| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077 |
- /*
- * RSA implementation for PuTTY.
- */
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <assert.h>
- #include "ssh.h"
- #include "misc.h"
- void BinarySource_get_rsa_ssh1_pub(
- BinarySource *src, struct RSAKey *rsa, RsaSsh1Order order)
- {
- unsigned bits;
- Bignum e, m;
- bits = get_uint32(src);
- if (order == RSA_SSH1_EXPONENT_FIRST) {
- e = get_mp_ssh1(src);
- m = get_mp_ssh1(src);
- } else {
- m = get_mp_ssh1(src);
- e = get_mp_ssh1(src);
- }
- if (rsa) {
- rsa->bits = bits;
- rsa->exponent = e;
- rsa->modulus = m;
- rsa->bytes = (bignum_bitcount(m) + 7) / 8;
- } else {
- freebn(e);
- freebn(m);
- }
- }
- void BinarySource_get_rsa_ssh1_priv(
- BinarySource *src, struct RSAKey *rsa)
- {
- rsa->private_exponent = get_mp_ssh1(src);
- }
- bool rsa_ssh1_encrypt(unsigned char *data, int length, struct RSAKey *key)
- {
- Bignum b1, b2;
- int i;
- unsigned char *p;
- if (key->bytes < length + 4)
- return false; /* RSA key too short! */
- memmove(data + key->bytes - length, data, length);
- data[0] = 0;
- data[1] = 2;
- for (i = 2; i < key->bytes - length - 1; i++) {
- do {
- data[i] = random_byte();
- } while (data[i] == 0);
- }
- data[key->bytes - length - 1] = 0;
- b1 = bignum_from_bytes(data, key->bytes);
- b2 = modpow(b1, key->exponent, key->modulus);
- p = data;
- for (i = key->bytes; i--;) {
- *p++ = bignum_byte(b2, i);
- }
- freebn(b1);
- freebn(b2);
- return true;
- }
- /*
- * Compute (base ^ exp) % mod, provided mod == p * q, with p,q
- * distinct primes, and iqmp is the multiplicative inverse of q mod p.
- * Uses Chinese Remainder Theorem to speed computation up over the
- * obvious implementation of a single big modpow.
- */
- Bignum crt_modpow(Bignum base, Bignum exp, Bignum mod,
- Bignum p, Bignum q, Bignum iqmp)
- {
- Bignum pm1, qm1, pexp, qexp, presult, qresult, diff, multiplier, ret0, ret;
- /*
- * Reduce the exponent mod phi(p) and phi(q), to save time when
- * exponentiating mod p and mod q respectively. Of course, since p
- * and q are prime, phi(p) == p-1 and similarly for q.
- */
- pm1 = copybn(p);
- decbn(pm1);
- qm1 = copybn(q);
- decbn(qm1);
- pexp = bigmod(exp, pm1);
- qexp = bigmod(exp, qm1);
- /*
- * Do the two modpows.
- */
- presult = modpow(base, pexp, p);
- qresult = modpow(base, qexp, q);
- /*
- * Recombine the results. We want a value which is congruent to
- * qresult mod q, and to presult mod p.
- *
- * We know that iqmp * q is congruent to 1 * mod p (by definition
- * of iqmp) and to 0 mod q (obviously). So we start with qresult
- * (which is congruent to qresult mod both primes), and add on
- * (presult-qresult) * (iqmp * q) which adjusts it to be congruent
- * to presult mod p without affecting its value mod q.
- */
- if (bignum_cmp(presult, qresult) < 0) {
- /*
- * Can't subtract presult from qresult without first adding on
- * p.
- */
- Bignum tmp = presult;
- presult = bigadd(presult, p);
- freebn(tmp);
- }
- diff = bigsub(presult, qresult);
- multiplier = bigmul(iqmp, q);
- ret0 = bigmuladd(multiplier, diff, qresult);
- /*
- * Finally, reduce the result mod n.
- */
- ret = bigmod(ret0, mod);
- /*
- * Free all the intermediate results before returning.
