| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403 | 
							- #! /usr/bin/env perl
 
- # Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved.
 
- #
 
- # Licensed under the Apache License 2.0 (the "License").  You may not use
 
- # this file except in compliance with the License.  You can obtain a copy
 
- # in the file LICENSE in the source distribution or at
 
- # https://www.openssl.org/source/license.html
 
- #
 
- # ====================================================================
 
- # Written by Andy Polyakov <[email protected]> for the OpenSSL
 
- # project. The module is, however, dual licensed under OpenSSL and
 
- # CRYPTOGAMS licenses depending on where you obtain it. For further
 
- # details see http://www.openssl.org/~appro/cryptogams/.
 
- # ====================================================================
 
- #
 
- # March, May, June 2010
 
- #
 
- # The module implements "4-bit" GCM GHASH function and underlying
 
- # single multiplication operation in GF(2^128). "4-bit" means that it
 
- # uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two
 
- # code paths: vanilla x86 and vanilla SSE. Former will be executed on
 
- # 486 and Pentium, latter on all others. SSE GHASH features so called
 
- # "528B" variant of "4-bit" method utilizing additional 256+16 bytes
 
- # of per-key storage [+512 bytes shared table]. Performance results
 
- # are for streamed GHASH subroutine and are expressed in cycles per
 
- # processed byte, less is better:
 
- #
 
- #		gcc 2.95.3(*)	SSE assembler	x86 assembler
 
- #
 
- # Pentium	105/111(**)	-		50
 
- # PIII		68 /75		12.2		24
 
- # P4		125/125		17.8		84(***)
 
- # Opteron	66 /70		10.1		30
 
- # Core2		54 /67		8.4		18
 
- # Atom		105/105		16.8		53
 
- # VIA Nano	69 /71		13.0		27
 
- #
 
- # (*)	gcc 3.4.x was observed to generate few percent slower code,
 
- #	which is one of reasons why 2.95.3 results were chosen,
 
- #	another reason is lack of 3.4.x results for older CPUs;
 
- #	comparison with SSE results is not completely fair, because C
 
- #	results are for vanilla "256B" implementation, while
 
- #	assembler results are for "528B";-)
 
- # (**)	second number is result for code compiled with -fPIC flag,
 
- #	which is actually more relevant, because assembler code is
 
- #	position-independent;
 
- # (***)	see comment in non-MMX routine for further details;
 
- #
 
- # To summarize, it's >2-5 times faster than gcc-generated code. To
 
- # anchor it to something else SHA1 assembler processes one byte in
 
- # ~7 cycles on contemporary x86 cores. As for choice of MMX/SSE
 
- # in particular, see comment at the end of the file...
 
- # May 2010
 
- #
 
- # Add PCLMULQDQ version performing at 2.10 cycles per processed byte.
 
- # The question is how close is it to theoretical limit? The pclmulqdq
 
- # instruction latency appears to be 14 cycles and there can't be more
 
- # than 2 of them executing at any given time. This means that single
 
- # Karatsuba multiplication would take 28 cycles *plus* few cycles for
 
- # pre- and post-processing. Then multiplication has to be followed by
 
- # modulo-reduction. Given that aggregated reduction method [see
 
- # "Carry-less Multiplication and Its Usage for Computing the GCM Mode"
 
- # white paper by Intel] allows you to perform reduction only once in
 
- # a while we can assume that asymptotic performance can be estimated
 
- # as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction
 
- # and Naggr is the aggregation factor.
 
- #
 
- # Before we proceed to this implementation let's have closer look at
 
- # the best-performing code suggested by Intel in their white paper.
 
- # By tracing inter-register dependencies Tmod is estimated as ~19
 
- # cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per
 
- # processed byte. As implied, this is quite optimistic estimate,
 
- # because it does not account for Karatsuba pre- and post-processing,
 
- # which for a single multiplication is ~5 cycles. Unfortunately Intel
 
- # does not provide performance data for GHASH alone. But benchmarking
 
- # AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt
 
- # alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that
 
- # the result accounts even for pre-computing of degrees of the hash
 
- # key H, but its portion is negligible at 16KB buffer size.
 
- #
 
- # Moving on to the implementation in question. Tmod is estimated as
 
- # ~13 cycles and Naggr is 2, giving asymptotic performance of ...
 
- # 2.16. How is it possible that measured performance is better than
 
- # optimistic theoretical estimate? There is one thing Intel failed
 
- # to recognize. By serializing GHASH with CTR in same subroutine
 
- # former's performance is really limited to above (Tmul + Tmod/Naggr)
 
- # equation. But if GHASH procedure is detached, the modulo-reduction
 
- # can be interleaved with Naggr-1 multiplications at instruction level
 
- # and under ideal conditions even disappear from the equation. So that
 
- # optimistic theoretical estimate for this implementation is ...
 
- # 28/16=1.75, and not 2.16. Well, it's probably way too optimistic,
 
- # at least for such small Naggr. I'd argue that (28+Tproc/Naggr),
 
- # where Tproc is time required for Karatsuba pre- and post-processing,
 
- # is more realistic estimate. In this case it gives ... 1.91 cycles.
 
- # Or in other words, depending on how well we can interleave reduction
 
- # and one of the two multiplications the performance should be between
 
- # 1.91 and 2.16. As already mentioned, this implementation processes
 
- # one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart
 
- # - in 2.02. x86_64 performance is better, because larger register
 
- # bank allows to interleave reduction and multiplication better.
 
- #
 
- # Does it make sense to increase Naggr? To start with it's virtually
 
- # impossible in 32-bit mode, because of limited register bank
 
- # capacity. Otherwise improvement has to be weighed against slower
 
- # setup, as well as code size and complexity increase. As even
 
- # optimistic estimate doesn't promise 30% performance improvement,
 
- # there are currently no plans to increase Naggr.
 
- #
 
- # Special thanks to David Woodhouse for providing access to a
 
- # Westmere-based system on behalf of Intel Open Source Technology Centre.
 
- # January 2010
 
- #
 
- # Tweaked to optimize transitions between integer and FP operations
 
- # on same XMM register, PCLMULQDQ subroutine was measured to process
 
- # one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere.
 
- # The minor regression on Westmere is outweighed by ~15% improvement
 
- # on Sandy Bridge. Strangely enough attempt to modify 64-bit code in
 
- # similar manner resulted in almost 20% degradation on Sandy Bridge,
 
- # where original 64-bit code processes one byte in 1.95 cycles.
 
- #####################################################################
 
- # For reference, AMD Bulldozer processes one byte in 1.98 cycles in
 
- # 32-bit mode and 1.89 in 64-bit.
 
- # February 2013
 
- #
 
- # Overhaul: aggregate Karatsuba post-processing, improve ILP in
 
- # reduction_alg9. Resulting performance is 1.96 cycles per byte on
 
- # Westmere, 1.95 - on Sandy/Ivy Bridge, 1.76 - on Bulldozer.
 
- $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
 
- push(@INC,"${dir}","${dir}../../perlasm");
 
- require "x86asm.pl";
 
- $output=pop and open STDOUT,">$output";
 
- &asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
 
- $sse2=0;
 
- for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
 
- ($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx");
 
- $inp  = "edi";
 
- $Htbl = "esi";
 
- $unroll = 0;	# Affects x86 loop. Folded loop performs ~7% worse
 
- 		# than unrolled, which has to be weighted against
 
- 		# 2.5x x86-specific code size reduction.
 
- sub x86_loop {
 
-     my $off = shift;
 
-     my $rem = "eax";
 
- 	&mov	($Zhh,&DWP(4,$Htbl,$Zll));
 
- 	&mov	($Zhl,&DWP(0,$Htbl,$Zll));
 
- 	&mov	($Zlh,&DWP(12,$Htbl,$Zll));
 
- 	&mov	($Zll,&DWP(8,$Htbl,$Zll));
 
- 	&xor	($rem,$rem);	# avoid partial register stalls on PIII
 
- 	# shrd practically kills P4, 2.5x deterioration, but P4 has
 
- 	# MMX code-path to execute. shrd runs tad faster [than twice
 
- 	# the shifts, move's and or's] on pre-MMX Pentium (as well as
 
- 	# PIII and Core2), *but* minimizes code size, spares register
 
- 	# and thus allows to fold the loop...
 
