2027. return toret;
  2028. }
  2029. mp_int *mp_random_bits_fn(size_t bits, random_read_fn_t random_read)
  2030. {
  2031. size_t bytes = (bits + 7) / 8;
  2032. uint8_t *randbuf = snewn(bytes, uint8_t);
  2033. random_read(randbuf, bytes);
  2034. if (bytes)
  2035. randbuf[0] &= (2 << ((bits-1) & 7)) - 1;
  2036. mp_int *toret = mp_from_bytes_be(make_ptrlen(randbuf, bytes));
  2037. smemclr(randbuf, bytes);
  2038. sfree(randbuf);
  2039. return toret;
  2040. }
  2041. mp_int *mp_random_in_range_fn(mp_int *lo, mp_int *hi, random_read_fn_t rf)
  2042. {
  2043. mp_int *n_outcomes = mp_sub(hi, lo);
  2044. /*
  2045. * It would be nice to generate our random numbers in such a way
  2046. * as to make every possible outcome literally equiprobable. But
  2047. * we can't do that in constant time, so we have to go for a very
  2048. * close approximation instead. I'm going to take the view that a
  2049. * factor of (1+2^-128) between the probabilities of two outcomes
  2050. * is acceptable on the grounds that you'd have to examine so many
  2051. * outputs to even detect it.
  2052. */
  2053. mp_int *unreduced = mp_random_bits_fn(mp_max_bits(n_outcomes) + 128, rf);
  2054. mp_int *reduced = mp_mod(unreduced, n_outcomes);
  2055. mp_add_into(reduced, reduced, lo);
  2056. mp_free(unreduced);
  2057. mp_free(n_outcomes);
  2058. return reduced;
  2059. }