- */
- freebn(pm1);
- freebn(qm1);
- freebn(pexp);
- freebn(qexp);
- freebn(presult);
- freebn(qresult);
- freebn(diff);
- freebn(multiplier);
- freebn(ret0);
- return ret;
- }
- /*
- * This function is a wrapper on modpow(). It has the same effect as
- * modpow(), but employs RSA blinding to protect against timing
- * attacks and also uses the Chinese Remainder Theorem (implemented
- * above, in crt_modpow()) to speed up the main operation.
- */
- static Bignum rsa_privkey_op(Bignum input, struct RSAKey *key)
- {
- Bignum random, random_encrypted, random_inverse;
- Bignum input_blinded, ret_blinded;
- Bignum ret;
- SHA512_State ss;
- unsigned char digest512[64];
- int digestused = lenof(digest512);
- int hashseq = 0;
- /*
- * Start by inventing a random number chosen uniformly from the
- * range 2..modulus-1. (We do this by preparing a random number
- * of the right length and retrying if it's greater than the
- * modulus, to prevent any potential Bleichenbacher-like
- * attacks making use of the uneven distribution within the
- * range that would arise from just reducing our number mod n.
- * There are timing implications to the potential retries, of
- * course, but all they tell you is the modulus, which you
- * already knew.)
- *
- * To preserve determinism and avoid Pageant needing to share
- * the random number pool, we actually generate this `random'
- * number by hashing stuff with the private key.
- */
- while (1) {
- int bits, byte, bitsleft, v;
- random = copybn(key->modulus);
- /*
- * Find the topmost set bit. (This function will return its
- * index plus one.) Then we'll set all bits from that one
- * downwards randomly.
- */
- bits = bignum_bitcount(random);
- byte = 0;
- bitsleft = 0;
- while (bits--) {
- if (bitsleft <= 0) {
- bitsleft = 8;
- /*
- * Conceptually the following few lines are equivalent to
- * byte = random_byte();
- */
- if (digestused >= lenof(digest512)) {
- SHA512_Init(&ss);
- put_data(&ss, "RSA deterministic blinding", 26);
- put_uint32(&ss, hashseq);
- put_mp_ssh2(&ss, key->private_exponent);
- SHA512_Final(&ss, digest512);
- hashseq++;
- /*
- * Now hash that digest plus the signature
- * input.
- */
- SHA512_Init(&ss);
- put_data(&ss, digest512, sizeof(digest512));
- put_mp_ssh2(&ss, input);
- SHA512_Final(&ss, digest512);
- digestused = 0;
- }
- byte = digest512[digestused++];
- }
- v = byte & 1;
- byte >>= 1;
- bitsleft--;
- bignum_set_bit(random, bits, v);
- }
- bn_restore_invariant(random);
- /*
- * Now check that this number is strictly greater than
- * zero, and strictly less than modulus.
- */
- if (bignum_cmp(random, Zero) <= 0 ||
- bignum_cmp(random, key->modulus) >= 0) {
- freebn(random);
- continue;
- }
- /*
- * Also, make sure it has an inverse mod modulus.
- */
- random_inverse = modinv(random, key->modulus);
- if (!random_inverse) {
- freebn(random);
- continue;
- }
- break;
- }
- /*
- * RSA blinding relies on the fact that (xy)^d mod n is equal
- * to (x^d mod n) * (y^d mod n) mod n. We invent a random pair
- * y and y^d; then we multiply x by y, raise to the power d mod
- * n as usual, and divide by y^d to recover x^d. Thus an
- * attacker can't correlate the timing of the modpow with the
- * input, because they don't know anything about the number
- * that was input to the actual modpow.
- *
- * The clever bit is that we don't have to do a huge modpow to
- * get y and y^d; we will use the number we just invented as
- * _y^d_, and use the _public_ exponent to compute (y^d)^e = y
- * from it, which is much faster to do.