- 	if (!$unroll) {
 
- 	my $cnt = $inp;
 
- 	&mov	($cnt,15);
 
- 	&jmp	(&label("x86_loop"));
 
- 	&set_label("x86_loop",16);
 
- 	    for($i=1;$i<=2;$i++) {
 
- 		&mov	(&LB($rem),&LB($Zll));
 
- 		&shrd	($Zll,$Zlh,4);
 
- 		&and	(&LB($rem),0xf);
 
- 		&shrd	($Zlh,$Zhl,4);
 
- 		&shrd	($Zhl,$Zhh,4);
 
- 		&shr	($Zhh,4);
 
- 		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));
 
- 		&mov	(&LB($rem),&BP($off,"esp",$cnt));
 
- 		if ($i&1) {
 
- 			&and	(&LB($rem),0xf0);
 
- 		} else {
 
- 			&shl	(&LB($rem),4);
 
- 		}
 
- 		&xor	($Zll,&DWP(8,$Htbl,$rem));
 
- 		&xor	($Zlh,&DWP(12,$Htbl,$rem));
 
- 		&xor	($Zhl,&DWP(0,$Htbl,$rem));
 
- 		&xor	($Zhh,&DWP(4,$Htbl,$rem));
 
- 		if ($i&1) {
 
- 			&dec	($cnt);
 
- 			&js	(&label("x86_break"));
 
- 		} else {
 
- 			&jmp	(&label("x86_loop"));
 
- 		}
 
- 	    }
 
- 	&set_label("x86_break",16);
 
- 	} else {
 
- 	    for($i=1;$i<32;$i++) {
 
- 		&comment($i);
 
- 		&mov	(&LB($rem),&LB($Zll));
 
- 		&shrd	($Zll,$Zlh,4);
 
- 		&and	(&LB($rem),0xf);
 
- 		&shrd	($Zlh,$Zhl,4);
 
- 		&shrd	($Zhl,$Zhh,4);
 
- 		&shr	($Zhh,4);
 
- 		&xor	($Zhh,&DWP($off+16,"esp",$rem,4));
 
- 		if ($i&1) {
 
- 			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
 
- 			&and	(&LB($rem),0xf0);
 
- 		} else {
 
- 			&mov	(&LB($rem),&BP($off+15-($i>>1),"esp"));
 
- 			&shl	(&LB($rem),4);
 
- 		}
 
- 		&xor	($Zll,&DWP(8,$Htbl,$rem));
 
- 		&xor	($Zlh,&DWP(12,$Htbl,$rem));
 
- 		&xor	($Zhl,&DWP(0,$Htbl,$rem));
 
- 		&xor	($Zhh,&DWP(4,$Htbl,$rem));
 
- 	    }
 
- 	}
 
- 	&bswap	($Zll);
 
- 	&bswap	($Zlh);
 
- 	&bswap	($Zhl);
 
- 	if (!$x86only) {
 
- 		&bswap	($Zhh);
 
- 	} else {
 
- 		&mov	("eax",$Zhh);
 
- 		&bswap	("eax");
 
- 		&mov	($Zhh,"eax");
 
- 	}
 
- }
 
- if ($unroll) {
 
-     &function_begin_B("_x86_gmult_4bit_inner");
 
- 	&x86_loop(4);
 
- 	&ret	();
 
-     &function_end_B("_x86_gmult_4bit_inner");
 
- }
 
- sub deposit_rem_4bit {
 
-     my $bias = shift;
 
- 	&mov	(&DWP($bias+0, "esp"),0x0000<<16);
 
- 	&mov	(&DWP($bias+4, "esp"),0x1C20<<16);
 
- 	&mov	(&DWP($bias+8, "esp"),0x3840<<16);
 
- 	&mov	(&DWP($bias+12,"esp"),0x2460<<16);
 
- 	&mov	(&DWP($bias+16,"esp"),0x7080<<16);
 
- 	&mov	(&DWP($bias+20,"esp"),0x6CA0<<16);
 
- 	&mov	(&DWP($bias+24,"esp"),0x48C0<<16);
 
- 	&mov	(&DWP($bias+28,"esp"),0x54E0<<16);
 
- 	&mov	(&DWP($bias+32,"esp"),0xE100<<16);
 
- 	&mov	(&DWP($bias+36,"esp"),0xFD20<<16);
 
- 	&mov	(&DWP($bias+40,"esp"),0xD940<<16);
 
- 	&mov	(&DWP($bias+44,"esp"),0xC560<<16);
 
- 	&mov	(&DWP($bias+48,"esp"),0x9180<<16);
 
- 	&mov	(&DWP($bias+52,"esp"),0x8DA0<<16);
 
- 	&mov	(&DWP($bias+56,"esp"),0xA9C0<<16);
 
- 	&mov	(&DWP($bias+60,"esp"),0xB5E0<<16);
 
- }
 
- $suffix = $x86only ? "" : "_x86";
 
- &function_begin("gcm_gmult_4bit".$suffix);
 
- 	&stack_push(16+4+1);			# +1 for stack alignment
 
- 	&mov	($inp,&wparam(0));		# load Xi
 
- 	&mov	($Htbl,&wparam(1));		# load Htable
 
- 	&mov	($Zhh,&DWP(0,$inp));		# load Xi[16]
 
- 	&mov	($Zhl,&DWP(4,$inp));
 
- 	&mov	($Zlh,&DWP(8,$inp));
 
- 	&mov	($Zll,&DWP(12,$inp));
 
- 	&deposit_rem_4bit(16);
 
- 	&mov	(&DWP(0,"esp"),$Zhh);		# copy Xi[16] on stack
 
- 	&mov	(&DWP(4,"esp"),$Zhl);
 
- 	&mov	(&DWP(8,"esp"),$Zlh);
 
- 	&mov	(&DWP(12,"esp"),$Zll);
 
- 	&shr	($Zll,20);
 
- 	&and	($Zll,0xf0);
 
- 	if ($unroll) {
 
- 		&call	("_x86_gmult_4bit_inner");
 
- 	} else {
 
- 		&x86_loop(0);
 
- 		&mov	($inp,&wparam(0));
 
- 	}
 
- 	&mov	(&DWP(12,$inp),$Zll);
 
- 	&mov	(&DWP(8,$inp),$Zlh);
 
- 	&mov	(&DWP(4,$inp),$Zhl);
 
- 	&mov	(&DWP(0,$inp),$Zhh);
 
- 	&stack_pop(16+4+1);
 
- &function_end("gcm_gmult_4bit".$suffix);
 
- &function_begin("gcm_ghash_4bit".$suffix);
 
- 	&stack_push(16+4+1);			# +1 for 64-bit alignment
 
- 	&mov	($Zll,&wparam(0));		# load Xi
 
- 	&mov	($Htbl,&wparam(1));		# load Htable
 
- 	&mov	($inp,&wparam(2));		# load in
 
- 	&mov	("ecx",&wparam(3));		# load len
 
- 	&add	("ecx",$inp);
 
- 	&mov	(&wparam(3),"ecx");
 
- 	&mov	($Zhh,&DWP(0,$Zll));		# load Xi[16]
 
- 	&mov	($Zhl,&DWP(4,$Zll));
 
- 	&mov	($Zlh,&DWP(8,$Zll));
 
- 	&mov	($Zll,&DWP(12,$Zll));
 
- 	&deposit_rem_4bit(16);
 
-     &set_label("x86_outer_loop",16);
 
- 	&xor	($Zll,&DWP(12,$inp));		# xor with input
 
- 	&xor	($Zlh,&DWP(8,$inp));
 
- 	&xor	($Zhl,&DWP(4,$inp));
 
- 	&xor	($Zhh,&DWP(0,$inp));
 
- 	&mov	(&DWP(12,"esp"),$Zll);		# dump it on stack
 
- 	&mov	(&DWP(8,"esp"),$Zlh);
 
- 	&mov	(&DWP(4,"esp"),$Zhl);
 
- 	&mov	(&DWP(0,"esp"),$Zhh);
 
- 	&shr	($Zll,20);
 
- 	&and	($Zll,0xf0);
 
- 	if ($unroll) {
 
- 		&call	("_x86_gmult_4bit_inner");
 
- 	} else {
 
- 		&x86_loop(0);
 
- 		&mov	($inp,&wparam(2));
 
- 	}
 
- 	&lea	($inp,&DWP(16,$inp));
 
- 	&cmp	($inp,&wparam(3));
 
- 	&mov	(&wparam(2),$inp)	if (!$unroll);
 
- 	&jb	(&label("x86_outer_loop"));
 
- 	&mov	($inp,&wparam(0));	# load Xi
 
- 	&mov	(&DWP(12,$inp),$Zll);
 
- 	&mov	(&DWP(8,$inp),$Zlh);
 
- 	&mov	(&DWP(4,$inp),$Zhl);
 
- 	&mov	(&DWP(0,$inp),$Zhh);
 
- 	&stack_pop(16+4+1);
 
- &function_end("gcm_ghash_4bit".$suffix);
 
- if (!$x86only) {{{
 
- &static_label("rem_4bit");
 
- if (!$sse2) {{	# pure-MMX "May" version...
 
- $S=12;		# shift factor for rem_4bit
 
- &function_begin_B("_mmx_gmult_4bit_inner");
 
- # MMX version performs 3.5 times better on P4 (see comment in non-MMX
 
- # routine for further details), 100% better on Opteron, ~70% better
 
- # on Core2 and PIII... In other words effort is considered to be well
 
- # spent... Since initial release the loop was unrolled in order to
 
- # "liberate" register previously used as loop counter. Instead it's
 
- # used to optimize critical path in 'Z.hi ^= rem_4bit[Z.lo&0xf]'.
 
- # The path involves move of Z.lo from MMX to integer register,
 
- # effective address calculation and finally merge of value to Z.hi.
 
- # Reference to rem_4bit is scheduled so late that I had to >>4
 
- # rem_4bit elements. This resulted in 20-45% procent improvement
 
- # on contemporary µ-archs.
 
- {
 
-     my $cnt;
 
-     my $rem_4bit = "eax";
 
-     my @rem = ($Zhh,$Zll);
 
-     my $nhi = $Zhl;
 
-     my $nlo = $Zlh;
 
-     my ($Zlo,$Zhi) = ("mm0","mm1");
 
-     my $tmp = "mm2";
 
- 	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
 
- 	&mov	($nhi,$Zll);
 
- 	&mov	(&LB($nlo),&LB($nhi));
 
- 	&shl	(&LB($nlo),4);
 
- 	&and	($nhi,0xf0);
 
- 	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
 
- 	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
 
- 	&movd	($rem[0],$Zlo);
 
- 	for ($cnt=28;$cnt>=-2;$cnt--) {
 
- 	    my $odd = $cnt&1;
 
- 	    my $nix = $odd ? $nlo : $nhi;
 
- 		&shl	(&LB($nlo),4)			if ($odd);
 
- 		&psrlq	($Zlo,4);
 
- 		&movq	($tmp,$Zhi);
 
- 		&psrlq	($Zhi,4);
 
- 		&pxor	($Zlo,&QWP(8,$Htbl,$nix));
 
- 		&mov	(&LB($nlo),&BP($cnt/2,$inp))	if (!$odd && $cnt>=0);
 
- 		&psllq	($tmp,60);
 
- 		&and	($nhi,0xf0)			if ($odd);
 
- 		&pxor	($Zhi,&QWP(0,$rem_4bit,$rem[1],8)) if ($cnt<28);
 
- 		&and	($rem[0],0xf);
 
- 		&pxor	($Zhi,&QWP(0,$Htbl,$nix));
 
- 		&mov	($nhi,$nlo)			if (!$odd && $cnt>=0);
 
- 		&movd	($rem[1],$Zlo);
 
- 		&pxor	($Zlo,$tmp);
 
- 		push	(@rem,shift(@rem));		# "rotate" registers
 
- 	}
 
- 	&mov	($inp,&DWP(4,$rem_4bit,$rem[1],8));	# last rem_4bit[rem]
 
- 	&psrlq	($Zlo,32);	# lower part of Zlo is already there
 
- 	&movd	($Zhl,$Zhi);
 
- 	&psrlq	($Zhi,32);
 
- 	&movd	($Zlh,$Zlo);
 
- 	&movd	($Zhh,$Zhi);
 
- 	&shl	($inp,4);	# compensate for rem_4bit[i] being >>4
 
- 	&bswap	($Zll);
 
- 	&bswap	($Zhl);
 
- 	&bswap	($Zlh);
 
- 	&xor	($Zhh,$inp);
 
- 	&bswap	($Zhh);
 
- 	&ret	();
 
- }
 
- &function_end_B("_mmx_gmult_4bit_inner");
 
- &function_begin("gcm_gmult_4bit_mmx");
 
- 	&mov	($inp,&wparam(0));	# load Xi
 
- 	&mov	($Htbl,&wparam(1));	# load Htable
 
- 	&call	(&label("pic_point"));
 
- 	&set_label("pic_point");
 
- 	&blindpop("eax");
 
- 	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
 
- 	&movz	($Zll,&BP(15,$inp));
 
- 	&call	("_mmx_gmult_4bit_inner");
 
- 	&mov	($inp,&wparam(0));	# load Xi
 
- 	&emms	();
 
- 	&mov	(&DWP(12,$inp),$Zll);
 
- 	&mov	(&DWP(4,$inp),$Zhl);
 
- 	&mov	(&DWP(8,$inp),$Zlh);
 
- 	&mov	(&DWP(0,$inp),$Zhh);
 
- &function_end("gcm_gmult_4bit_mmx");
 
- # Streamed version performs 20% better on P4, 7% on Opteron,
 
- # 10% on Core2 and PIII...
 
- &function_begin("gcm_ghash_4bit_mmx");
 
- 	&mov	($Zhh,&wparam(0));	# load Xi
 
- 	&mov	($Htbl,&wparam(1));	# load Htable
 
- 	&mov	($inp,&wparam(2));	# load in
 
- 	&mov	($Zlh,&wparam(3));	# load len
 
- 	&call	(&label("pic_point"));
 
- 	&set_label("pic_point");
 
- 	&blindpop("eax");
 
- 	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
 
- 	&add	($Zlh,$inp);
 
- 	&mov	(&wparam(3),$Zlh);	# len to point at the end of input
 
- 	&stack_push(4+1);		# +1 for stack alignment
 
- 	&mov	($Zll,&DWP(12,$Zhh));	# load Xi[16]
 
- 	&mov	($Zhl,&DWP(4,$Zhh));
 
- 	&mov	($Zlh,&DWP(8,$Zhh));
 
- 	&mov	($Zhh,&DWP(0,$Zhh));
 
- 	&jmp	(&label("mmx_outer_loop"));
 
-     &set_label("mmx_outer_loop",16);
 
- 	&xor	($Zll,&DWP(12,$inp));
 
- 	&xor	($Zhl,&DWP(4,$inp));
 
- 	&xor	($Zlh,&DWP(8,$inp));
 
- 	&xor	($Zhh,&DWP(0,$inp));
 
- 	&mov	(&wparam(2),$inp);
 
- 	&mov	(&DWP(12,"esp"),$Zll);
 
- 	&mov	(&DWP(4,"esp"),$Zhl);
 
- 	&mov	(&DWP(8,"esp"),$Zlh);
 
- 	&mov	(&DWP(0,"esp"),$Zhh);
 
- 	&mov	($inp,"esp");
 
- 	&shr	($Zll,24);
 
- 	&call	("_mmx_gmult_4bit_inner");
 
- 	&mov	($inp,&wparam(2));
 
- 	&lea	($inp,&DWP(16,$inp));
 
- 	&cmp	($inp,&wparam(3));
 
- 	&jb	(&label("mmx_outer_loop"));
 
- 	&mov	($inp,&wparam(0));	# load Xi
 
- 	&emms	();
 
- 	&mov	(&DWP(12,$inp),$Zll);
 
- 	&mov	(&DWP(4,$inp),$Zhl);
 
- 	&mov	(&DWP(8,$inp),$Zlh);
 
- 	&mov	(&DWP(0,$inp),$Zhh);
 
- 	&stack_pop(4+1);
 
- &function_end("gcm_ghash_4bit_mmx");
 
- }} else {{	# "June" MMX version...
 