- */
- random_encrypted = crt_modpow(random, key->exponent,
- key->modulus, key->p, key->q, key->iqmp);
- input_blinded = modmul(input, random_encrypted, key->modulus);
- ret_blinded = crt_modpow(input_blinded, key->private_exponent,
- key->modulus, key->p, key->q, key->iqmp);
- ret = modmul(ret_blinded, random_inverse, key->modulus);
- freebn(ret_blinded);
- freebn(input_blinded);
- freebn(random_inverse);
- freebn(random_encrypted);
- freebn(random);
- return ret;
- }
- Bignum rsa_ssh1_decrypt(Bignum input, struct RSAKey *key)
- {
- return rsa_privkey_op(input, key);
- }
- bool rsa_ssh1_decrypt_pkcs1(Bignum input, struct RSAKey *key, strbuf *outbuf)
- {
- strbuf *data = strbuf_new();
- bool success = false;
- BinarySource src[1];
- {
- Bignum *b = rsa_ssh1_decrypt(input, key);
- int i;
- for (i = (bignum_bitcount(key->modulus) + 7) / 8; i-- > 0 ;) {
- put_byte(data, bignum_byte(b, i));
- }
- freebn(b);
- }
- BinarySource_BARE_INIT(src, data->u, data->len);
- /* Check PKCS#1 formatting prefix */
- if (get_byte(src) != 0) goto out;
- if (get_byte(src) != 2) goto out;
- while (1) {
- unsigned char byte = get_byte(src);
- if (get_err(src)) goto out;
- if (byte == 0)
- break;
- }
- /* Everything else is the payload */
- success = true;
- put_data(outbuf, get_ptr(src), get_avail(src));
- out:
- strbuf_free(data);
- return success;
- }
- int rsastr_len(struct RSAKey *key)
- {
- Bignum md, ex;
- int mdlen, exlen;
- md = key->modulus;
- ex = key->exponent;
- mdlen = (bignum_bitcount(md) + 15) / 16;
- exlen = (bignum_bitcount(ex) + 15) / 16;
- return 4 * (mdlen + exlen) + 20;
- }
- void rsastr_fmt(char *str, struct RSAKey *key)
- {
- Bignum md, ex;
- int len = 0, i, nibbles;
- static const char hex[] = "0123456789abcdef";
- md = key->modulus;
- ex = key->exponent;
- len += sprintf(str + len, "0x");
- nibbles = (3 + bignum_bitcount(ex)) / 4;
- if (nibbles < 1)
- nibbles = 1;
- for (i = nibbles; i--;)
- str[len++] = hex[(bignum_byte(ex, i / 2) >> (4 * (i % 2))) & 0xF];
- len += sprintf(str + len, ",0x");
- nibbles = (3 + bignum_bitcount(md)) / 4;
- if (nibbles < 1)
- nibbles = 1;
- for (i = nibbles; i--;)
- str[len++] = hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF];
- str[len] = '\0';
- }
- /*
- * Generate a fingerprint string for the key. Compatible with the
- * OpenSSH fingerprint code.
- */
- char *rsa_ssh1_fingerprint(struct RSAKey *key)
- {
- struct MD5Context md5c;
- unsigned char digest[16];
- strbuf *out;
- int i;
- MD5Init(&md5c);
- put_mp_ssh1(&md5c, key->modulus);
- put_mp_ssh1(&md5c, key->exponent);
- MD5Final(digest, &md5c);
- out = strbuf_new();
- strbuf_catf(out, "%d ", bignum_bitcount(key->modulus));
- for (i = 0; i < 16; i++)
- strbuf_catf(out, "%s%02x", i ? ":" : "", digest[i]);
- if (key->comment)
- strbuf_catf(out, " %s", key->comment);
- return strbuf_to_str(out);
- }
- /*
- * Verify that the public data in an RSA key matches the private
- * data. We also check the private data itself: we ensure that p >
- * q and that iqmp really is the inverse of q mod p.
- */
- bool rsa_verify(struct RSAKey *key)
- {
- Bignum n, ed, pm1, qm1;
- int cmp;
- /* n must equal pq. */
- n = bigmul(key->p, key->q);
- cmp = bignum_cmp(n, key->modulus);
- freebn(n);
- if (cmp != 0)
- return false;
- /* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
- pm1 = copybn(key->p);
- decbn(pm1);
- ed = modmul(key->exponent, key->private_exponent, pm1);
- freebn(pm1);
- cmp = bignum_cmp(ed, One);
- freebn(ed);
- if (cmp != 0)
- return false;
- qm1 = copybn(key->q);
- decbn(qm1);
- ed = modmul(key->exponent, key->private_exponent, qm1);
- freebn(qm1);
- cmp = bignum_cmp(ed, One);
- freebn(ed);
- if (cmp != 0)
- return false;
- /*
- * Ensure p > q.