- 		# ... has slower "April" gcm_gmult_4bit_mmx with folded
 
- 		# loop. This is done to conserve code size...
 
- $S=16;		# shift factor for rem_4bit
 
- sub mmx_loop() {
 
- # MMX version performs 2.8 times better on P4 (see comment in non-MMX
 
- # routine for further details), 40% better on Opteron and Core2, 50%
 
- # better on PIII... In other words effort is considered to be well
 
- # spent...
 
-     my $inp = shift;
 
-     my $rem_4bit = shift;
 
-     my $cnt = $Zhh;
 
-     my $nhi = $Zhl;
 
-     my $nlo = $Zlh;
 
-     my $rem = $Zll;
 
-     my ($Zlo,$Zhi) = ("mm0","mm1");
 
-     my $tmp = "mm2";
 
- 	&xor	($nlo,$nlo);	# avoid partial register stalls on PIII
 
- 	&mov	($nhi,$Zll);
 
- 	&mov	(&LB($nlo),&LB($nhi));
 
- 	&mov	($cnt,14);
 
- 	&shl	(&LB($nlo),4);
 
- 	&and	($nhi,0xf0);
 
- 	&movq	($Zlo,&QWP(8,$Htbl,$nlo));
 
- 	&movq	($Zhi,&QWP(0,$Htbl,$nlo));
 
- 	&movd	($rem,$Zlo);
 
- 	&jmp	(&label("mmx_loop"));
 
-     &set_label("mmx_loop",16);
 
- 	&psrlq	($Zlo,4);
 
- 	&and	($rem,0xf);
 
- 	&movq	($tmp,$Zhi);
 
- 	&psrlq	($Zhi,4);
 
- 	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
 
- 	&mov	(&LB($nlo),&BP(0,$inp,$cnt));
 
- 	&psllq	($tmp,60);
 
- 	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
 
- 	&dec	($cnt);
 
- 	&movd	($rem,$Zlo);
 
- 	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
 
- 	&mov	($nhi,$nlo);
 
- 	&pxor	($Zlo,$tmp);
 
- 	&js	(&label("mmx_break"));
 
- 	&shl	(&LB($nlo),4);
 
- 	&and	($rem,0xf);
 
- 	&psrlq	($Zlo,4);
 
- 	&and	($nhi,0xf0);
 
- 	&movq	($tmp,$Zhi);
 
- 	&psrlq	($Zhi,4);
 
- 	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
 
- 	&psllq	($tmp,60);
 
- 	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
 
- 	&movd	($rem,$Zlo);
 
- 	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
 
- 	&pxor	($Zlo,$tmp);
 
- 	&jmp	(&label("mmx_loop"));
 
-     &set_label("mmx_break",16);
 
- 	&shl	(&LB($nlo),4);
 
- 	&and	($rem,0xf);
 
- 	&psrlq	($Zlo,4);
 
- 	&and	($nhi,0xf0);
 
- 	&movq	($tmp,$Zhi);
 
- 	&psrlq	($Zhi,4);
 
- 	&pxor	($Zlo,&QWP(8,$Htbl,$nlo));
 
- 	&psllq	($tmp,60);
 
- 	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
 
- 	&movd	($rem,$Zlo);
 
- 	&pxor	($Zhi,&QWP(0,$Htbl,$nlo));
 
- 	&pxor	($Zlo,$tmp);
 
- 	&psrlq	($Zlo,4);
 
- 	&and	($rem,0xf);
 
- 	&movq	($tmp,$Zhi);
 
- 	&psrlq	($Zhi,4);
 
- 	&pxor	($Zlo,&QWP(8,$Htbl,$nhi));
 
- 	&psllq	($tmp,60);
 
- 	&pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8));
 
- 	&movd	($rem,$Zlo);
 
- 	&pxor	($Zhi,&QWP(0,$Htbl,$nhi));
 
- 	&pxor	($Zlo,$tmp);
 
- 	&psrlq	($Zlo,32);	# lower part of Zlo is already there
 
- 	&movd	($Zhl,$Zhi);
 
- 	&psrlq	($Zhi,32);
 
- 	&movd	($Zlh,$Zlo);
 
- 	&movd	($Zhh,$Zhi);
 
- 	&bswap	($Zll);
 
- 	&bswap	($Zhl);
 
- 	&bswap	($Zlh);
 
- 	&bswap	($Zhh);
 
- }
 
- &function_begin("gcm_gmult_4bit_mmx");
 
- 	&mov	($inp,&wparam(0));	# load Xi
 
- 	&mov	($Htbl,&wparam(1));	# load Htable
 
- 	&call	(&label("pic_point"));
 
- 	&set_label("pic_point");
 
- 	&blindpop("eax");
 
- 	&lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax"));
 
- 	&movz	($Zll,&BP(15,$inp));
 
- 	&mmx_loop($inp,"eax");
 
- 	&emms	();
 
- 	&mov	(&DWP(12,$inp),$Zll);
 
- 	&mov	(&DWP(4,$inp),$Zhl);
 
- 	&mov	(&DWP(8,$inp),$Zlh);
 
- 	&mov	(&DWP(0,$inp),$Zhh);
 
- &function_end("gcm_gmult_4bit_mmx");
 
- ######################################################################
 
- # Below subroutine is "528B" variant of "4-bit" GCM GHASH function
 
- # (see gcm128.c for details). It provides further 20-40% performance
 
- # improvement over above mentioned "May" version.
 
- &static_label("rem_8bit");
 
- &function_begin("gcm_ghash_4bit_mmx");
 
- { my ($Zlo,$Zhi) = ("mm7","mm6");
 
-   my $rem_8bit = "esi";
 
-   my $Htbl = "ebx";
 
-     # parameter block
 
-     &mov	("eax",&wparam(0));		# Xi
 
-     &mov	("ebx",&wparam(1));		# Htable
 
-     &mov	("ecx",&wparam(2));		# inp
 
-     &mov	("edx",&wparam(3));		# len
 
-     &mov	("ebp","esp");			# original %esp
 
-     &call	(&label("pic_point"));
 
-     &set_label	("pic_point");
 
-     &blindpop	($rem_8bit);
 
-     &lea	($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit));
 
-     &sub	("esp",512+16+16);		# allocate stack frame...
 
-     &and	("esp",-64);			# ...and align it
 
-     &sub	("esp",16);			# place for (u8)(H[]<<4)
 
-     &add	("edx","ecx");			# pointer to the end of input
 
-     &mov	(&DWP(528+16+0,"esp"),"eax");	# save Xi
 
-     &mov	(&DWP(528+16+8,"esp"),"edx");	# save inp+len
 
-     &mov	(&DWP(528+16+12,"esp"),"ebp");	# save original %esp
 
-     { my @lo  = ("mm0","mm1","mm2");
 
-       my @hi  = ("mm3","mm4","mm5");
 
-       my @tmp = ("mm6","mm7");
 
-       my ($off1,$off2,$i) = (0,0,);
 
-       &add	($Htbl,128);			# optimize for size
 
-       &lea	("edi",&DWP(16+128,"esp"));
 
-       &lea	("ebp",&DWP(16+256+128,"esp"));
 
-       # decompose Htable (low and high parts are kept separately),
 
-       # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack...
 