- *
- * I have seen key blobs in the wild which were generated with
- * p < q, so instead of rejecting the key in this case we
- * should instead flip them round into the canonical order of
- * p > q. This also involves regenerating iqmp.
- */
- if (bignum_cmp(key->p, key->q) <= 0) {
- Bignum tmp = key->p;
- key->p = key->q;
- key->q = tmp;
- freebn(key->iqmp);
- key->iqmp = modinv(key->q, key->p);
- if (!key->iqmp)
- return false;
- }
- /*
- * Ensure iqmp * q is congruent to 1, modulo p.
- */
- n = modmul(key->iqmp, key->q, key->p);
- cmp = bignum_cmp(n, One);
- freebn(n);
- if (cmp != 0)
- return false;
- return true;
- }
- void rsa_ssh1_public_blob(BinarySink *bs, struct RSAKey *key,
- RsaSsh1Order order)
- {
- put_uint32(bs, bignum_bitcount(key->modulus));
- if (order == RSA_SSH1_EXPONENT_FIRST) {
- put_mp_ssh1(bs, key->exponent);
- put_mp_ssh1(bs, key->modulus);
- } else {
- put_mp_ssh1(bs, key->modulus);
- put_mp_ssh1(bs, key->exponent);
- }
- }
- /* Given an SSH-1 public key blob, determine its length. */
- int rsa_ssh1_public_blob_len(void *data, int maxlen)
- {
- BinarySource src[1];
- BinarySource_BARE_INIT(src, data, maxlen);
- /* Expect a length word, then exponent and modulus. (It doesn't
- * even matter which order.) */
- get_uint32(src);
- freebn(get_mp_ssh1(src));
- freebn(get_mp_ssh1(src));
- if (get_err(src))
- return -1;
- /* Return the number of bytes consumed. */
- return src->pos;
- }
- void freersakey(struct RSAKey *key)
- {
- if (key->modulus)
- freebn(key->modulus);
- if (key->exponent)
- freebn(key->exponent);
- if (key->private_exponent)
- freebn(key->private_exponent);
- if (key->p)
- freebn(key->p);
- if (key->q)
- freebn(key->q);
- if (key->iqmp)
- freebn(key->iqmp);
- if (key->comment)
- sfree(key->comment);
- }
- /* ----------------------------------------------------------------------
- * Implementation of the ssh-rsa signing key type.
- */
- static void rsa2_freekey(ssh_key *key); /* forward reference */
- static ssh_key *rsa2_new_pub(const ssh_keyalg *self, ptrlen data)
- {
- BinarySource src[1];
- struct RSAKey *rsa;
- BinarySource_BARE_INIT(src, data.ptr, data.len);
- if (!ptrlen_eq_string(get_string(src), "ssh-rsa"))
- return NULL;
- rsa = snew(struct RSAKey);
- rsa->sshk.vt = &ssh_rsa;
- rsa->exponent = get_mp_ssh2(src);
- rsa->modulus = get_mp_ssh2(src);
- rsa->private_exponent = NULL;
- rsa->p = rsa->q = rsa->iqmp = NULL;
- rsa->comment = NULL;
- if (get_err(src)) {
- rsa2_freekey(&rsa->sshk);
- return NULL;
- }
- return &rsa->sshk;
- }
- static void rsa2_freekey(ssh_key *key)
- {
- struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
- freersakey(rsa);
- sfree(rsa);
- }
- static char *rsa2_cache_str(ssh_key *key)
- {
- struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
- char *p;
- int len;
- len = rsastr_len(rsa);
- p = snewn(len, char);
- rsastr_fmt(p, rsa);
- return p;
- }
- static void rsa2_public_blob(ssh_key *key, BinarySink *bs)
- {
- struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
- put_stringz(bs, "ssh-rsa");
- put_mp_ssh2(bs, rsa->exponent);
- put_mp_ssh2(bs, rsa->modulus);
- }
- static void rsa2_private_blob(ssh_key *key, BinarySink *bs)
- {
- struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
- put_mp_ssh2(bs, rsa->private_exponent);
- put_mp_ssh2(bs, rsa->p);
- put_mp_ssh2(bs, rsa->q);
- put_mp_ssh2(bs, rsa->iqmp);
- }
- static ssh_key *rsa2_new_priv(const ssh_keyalg *self,
- ptrlen pub, ptrlen priv)
- {
- BinarySource src[1];
- ssh_key *sshk;
- struct RSAKey *rsa;
- sshk = rsa2_new_pub(self, pub);
- if (!sshk)
- return NULL;
- rsa = container_of(sshk, struct RSAKey, sshk);
- BinarySource_BARE_INIT(src, priv.ptr, priv.len);
- rsa->private_exponent = get_mp_ssh2(src);
- rsa->p = get_mp_ssh2(src);
- rsa->q = get_mp_ssh2(src);
- rsa->iqmp = get_mp_ssh2(src);
- if (get_err(src) || !rsa_verify(rsa)) {
- rsa2_freekey(&rsa->sshk);
- return NULL;
- }
- return &rsa->sshk;
- }
- static ssh_key *rsa2_new_priv_openssh(const ssh_keyalg *self,
- BinarySource *src)
- {
- struct RSAKey *rsa;
- rsa = snew(struct RSAKey);
- rsa->sshk.vt = &ssh_rsa;
- rsa->comment = NULL;
- rsa->modulus = get_mp_ssh2(src);
- rsa->exponent = get_mp_ssh2(src);
- rsa->private_exponent = get_mp_ssh2(src);
- rsa->iqmp = get_mp_ssh2(src);
- rsa->p = get_mp_ssh2(src);
- rsa->q = get_mp_ssh2(src);
- if (get_err(src) || !rsa_verify(rsa)) {
- rsa2_freekey(&rsa->sshk);
- return NULL;
- }
- return &rsa->sshk;
- }
- static void rsa2_openssh_blob(ssh_key *key, BinarySink *bs)
- {
- struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
- put_mp_ssh2(bs, rsa->modulus);
- put_mp_ssh2(bs, rsa->exponent);
- put_mp_ssh2(bs, rsa->private_exponent);
- put_mp_ssh2(bs, rsa->iqmp);
- put_mp_ssh2(bs, rsa->p);
- put_mp_ssh2(bs, rsa->q);
- }
- static int rsa2_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
- {
- ssh_key *sshk;
- struct RSAKey *rsa;
- int ret;
- sshk = rsa2_new_pub(self, pub);
- if (!sshk)
- return -1;
- rsa = container_of(sshk, struct RSAKey, sshk);
- ret = bignum_bitcount(rsa->modulus);
- rsa2_freekey(&rsa->sshk);
- return ret;
- }
- /*
- * This is the magic ASN.1/DER prefix that goes in the decoded
- * signature, between the string of FFs and the actual SHA hash
- * value. The meaning of it is:
- *
- * 00 -- this marks the end of the FFs; not part of the ASN.1 bit itself
- *
- * 30 21 -- a constructed SEQUENCE of length 0x21
- * 30 09 -- a constructed sub-SEQUENCE of length 9
- * 06 05 -- an object identifier, length 5
- * 2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
- * (the 1,3 comes from 0x2B = 43 = 40*1+3)
- * 05 00 -- NULL
- * 04 14 -- a primitive OCTET STRING of length 0x14
- * [0x14 bytes of hash data follows]
- *
- * The object id in the middle there is listed as `id-sha1' in
- * ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn (the
- * ASN module for PKCS #1) and its expanded form is as follows:
- *
- * id-sha1 OBJECT IDENTIFIER ::= {
- * iso(1) identified-organization(3) oiw(14) secsig(3)
- * algorithms(2) 26 }
- */
- static const unsigned char sha1_asn1_prefix[] = {
- 0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
- 0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
- };
- /*
- * Two more similar pieces of ASN.1 used for signatures using SHA-256
- * and SHA-512, in the same format but differing only in various
- * length fields and OID.