-       for ($i=0;$i<18;$i++) {
 
- 	&mov	("edx",&DWP(16*$i+8-128,$Htbl))		if ($i<16);
 
- 	&movq	($lo[0],&QWP(16*$i+8-128,$Htbl))	if ($i<16);
 
- 	&psllq	($tmp[1],60)				if ($i>1);
 
- 	&movq	($hi[0],&QWP(16*$i+0-128,$Htbl))	if ($i<16);
 
- 	&por	($lo[2],$tmp[1])			if ($i>1);
 
- 	&movq	(&QWP($off1-128,"edi"),$lo[1])		if ($i>0 && $i<17);
 
- 	&psrlq	($lo[1],4)				if ($i>0 && $i<17);
 
- 	&movq	(&QWP($off1,"edi"),$hi[1])		if ($i>0 && $i<17);
 
- 	&movq	($tmp[0],$hi[1])			if ($i>0 && $i<17);
 
- 	&movq	(&QWP($off2-128,"ebp"),$lo[2])		if ($i>1);
 
- 	&psrlq	($hi[1],4)				if ($i>0 && $i<17);
 
- 	&movq	(&QWP($off2,"ebp"),$hi[2])		if ($i>1);
 
- 	&shl	("edx",4)				if ($i<16);
 
- 	&mov	(&BP($i,"esp"),&LB("edx"))		if ($i<16);
 
- 	unshift	(@lo,pop(@lo));			# "rotate" registers
 
- 	unshift	(@hi,pop(@hi));
 
- 	unshift	(@tmp,pop(@tmp));
 
- 	$off1 += 8	if ($i>0);
 
- 	$off2 += 8	if ($i>1);
 
-       }
 
-     }
 
-     &movq	($Zhi,&QWP(0,"eax"));
 
-     &mov	("ebx",&DWP(8,"eax"));
 
-     &mov	("edx",&DWP(12,"eax"));		# load Xi
 
- &set_label("outer",16);
 
-   { my $nlo = "eax";
 
-     my $dat = "edx";
 
-     my @nhi = ("edi","ebp");
 
-     my @rem = ("ebx","ecx");
 
-     my @red = ("mm0","mm1","mm2");
 
-     my $tmp = "mm3";
 
-     &xor	($dat,&DWP(12,"ecx"));		# merge input data
 
-     &xor	("ebx",&DWP(8,"ecx"));
 
-     &pxor	($Zhi,&QWP(0,"ecx"));
 
-     &lea	("ecx",&DWP(16,"ecx"));		# inp+=16
 
-     #&mov	(&DWP(528+12,"esp"),$dat);	# save inp^Xi
 
-     &mov	(&DWP(528+8,"esp"),"ebx");
 
-     &movq	(&QWP(528+0,"esp"),$Zhi);
 
-     &mov	(&DWP(528+16+4,"esp"),"ecx");	# save inp
 
-     &xor	($nlo,$nlo);
 
-     &rol	($dat,8);
 
-     &mov	(&LB($nlo),&LB($dat));
 
-     &mov	($nhi[1],$nlo);
 
-     &and	(&LB($nlo),0x0f);
 
-     &shr	($nhi[1],4);
 
-     &pxor	($red[0],$red[0]);
 
-     &rol	($dat,8);			# next byte
 
-     &pxor	($red[1],$red[1]);
 
-     &pxor	($red[2],$red[2]);
 
-     # Just like in "May" version modulo-schedule for critical path in
 
-     # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor'
 
-     # is scheduled so late that rem_8bit[] has to be shifted *right*
 
-     # by 16, which is why last argument to pinsrw is 2, which
 
-     # corresponds to <<32=<<48>>16...
 
-     for ($j=11,$i=0;$i<15;$i++) {
 
-       if ($i>0) {
 
- 	&pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
 
- 	&rol	($dat,8);				# next byte
 
- 	&pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));
 
- 	&pxor	($Zlo,$tmp);
 
- 	&pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
 
- 	&xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)
 
-       } else {
 
- 	&movq	($Zlo,&QWP(16,"esp",$nlo,8));
 
- 	&movq	($Zhi,&QWP(16+128,"esp",$nlo,8));
 
-       }
 
- 	&mov	(&LB($nlo),&LB($dat));
 
- 	&mov	($dat,&DWP(528+$j,"esp"))		if (--$j%4==0);
 
- 	&movd	($rem[0],$Zlo);
 
- 	&movz	($rem[1],&LB($rem[1]))			if ($i>0);
 
- 	&psrlq	($Zlo,8);				# Z>>=8
 
- 	&movq	($tmp,$Zhi);
 
- 	&mov	($nhi[0],$nlo);
 
- 	&psrlq	($Zhi,8);
 
- 	&pxor	($Zlo,&QWP(16+256+0,"esp",$nhi[1],8));	# Z^=H[nhi]>>4
 
- 	&and	(&LB($nlo),0x0f);
 
- 	&psllq	($tmp,56);
 
- 	&pxor	($Zhi,$red[1])				if ($i>1);
 
- 	&shr	($nhi[0],4);
 
- 	&pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2)	if ($i>0);
 
- 	unshift	(@red,pop(@red));			# "rotate" registers
 
- 	unshift	(@rem,pop(@rem));
 
- 	unshift	(@nhi,pop(@nhi));
 
-     }
 
-     &pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo]
 
-     &pxor	($Zhi,&QWP(16+128,"esp",$nlo,8));
 
-     &xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4)
 
-     &pxor	($Zlo,$tmp);
 
-     &pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8));
 
-     &movz	($rem[1],&LB($rem[1]));
 
-     &pxor	($red[2],$red[2]);			# clear 2nd word
 
-     &psllq	($red[1],4);
 
-     &movd	($rem[0],$Zlo);
 
-     &psrlq	($Zlo,4);				# Z>>=4
 
-     &movq	($tmp,$Zhi);
 
-     &psrlq	($Zhi,4);
 
-     &shl	($rem[0],4);				# rem<<4
 
-     &pxor	($Zlo,&QWP(16,"esp",$nhi[1],8));	# Z^=H[nhi]
 
-     &psllq	($tmp,60);
 
-     &movz	($rem[0],&LB($rem[0]));
 
-     &pxor	($Zlo,$tmp);
 
-     &pxor	($Zhi,&QWP(16+128,"esp",$nhi[1],8));
 
-     &pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2);
 
-     &pxor	($Zhi,$red[1]);
 
-     &movd	($dat,$Zlo);
 
-     &pinsrw	($red[2],&WP(0,$rem_8bit,$rem[0],2),3);	# last is <<48
 
-     &psllq	($red[0],12);				# correct by <<16>>4
 
-     &pxor	($Zhi,$red[0]);
 
-     &psrlq	($Zlo,32);
 
-     &pxor	($Zhi,$red[2]);
 
-     &mov	("ecx",&DWP(528+16+4,"esp"));	# restore inp
 
-     &movd	("ebx",$Zlo);
 
-     &movq	($tmp,$Zhi);			# 01234567
 
-     &psllw	($Zhi,8);			# 1.3.5.7.
 
-     &psrlw	($tmp,8);			# .0.2.4.6
 
-     &por	($Zhi,$tmp);			# 10325476
 
-     &bswap	($dat);
 
-     &pshufw	($Zhi,$Zhi,0b00011011);		# 76543210
 
-     &bswap	("ebx");
 
-     &cmp	("ecx",&DWP(528+16+8,"esp"));	# are we done?
 
-     &jne	(&label("outer"));
 
-   }
 
-     &mov	("eax",&DWP(528+16+0,"esp"));	# restore Xi
 
-     &mov	(&DWP(12,"eax"),"edx");
 
-     &mov	(&DWP(8,"eax"),"ebx");
 
-     &movq	(&QWP(0,"eax"),$Zhi);
 
-     &mov	("esp",&DWP(528+16+12,"esp"));	# restore original %esp
 
-     &emms	();
 
- }
 
- &function_end("gcm_ghash_4bit_mmx");
 
- }}
 
- if ($sse2) {{
 
- ######################################################################
 
- # PCLMULQDQ version.
 