- */
- static const unsigned char sha256_asn1_prefix[] = {
- 0x00, 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
- 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
- 0x05, 0x00, 0x04, 0x20,
- };
- static const unsigned char sha512_asn1_prefix[] = {
- 0x00, 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
- 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
- 0x05, 0x00, 0x04, 0x40,
- };
- #define SHA1_ASN1_PREFIX_LEN sizeof(sha1_asn1_prefix)
- static bool rsa2_verify(ssh_key *key, ptrlen sig, ptrlen data)
- {
- struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
- BinarySource src[1];
- ptrlen type, in_pl;
- Bignum in, out;
- int bytes, i, j;
- bool toret;
- unsigned char hash[20];
- BinarySource_BARE_INIT(src, sig.ptr, sig.len);
- type = get_string(src);
- /*
- * RFC 4253 section 6.6: the signature integer in an ssh-rsa
- * signature is 'without lengths or padding'. That is, we _don't_
- * expect the usual leading zero byte if the topmost bit of the
- * first byte is set. (However, because of the possibility of
- * BUG_SSH2_RSA_PADDING at the other end, we tolerate it if it's
- * there.) So we can't use get_mp_ssh2, which enforces that
- * leading-byte scheme; instead we use get_string and
- * bignum_from_bytes, which will tolerate anything.
- */
- in_pl = get_string(src);
- if (get_err(src) || !ptrlen_eq_string(type, "ssh-rsa"))
- return false;
- in = bignum_from_bytes(in_pl.ptr, in_pl.len);
- out = modpow(in, rsa->exponent, rsa->modulus);
- freebn(in);
- toret = true;
- bytes = (bignum_bitcount(rsa->modulus)+7) / 8;
- /* Top (partial) byte should be zero. */
- if (bignum_byte(out, bytes - 1) != 0)
- toret = false;
- /* First whole byte should be 1. */
- if (bignum_byte(out, bytes - 2) != 1)
- toret = false;
- /* Most of the rest should be FF. */
- for (i = bytes - 3; i >= 20 + SHA1_ASN1_PREFIX_LEN; i--) {
- if (bignum_byte(out, i) != 0xFF)
- toret = false;
- }
- /* Then we expect to see the sha1_asn1_prefix. */
- for (i = 20 + SHA1_ASN1_PREFIX_LEN - 1, j = 0; i >= 20; i--, j++) {
- if (bignum_byte(out, i) != sha1_asn1_prefix[j])
- toret = false;
- }
- /* Finally, we expect to see the SHA-1 hash of the signed data. */
- SHA_Simple(data.ptr, data.len, hash);
- for (i = 19, j = 0; i >= 0; i--, j++) {
- if (bignum_byte(out, i) != hash[j])
- toret = false;
- }
- freebn(out);
- return toret;
- }
- static void rsa2_sign(ssh_key *key, const void *data, int datalen,
- unsigned flags, BinarySink *bs)
- {
- struct RSAKey *rsa = container_of(key, struct RSAKey, sshk);
- unsigned char *bytes;
- int nbytes;
- unsigned char hash[64];
- Bignum in, out;
- int i, j;
- const struct ssh_hashalg *halg;
- ssh_hash *h;
- const unsigned char *asn1_prefix;
- unsigned asn1_prefix_size;
- const char *sign_alg_name;
- if (flags & SSH_AGENT_RSA_SHA2_256) {
- halg = &ssh_sha256;
- asn1_prefix = sha256_asn1_prefix;
- asn1_prefix_size = sizeof(sha256_asn1_prefix);
- sign_alg_name = "rsa-sha2-256";
- } else if (flags & SSH_AGENT_RSA_SHA2_512) {
- halg = &ssh_sha512;
- asn1_prefix = sha512_asn1_prefix;
- asn1_prefix_size = sizeof(sha512_asn1_prefix);
- sign_alg_name = "rsa-sha2-512";
- } else {
- halg = &ssh_sha1;
- asn1_prefix = sha1_asn1_prefix;
- asn1_prefix_size = sizeof(sha1_asn1_prefix);
- sign_alg_name = "ssh-rsa";
- }
- h = ssh_hash_new(halg);
- put_data(h, data, datalen);
- ssh_hash_final(h, hash);
- nbytes = (bignum_bitcount(rsa->modulus) - 1) / 8;
- assert(1 <= nbytes - halg->hlen - asn1_prefix_size);
- bytes = snewn(nbytes, unsigned char);
- bytes[0] = 1;
- for (i = 1; i < nbytes - halg->hlen - asn1_prefix_size; i++)
- bytes[i] = 0xFF;
- for (i = nbytes - halg->hlen - asn1_prefix_size, j = 0;
- i < nbytes - halg->hlen; i++, j++)
- bytes[i] = asn1_prefix[j];
- for (i = nbytes - halg->hlen, j = 0; i < nbytes; i++, j++)
- bytes[i] = hash[j];
- in = bignum_from_bytes(bytes, nbytes);
- sfree(bytes);
- out = rsa_privkey_op(in, rsa);
- freebn(in);
- put_stringz(bs, sign_alg_name);
- nbytes = (bignum_bitcount(out) + 7) / 8;
- put_uint32(bs, nbytes);
- for (i = 0; i < nbytes; i++)
- put_byte(bs, bignum_byte(out, nbytes - 1 - i));
- freebn(out);
- }
- const ssh_keyalg ssh_rsa = {
- rsa2_new_pub,
- rsa2_new_priv,
- rsa2_new_priv_openssh,
- rsa2_freekey,
- rsa2_sign,
- rsa2_verify,
- rsa2_public_blob,
- rsa2_private_blob,
- rsa2_openssh_blob,
- rsa2_cache_str,
- rsa2_pubkey_bits,
- "ssh-rsa",
- "rsa2",
- NULL,
- SSH_AGENT_RSA_SHA2_256 | SSH_AGENT_RSA_SHA2_512,
- };
- struct RSAKey *ssh_rsakex_newkey(const void *data, int len)
- {
- ssh_key *sshk = rsa2_new_pub(&ssh_rsa, make_ptrlen(data, len));
- if (!sshk)
- return NULL;
- return container_of(sshk, struct RSAKey, sshk);
- }
- void ssh_rsakex_freekey(struct RSAKey *key)
- {
- rsa2_freekey(&key->sshk);
- }
- int ssh_rsakex_klen(struct RSAKey *rsa)
- {
- return bignum_bitcount(rsa->modulus);
- }
- static void oaep_mask(const struct ssh_hashalg *h, void *seed, int seedlen,
- void *vdata, int datalen)
- {
- unsigned char *data = (unsigned char *)vdata;
- unsigned count = 0;
- while (datalen > 0) {
- int i, max = (datalen > h->hlen ? h->hlen : datalen);
- ssh_hash *s;
- unsigned char hash[SSH2_KEX_MAX_HASH_LEN];
- assert(h->hlen <= SSH2_KEX_MAX_HASH_LEN);
- s = ssh_hash_new(h);
- put_data(s, seed, seedlen);
- put_uint32(s, count);
- ssh_hash_final(s, hash);
- count++;
- for (i = 0; i < max; i++)
- data[i] ^= hash[i];
- data += max;
- datalen -= max;
- }
- }
- void ssh_rsakex_encrypt(const struct ssh_hashalg *h,
- unsigned char *in, int inlen,
- unsigned char *out, int outlen, struct RSAKey *rsa)
- {
- Bignum b1, b2;
- int k, i;
- char *p;
- const int HLEN = h->hlen;
- /*
- * Here we encrypt using RSAES-OAEP. Essentially this means:
- *
- * - we have a SHA-based `mask generation function' which
- * creates a pseudo-random stream of mask data
- * deterministically from an input chunk of data.
- *
- * - we have a random chunk of data called a seed.
- *
- * - we use the seed to generate a mask which we XOR with our
- * plaintext.
- *
- * - then we use _the masked plaintext_ to generate a mask
- * which we XOR with the seed.
- *
- * - then we concatenate the masked seed and the masked
- * plaintext, and RSA-encrypt that lot.
- *
- * The result is that the data input to the encryption function
- * is random-looking and (hopefully) contains no exploitable
- * structure such as PKCS1-v1_5 does.
- *
- * For a precise specification, see RFC 3447, section 7.1.1.
- * Some of the variable names below are derived from that, so
- * it'd probably help to read it anyway.
- */
- /* k denotes the length in octets of the RSA modulus. */
- k = (7 + bignum_bitcount(rsa->modulus)) / 8;
- /* The length of the input data must be at most k - 2hLen - 2. */
- assert(inlen > 0 && inlen <= k - 2*HLEN - 2);
- /* The length of the output data wants to be precisely k. */
- assert(outlen == k);
- /*
- * Now perform EME-OAEP encoding. First set up all the unmasked
- * output data.