- $Xip="eax";
 
- $Htbl="edx";
 
- $const="ecx";
 
- $inp="esi";
 
- $len="ebx";
 
- ($Xi,$Xhi)=("xmm0","xmm1");	$Hkey="xmm2";
 
- ($T1,$T2,$T3)=("xmm3","xmm4","xmm5");
 
- ($Xn,$Xhn)=("xmm6","xmm7");
 
- &static_label("bswap");
 
- sub clmul64x64_T2 {	# minimal "register" pressure
 
- my ($Xhi,$Xi,$Hkey,$HK)=@_;
 
- 	&movdqa		($Xhi,$Xi);		#
 
- 	&pshufd		($T1,$Xi,0b01001110);
 
- 	&pshufd		($T2,$Hkey,0b01001110)	if (!defined($HK));
 
- 	&pxor		($T1,$Xi);		#
 
- 	&pxor		($T2,$Hkey)		if (!defined($HK));
 
- 			$HK=$T2			if (!defined($HK));
 
- 	&pclmulqdq	($Xi,$Hkey,0x00);	#######
 
- 	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
 
- 	&pclmulqdq	($T1,$HK,0x00);		#######
 
- 	&xorps		($T1,$Xi);		#
 
- 	&xorps		($T1,$Xhi);		#
 
- 	&movdqa		($T2,$T1);		#
 
- 	&psrldq		($T1,8);
 
- 	&pslldq		($T2,8);		#
 
- 	&pxor		($Xhi,$T1);
 
- 	&pxor		($Xi,$T2);		#
 
- }
 
- sub clmul64x64_T3 {
 
- # Even though this subroutine offers visually better ILP, it
 
- # was empirically found to be a tad slower than above version.
 
- # At least in gcm_ghash_clmul context. But it's just as well,
 
- # because loop modulo-scheduling is possible only thanks to
 
- # minimized "register" pressure...
 
- my ($Xhi,$Xi,$Hkey)=@_;
 
- 	&movdqa		($T1,$Xi);		#
 
- 	&movdqa		($Xhi,$Xi);
 
- 	&pclmulqdq	($Xi,$Hkey,0x00);	#######
 
- 	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
 
- 	&pshufd		($T2,$T1,0b01001110);	#
 
- 	&pshufd		($T3,$Hkey,0b01001110);
 
- 	&pxor		($T2,$T1);		#
 
- 	&pxor		($T3,$Hkey);
 
- 	&pclmulqdq	($T2,$T3,0x00);		#######
 
- 	&pxor		($T2,$Xi);		#
 
- 	&pxor		($T2,$Xhi);		#
 
- 	&movdqa		($T3,$T2);		#
 
- 	&psrldq		($T2,8);
 
- 	&pslldq		($T3,8);		#
 
- 	&pxor		($Xhi,$T2);
 
- 	&pxor		($Xi,$T3);		#
 
- }
 
- if (1) {		# Algorithm 9 with <<1 twist.
 
- 			# Reduction is shorter and uses only two
 
- 			# temporary registers, which makes it better
 
- 			# candidate for interleaving with 64x64
 
- 			# multiplication. Pre-modulo-scheduled loop
 
- 			# was found to be ~20% faster than Algorithm 5
 
- 			# below. Algorithm 9 was therefore chosen for
 
- 			# further optimization...
 
- sub reduction_alg9 {	# 17/11 times faster than Intel version
 
- my ($Xhi,$Xi) = @_;
 
- 	# 1st phase
 
- 	&movdqa		($T2,$Xi);		#
 
- 	&movdqa		($T1,$Xi);
 
- 	&psllq		($Xi,5);
 
- 	&pxor		($T1,$Xi);		#
 
- 	&psllq		($Xi,1);
 
- 	&pxor		($Xi,$T1);		#
 
- 	&psllq		($Xi,57);		#
 
- 	&movdqa		($T1,$Xi);		#
 
- 	&pslldq		($Xi,8);
 
- 	&psrldq		($T1,8);		#
 
- 	&pxor		($Xi,$T2);
 
- 	&pxor		($Xhi,$T1);		#
 
- 	# 2nd phase
 
- 	&movdqa		($T2,$Xi);
 
- 	&psrlq		($Xi,1);
 
- 	&pxor		($Xhi,$T2);		#
 
- 	&pxor		($T2,$Xi);
 
- 	&psrlq		($Xi,5);
 
- 	&pxor		($Xi,$T2);		#
 
- 	&psrlq		($Xi,1);		#
 
- 	&pxor		($Xi,$Xhi)		#
 
- }
 
- &function_begin_B("gcm_init_clmul");
 
- 	&mov		($Htbl,&wparam(0));
 
- 	&mov		($Xip,&wparam(1));
 
- 	&call		(&label("pic"));
 
- &set_label("pic");
 
- 	&blindpop	($const);
 
- 	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
 
- 	&movdqu		($Hkey,&QWP(0,$Xip));
 
- 	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap
 
- 	# <<1 twist
 
- 	&pshufd		($T2,$Hkey,0b11111111);	# broadcast uppermost dword
 
- 	&movdqa		($T1,$Hkey);
 
- 	&psllq		($Hkey,1);
 
- 	&pxor		($T3,$T3);		#
 
- 	&psrlq		($T1,63);
 
- 	&pcmpgtd	($T3,$T2);		# broadcast carry bit
 
- 	&pslldq		($T1,8);
 
- 	&por		($Hkey,$T1);		# H<<=1
 
- 	# magic reduction
 
- 	&pand		($T3,&QWP(16,$const));	# 0x1c2_polynomial
 
- 	&pxor		($Hkey,$T3);		# if(carry) H^=0x1c2_polynomial
 
- 	# calculate H^2
 
- 	&movdqa		($Xi,$Hkey);
 
- 	&clmul64x64_T2	($Xhi,$Xi,$Hkey);
 
- 	&reduction_alg9	($Xhi,$Xi);
 
- 	&pshufd		($T1,$Hkey,0b01001110);
 
- 	&pshufd		($T2,$Xi,0b01001110);
 
- 	&pxor		($T1,$Hkey);		# Karatsuba pre-processing
 
- 	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
 
- 	&pxor		($T2,$Xi);		# Karatsuba pre-processing
 
- 	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2
 
- 	&palignr	($T2,$T1,8);		# low part is H.lo^H.hi
 
- 	&movdqu		(&QWP(32,$Htbl),$T2);	# save Karatsuba "salt"
 
- 	&ret		();
 
- &function_end_B("gcm_init_clmul");
 
- &function_begin_B("gcm_gmult_clmul");
 
- 	&mov		($Xip,&wparam(0));
 
- 	&mov		($Htbl,&wparam(1));
 
- 	&call		(&label("pic"));
 
- &set_label("pic");
 
- 	&blindpop	($const);
 
- 	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
 
- 	&movdqu		($Xi,&QWP(0,$Xip));
 
- 	&movdqa		($T3,&QWP(0,$const));
 
- 	&movups		($Hkey,&QWP(0,$Htbl));
 
- 	&pshufb		($Xi,$T3);
 
- 	&movups		($T2,&QWP(32,$Htbl));
 
- 	&clmul64x64_T2	($Xhi,$Xi,$Hkey,$T2);
 
- 	&reduction_alg9	($Xhi,$Xi);
 
- 	&pshufb		($Xi,$T3);
 
- 	&movdqu		(&QWP(0,$Xip),$Xi);
 
- 	&ret	();
 
- &function_end_B("gcm_gmult_clmul");
 
- &function_begin("gcm_ghash_clmul");
 
- 	&mov		($Xip,&wparam(0));
 
- 	&mov		($Htbl,&wparam(1));
 
- 	&mov		($inp,&wparam(2));
 
- 	&mov		($len,&wparam(3));
 
- 	&call		(&label("pic"));
 
- &set_label("pic");
 
- 	&blindpop	($const);
 
- 	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
 
- 	&movdqu		($Xi,&QWP(0,$Xip));
 
- 	&movdqa		($T3,&QWP(0,$const));
 
- 	&movdqu		($Hkey,&QWP(0,$Htbl));
 
- 	&pshufb		($Xi,$T3);
 
- 	&sub		($len,0x10);
 
- 	&jz		(&label("odd_tail"));
 
- 	#######
 
- 	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
 
- 	#	[(H*Ii+1) + (H*Xi+1)] mod P =
 
- 	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
 
- 	#
 
- 	&movdqu		($T1,&QWP(0,$inp));	# Ii
 
- 	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
 
- 	&pshufb		($T1,$T3);
 
- 	&pshufb		($Xn,$T3);
 
- 	&movdqu		($T3,&QWP(32,$Htbl));
 
- 	&pxor		($Xi,$T1);		# Ii+Xi
 
- 	&pshufd		($T1,$Xn,0b01001110);	# H*Ii+1
 
- 	&movdqa		($Xhn,$Xn);
 