- */
- /* Leading byte zero. */
- out[0] = 0;
- /* At position 1, the seed: HLEN bytes of random data. */
- for (i = 0; i < HLEN; i++)
- out[i + 1] = random_byte();
- /* At position 1+HLEN, the data block DB, consisting of: */
- /* The hash of the label (we only support an empty label here) */
- {
- ssh_hash *s = ssh_hash_new(h);
- ssh_hash_final(s, out + HLEN + 1);
- }
- /* A bunch of zero octets */
- memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1));
- /* A single 1 octet, followed by the input message data. */
- out[outlen - inlen - 1] = 1;
- memcpy(out + outlen - inlen, in, inlen);
- /*
- * Now use the seed data to mask the block DB.
- */
- oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
- /*
- * And now use the masked DB to mask the seed itself.
- */
- oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
- /*
- * Now `out' contains precisely the data we want to
- * RSA-encrypt.
- */
- b1 = bignum_from_bytes(out, outlen);
- b2 = modpow(b1, rsa->exponent, rsa->modulus);
- p = (char *)out;
- for (i = outlen; i--;) {
- *p++ = bignum_byte(b2, i);
- }
- freebn(b1);
- freebn(b2);
- /*
- * And we're done.
- */
- }
- Bignum ssh_rsakex_decrypt(const struct ssh_hashalg *h, ptrlen ciphertext,
- struct RSAKey *rsa)
- {
- Bignum b1, b2;
- int outlen, i;
- unsigned char *out;
- unsigned char labelhash[64];
- ssh_hash *hash;
- BinarySource src[1];
- const int HLEN = h->hlen;
- /*
- * Decryption side of the RSA key exchange operation.
- */
- /* The length of the encrypted data should be exactly the length
- * in octets of the RSA modulus.. */
- outlen = (7 + bignum_bitcount(rsa->modulus)) / 8;
- if (ciphertext.len != outlen)
- return NULL;
- /* Do the RSA decryption, and extract the result into a byte array. */
- b1 = bignum_from_bytes(ciphertext.ptr, ciphertext.len);
- b2 = rsa_privkey_op(b1, rsa);
- out = snewn(outlen, unsigned char);
- for (i = 0; i < outlen; i++)
- out[i] = bignum_byte(b2, outlen-1-i);
- freebn(b1);
- freebn(b2);
- /* Do the OAEP masking operations, in the reverse order from encryption */
- oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
- oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);
- /* Check the leading byte is zero. */
- if (out[0] != 0) {
- sfree(out);
- return NULL;
- }
- /* Check the label hash at position 1+HLEN */
- assert(HLEN <= lenof(labelhash));
- hash = ssh_hash_new(h);
- ssh_hash_final(hash, labelhash);
- if (memcmp(out + HLEN + 1, labelhash, HLEN)) {
- sfree(out);
- return NULL;
- }
- /* Expect zero bytes followed by a 1 byte */
- for (i = 1 + 2 * HLEN; i < outlen; i++) {
- if (out[i] == 1) {
- i++; /* skip over the 1 byte */
- break;
- } else if (out[i] != 1) {
- sfree(out);
- return NULL;
- }
- }
- /* And what's left is the input message data, which should be
- * encoded as an ordinary SSH-2 mpint. */
- BinarySource_BARE_INIT(src, out + i, outlen - i);
- b1 = get_mp_ssh2(src);
- sfree(out);
- if (get_err(src) || get_avail(src) != 0) {
- freebn(b1);
- return NULL;
- }
- /* Success! */
- return b1;
- }
- static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha1 = { 1024 };
- static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha256 = { 2048 };
- static const struct ssh_kex ssh_rsa_kex_sha1 = {
- "rsa1024-sha1", NULL, KEXTYPE_RSA,
- &ssh_sha1, &ssh_rsa_kex_extra_sha1,
- };
- static const struct ssh_kex ssh_rsa_kex_sha256 = {
- "rsa2048-sha256", NULL, KEXTYPE_RSA,
- &ssh_sha256, &ssh_rsa_kex_extra_sha256,
- };
- static const struct ssh_kex *const rsa_kex_list[] = {
- &ssh_rsa_kex_sha256,
- &ssh_rsa_kex_sha1
- };
- const struct ssh_kexes ssh_rsa_kex = {
- sizeof(rsa_kex_list) / sizeof(*rsa_kex_list),
- rsa_kex_list
- };
|