- 	&pxor		($T1,$Xn);		#
 
- 	&lea		($inp,&DWP(32,$inp));	# i+=2
 
- 	&pclmulqdq	($Xn,$Hkey,0x00);	#######
 
- 	&pclmulqdq	($Xhn,$Hkey,0x11);	#######
 
- 	&pclmulqdq	($T1,$T3,0x00);		#######
 
- 	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2
 
- 	&nop		();
 
- 	&sub		($len,0x20);
 
- 	&jbe		(&label("even_tail"));
 
- 	&jmp		(&label("mod_loop"));
 
- &set_label("mod_loop",32);
 
- 	&pshufd		($T2,$Xi,0b01001110);	# H^2*(Ii+Xi)
 
- 	&movdqa		($Xhi,$Xi);
 
- 	&pxor		($T2,$Xi);		#
 
- 	&nop		();
 
- 	&pclmulqdq	($Xi,$Hkey,0x00);	#######
 
- 	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
 
- 	&pclmulqdq	($T2,$T3,0x10);		#######
 
- 	&movups		($Hkey,&QWP(0,$Htbl));	# load H
 
- 	&xorps		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
 
- 	&movdqa		($T3,&QWP(0,$const));
 
- 	&xorps		($Xhi,$Xhn);
 
- 	 &movdqu	($Xhn,&QWP(0,$inp));	# Ii
 
- 	&pxor		($T1,$Xi);		# aggregated Karatsuba post-processing
 
- 	 &movdqu	($Xn,&QWP(16,$inp));	# Ii+1
 
- 	&pxor		($T1,$Xhi);		#
 
- 	 &pshufb	($Xhn,$T3);
 
- 	&pxor		($T2,$T1);		#
 
- 	&movdqa		($T1,$T2);		#
 
- 	&psrldq		($T2,8);
 
- 	&pslldq		($T1,8);		#
 
- 	&pxor		($Xhi,$T2);
 
- 	&pxor		($Xi,$T1);		#
 
- 	 &pshufb	($Xn,$T3);
 
- 	 &pxor		($Xhi,$Xhn);		# "Ii+Xi", consume early
 
- 	&movdqa		($Xhn,$Xn);		#&clmul64x64_TX	($Xhn,$Xn,$Hkey); H*Ii+1
 
- 	  &movdqa	($T2,$Xi);		#&reduction_alg9($Xhi,$Xi); 1st phase
 
- 	  &movdqa	($T1,$Xi);
 
- 	  &psllq	($Xi,5);
 
- 	  &pxor		($T1,$Xi);		#
 
- 	  &psllq	($Xi,1);
 
- 	  &pxor		($Xi,$T1);		#
 
- 	&pclmulqdq	($Xn,$Hkey,0x00);	#######
 
- 	&movups		($T3,&QWP(32,$Htbl));
 
- 	  &psllq	($Xi,57);		#
 
- 	  &movdqa	($T1,$Xi);		#
 
- 	  &pslldq	($Xi,8);
 
- 	  &psrldq	($T1,8);		#
 
- 	  &pxor		($Xi,$T2);
 
- 	  &pxor		($Xhi,$T1);		#
 
- 	&pshufd		($T1,$Xhn,0b01001110);
 
- 	  &movdqa	($T2,$Xi);		# 2nd phase
 
- 	  &psrlq	($Xi,1);
 
- 	&pxor		($T1,$Xhn);
 
- 	  &pxor		($Xhi,$T2);		#
 
- 	&pclmulqdq	($Xhn,$Hkey,0x11);	#######
 
- 	&movups		($Hkey,&QWP(16,$Htbl));	# load H^2
 
- 	  &pxor		($T2,$Xi);
 
- 	  &psrlq	($Xi,5);
 
- 	  &pxor		($Xi,$T2);		#
 
- 	  &psrlq	($Xi,1);		#
 
- 	  &pxor		($Xi,$Xhi)		#
 
- 	&pclmulqdq	($T1,$T3,0x00);		#######
 
- 	&lea		($inp,&DWP(32,$inp));
 
- 	&sub		($len,0x20);
 
- 	&ja		(&label("mod_loop"));
 
- &set_label("even_tail");
 
- 	&pshufd		($T2,$Xi,0b01001110);	# H^2*(Ii+Xi)
 
- 	&movdqa		($Xhi,$Xi);
 
- 	&pxor		($T2,$Xi);		#
 
- 	&pclmulqdq	($Xi,$Hkey,0x00);	#######
 
- 	&pclmulqdq	($Xhi,$Hkey,0x11);	#######
 
- 	&pclmulqdq	($T2,$T3,0x10);		#######
 
- 	&movdqa		($T3,&QWP(0,$const));
 
- 	&xorps		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
 
- 	&xorps		($Xhi,$Xhn);
 
- 	&pxor		($T1,$Xi);		# aggregated Karatsuba post-processing
 
- 	&pxor		($T1,$Xhi);		#
 
- 	&pxor		($T2,$T1);		#
 
- 	&movdqa		($T1,$T2);		#
 
- 	&psrldq		($T2,8);
 
- 	&pslldq		($T1,8);		#
 
- 	&pxor		($Xhi,$T2);
 
- 	&pxor		($Xi,$T1);		#
 
- 	&reduction_alg9	($Xhi,$Xi);
 
- 	&test		($len,$len);
 
- 	&jnz		(&label("done"));
 
- 	&movups		($Hkey,&QWP(0,$Htbl));	# load H
 
- &set_label("odd_tail");
 
- 	&movdqu		($T1,&QWP(0,$inp));	# Ii
 
- 	&pshufb		($T1,$T3);
 
- 	&pxor		($Xi,$T1);		# Ii+Xi
 
- 	&clmul64x64_T2	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi)
 
- 	&reduction_alg9	($Xhi,$Xi);
 
- &set_label("done");
 
- 	&pshufb		($Xi,$T3);
 
- 	&movdqu		(&QWP(0,$Xip),$Xi);
 
- &function_end("gcm_ghash_clmul");
 
- } else {		# Algorithm 5. Kept for reference purposes.
 
- sub reduction_alg5 {	# 19/16 times faster than Intel version
 
- my ($Xhi,$Xi)=@_;
 
- 	# <<1
 
- 	&movdqa		($T1,$Xi);		#
 
- 	&movdqa		($T2,$Xhi);
 
- 	&pslld		($Xi,1);
 
- 	&pslld		($Xhi,1);		#
 
- 	&psrld		($T1,31);
 
- 	&psrld		($T2,31);		#
 
- 	&movdqa		($T3,$T1);
 
- 	&pslldq		($T1,4);
 
- 	&psrldq		($T3,12);		#
 
- 	&pslldq		($T2,4);
 
- 	&por		($Xhi,$T3);		#
 
- 	&por		($Xi,$T1);
 
- 	&por		($Xhi,$T2);		#
 
- 	# 1st phase
 
- 	&movdqa		($T1,$Xi);
 
- 	&movdqa		($T2,$Xi);
 
- 	&movdqa		($T3,$Xi);		#
 
- 	&pslld		($T1,31);
 
- 	&pslld		($T2,30);
 
- 	&pslld		($Xi,25);		#
 
- 	&pxor		($T1,$T2);
 
- 	&pxor		($T1,$Xi);		#
 
- 	&movdqa		($T2,$T1);		#
 
- 	&pslldq		($T1,12);
 
- 	&psrldq		($T2,4);		#
 
- 	&pxor		($T3,$T1);
 
- 	# 2nd phase
 
- 	&pxor		($Xhi,$T3);		#
 
- 	&movdqa		($Xi,$T3);
 
- 	&movdqa		($T1,$T3);
 
- 	&psrld		($Xi,1);		#
 
- 	&psrld		($T1,2);
 
- 	&psrld		($T3,7);		#
 
- 	&pxor		($Xi,$T1);
 
- 	&pxor		($Xhi,$T2);
 
- 	&pxor		($Xi,$T3);		#
 
- 	&pxor		($Xi,$Xhi);		#
 
- }
 
- &function_begin_B("gcm_init_clmul");
 
- 	&mov		($Htbl,&wparam(0));
 
- 	&mov		($Xip,&wparam(1));
 
- 	&call		(&label("pic"));
 
- &set_label("pic");
 
- 	&blindpop	($const);
 
- 	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
 
- 	&movdqu		($Hkey,&QWP(0,$Xip));
 
- 	&pshufd		($Hkey,$Hkey,0b01001110);# dword swap
 
- 	# calculate H^2
 
- 	&movdqa		($Xi,$Hkey);
 
- 	&clmul64x64_T3	($Xhi,$Xi,$Hkey);
 
- 	&reduction_alg5	($Xhi,$Xi);
 
- 	&movdqu		(&QWP(0,$Htbl),$Hkey);	# save H
 
- 	&movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2
 
- 	&ret		();
 
- &function_end_B("gcm_init_clmul");
 
- &function_begin_B("gcm_gmult_clmul");
 
- 	&mov		($Xip,&wparam(0));
 
- 	&mov		($Htbl,&wparam(1));
 
- 	&call		(&label("pic"));
 
- &set_label("pic");
 
- 	&blindpop	($const);
 
- 	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
 
- 	&movdqu		($Xi,&QWP(0,$Xip));
 
- 	&movdqa		($Xn,&QWP(0,$const));
 
- 	&movdqu		($Hkey,&QWP(0,$Htbl));
 
- 	&pshufb		($Xi,$Xn);
 
- 	&clmul64x64_T3	($Xhi,$Xi,$Hkey);
 
- 	&reduction_alg5	($Xhi,$Xi);
 
- 	&pshufb		($Xi,$Xn);
 
- 	&movdqu		(&QWP(0,$Xip),$Xi);
 
- 	&ret	();
 
- &function_end_B("gcm_gmult_clmul");
 
- &function_begin("gcm_ghash_clmul");
 
- 	&mov		($Xip,&wparam(0));
 
- 	&mov		($Htbl,&wparam(1));
 
- 	&mov		($inp,&wparam(2));
 
- 	&mov		($len,&wparam(3));
 
- 	&call		(&label("pic"));
 
- &set_label("pic");
 
- 	&blindpop	($const);
 
- 	&lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const));
 
- 	&movdqu		($Xi,&QWP(0,$Xip));
 
- 	&movdqa		($T3,&QWP(0,$const));
 
- 	&movdqu		($Hkey,&QWP(0,$Htbl));
 
- 	&pshufb		($Xi,$T3);
 
- 	&sub		($len,0x10);
 
- 	&jz		(&label("odd_tail"));
 
- 	#######
 
- 	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
 
- 	#	[(H*Ii+1) + (H*Xi+1)] mod P =
 
- 	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
 
- 	#
 
- 	&movdqu		($T1,&QWP(0,$inp));	# Ii
 
- 	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
 
- 	&pshufb		($T1,$T3);
 
- 	&pshufb		($Xn,$T3);
 
- 	&pxor		($Xi,$T1);		# Ii+Xi
 
- 	&clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1
 
- 	&movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2
 
- 	&sub		($len,0x20);
 
- 	&lea		($inp,&DWP(32,$inp));	# i+=2
 
- 	&jbe		(&label("even_tail"));
 
- &set_label("mod_loop");
 
- 	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)
 
- 	&movdqu		($Hkey,&QWP(0,$Htbl));	# load H
 
- 	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
 
- 	&pxor		($Xhi,$Xhn);
 
- 	&reduction_alg5	($Xhi,$Xi);
 
- 	#######
 
- 	&movdqa		($T3,&QWP(0,$const));
 
- 	&movdqu		($T1,&QWP(0,$inp));	# Ii
 
- 	&movdqu		($Xn,&QWP(16,$inp));	# Ii+1
 
- 	&pshufb		($T1,$T3);
 
- 	&pshufb		($Xn,$T3);
 
- 	&pxor		($Xi,$T1);		# Ii+Xi
 
- 	&clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1
 
- 	&movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2
 
- 	&sub		($len,0x20);
 
- 	&lea		($inp,&DWP(32,$inp));
 
- 	&ja		(&label("mod_loop"));
 
- &set_label("even_tail");
 
- 	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi)
 
- 	&pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi)
 
- 	&pxor		($Xhi,$Xhn);
 
- 	&reduction_alg5	($Xhi,$Xi);
 
- 	&movdqa		($T3,&QWP(0,$const));
 
- 	&test		($len,$len);
 
- 	&jnz		(&label("done"));
 
- 	&movdqu		($Hkey,&QWP(0,$Htbl));	# load H
 
- &set_label("odd_tail");
 
- 	&movdqu		($T1,&QWP(0,$inp));	# Ii
 
- 	&pshufb		($T1,$T3);
 
- 	&pxor		($Xi,$T1);		# Ii+Xi
 
- 	&clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi)
 
- 	&reduction_alg5	($Xhi,$Xi);
 
- 	&movdqa		($T3,&QWP(0,$const));
 
- &set_label("done");
 
- 	&pshufb		($Xi,$T3);
 
- 	&movdqu		(&QWP(0,$Xip),$Xi);
 
- &function_end("gcm_ghash_clmul");
 
- }
 
- &set_label("bswap",64);
 
- 	&data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0);
 
- 	&data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2);	# 0x1c2_polynomial
 
- &set_label("rem_8bit",64);
 
- 	&data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E);
 
- 	&data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E);
 
- 	&data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E);
 
- 	&data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E);
 
- 	&data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E);
 
- 	&data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E);
 
- 	&data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E);
 
- 	&data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E);
 
- 	&data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE);
 
- 	&data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE);
 
- 	&data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE);
 
- 	&data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE);
 
- 	&data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E);
 
- 	&data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E);
 
- 	&data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE);
 
- 	&data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE);
 
- 	&data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E);
 
- 	&data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E);
 
- 	&data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E);
 
- 	&data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E);
 
- 	&data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E);
 
- 	&data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E);
 
- 	&data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E);
 
- 	&data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E);
 
- 	&data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE);
 
- 	&data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE);
 
- 	&data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE);
 
- 	&data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE);
 
- 	&data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E);
 
- 	&data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E);
 
- 	&data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE);
 
- 	&data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE);
 
- }}	# $sse2
 
- &set_label("rem_4bit",64);
 
- 	&data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S);
 
- 	&data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S);
 
- 	&data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S);
 
- 	&data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S);
 
- }}}	# !$x86only
 
- &asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>");
 
- &asm_finish();
 
- close STDOUT or die "error closing STDOUT: $!";
 
- # A question was risen about choice of vanilla MMX. Or rather why wasn't
 
- # SSE2 chosen instead? In addition to the fact that MMX runs on legacy
 
- # CPUs such as PIII, "4-bit" MMX version was observed to provide better
 
- # performance than *corresponding* SSE2 one even on contemporary CPUs.
 
- # SSE2 results were provided by Peter-Michael Hager. He maintains SSE2
 
- # implementation featuring full range of lookup-table sizes, but with
 
- # per-invocation lookup table setup. Latter means that table size is
 
- # chosen depending on how much data is to be hashed in every given call,
 
- # more data - larger table. Best reported result for Core2 is ~4 cycles
 
- # per processed byte out of 64KB block. This number accounts even for
 
- # 64KB table setup overhead. As discussed in gcm128.c we choose to be
 
- # more conservative in respect to lookup table sizes, but how do the
 
- # results compare? Minimalistic "256B" MMX version delivers ~11 cycles
 
- # on same platform. As also discussed in gcm128.c, next in line "8-bit
 
- # Shoup's" or "4KB" method should deliver twice the performance of
 
- # "256B" one, in other words not worse than ~6 cycles per byte. It
 
- # should be also be noted that in SSE2 case improvement can be "super-
 
- # linear," i.e. more than twice, mostly because >>8 maps to single
 
- # instruction on SSE2 register. This is unlike "4-bit" case when >>4
 
- # maps to same amount of instructions in both MMX and SSE2 cases.
 
- # Bottom line is that switch to SSE2 is considered to be justifiable
 
- # only in case we choose to implement "8-bit" method...
 
 
  |