s_cb.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679
  1. /*
  2. * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. /*
  10. * callback functions used by s_client, s_server, and s_time,
  11. * as well as other common logic for those apps
  12. */
  13. #include <stdio.h>
  14. #include <stdlib.h>
  15. #include <string.h> /* for memcpy() and strcmp() */
  16. #include "apps.h"
  17. #include <openssl/core_names.h>
  18. #include <openssl/params.h>
  19. #include <openssl/err.h>
  20. #include <openssl/rand.h>
  21. #include <openssl/x509.h>
  22. #include <openssl/ssl.h>
  23. #include <openssl/bn.h>
  24. #ifndef OPENSSL_NO_DH
  25. # include <openssl/dh.h>
  26. #endif
  27. #include "s_apps.h"
  28. #define COOKIE_SECRET_LENGTH 16
  29. VERIFY_CB_ARGS verify_args = { -1, 0, X509_V_OK, 0 };
  30. #ifndef OPENSSL_NO_SOCK
  31. static unsigned char cookie_secret[COOKIE_SECRET_LENGTH];
  32. static int cookie_initialized = 0;
  33. #endif
  34. static BIO *bio_keylog = NULL;
  35. static const char *lookup(int val, const STRINT_PAIR* list, const char* def)
  36. {
  37. for ( ; list->name; ++list)
  38. if (list->retval == val)
  39. return list->name;
  40. return def;
  41. }
  42. int verify_callback(int ok, X509_STORE_CTX *ctx)
  43. {
  44. X509 *err_cert;
  45. int err, depth;
  46. err_cert = X509_STORE_CTX_get_current_cert(ctx);
  47. err = X509_STORE_CTX_get_error(ctx);
  48. depth = X509_STORE_CTX_get_error_depth(ctx);
  49. if (!verify_args.quiet || !ok) {
  50. BIO_printf(bio_err, "depth=%d ", depth);
  51. if (err_cert != NULL) {
  52. X509_NAME_print_ex(bio_err,
  53. X509_get_subject_name(err_cert),
  54. 0, get_nameopt());
  55. BIO_puts(bio_err, "\n");
  56. } else {
  57. BIO_puts(bio_err, "<no cert>\n");
  58. }
  59. }
  60. if (!ok) {
  61. BIO_printf(bio_err, "verify error:num=%d:%s\n", err,
  62. X509_verify_cert_error_string(err));
  63. if (verify_args.depth < 0 || verify_args.depth >= depth) {
  64. if (!verify_args.return_error)
  65. ok = 1;
  66. verify_args.error = err;
  67. } else {
  68. ok = 0;
  69. verify_args.error = X509_V_ERR_CERT_CHAIN_TOO_LONG;
  70. }
  71. }
  72. switch (err) {
  73. case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
  74. if (err_cert != NULL) {
  75. BIO_puts(bio_err, "issuer= ");
  76. X509_NAME_print_ex(bio_err, X509_get_issuer_name(err_cert),
  77. 0, get_nameopt());
  78. BIO_puts(bio_err, "\n");
  79. }
  80. break;
  81. case X509_V_ERR_CERT_NOT_YET_VALID:
  82. case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
  83. if (err_cert != NULL) {
  84. BIO_printf(bio_err, "notBefore=");
  85. ASN1_TIME_print(bio_err, X509_get0_notBefore(err_cert));
  86. BIO_printf(bio_err, "\n");
  87. }
  88. break;
  89. case X509_V_ERR_CERT_HAS_EXPIRED:
  90. case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
  91. if (err_cert != NULL) {
  92. BIO_printf(bio_err, "notAfter=");
  93. ASN1_TIME_print(bio_err, X509_get0_notAfter(err_cert));
  94. BIO_printf(bio_err, "\n");
  95. }
  96. break;
  97. case X509_V_ERR_NO_EXPLICIT_POLICY:
  98. if (!verify_args.quiet)
  99. policies_print(ctx);
  100. break;
  101. }
  102. if (err == X509_V_OK && ok == 2 && !verify_args.quiet)
  103. policies_print(ctx);
  104. if (ok && !verify_args.quiet)
  105. BIO_printf(bio_err, "verify return:%d\n", ok);
  106. return ok;
  107. }
  108. int set_cert_stuff(SSL_CTX *ctx, char *cert_file, char *key_file)
  109. {
  110. if (cert_file != NULL) {
  111. if (SSL_CTX_use_certificate_file(ctx, cert_file,
  112. SSL_FILETYPE_PEM) <= 0) {
  113. BIO_printf(bio_err, "unable to get certificate from '%s'\n",
  114. cert_file);
  115. ERR_print_errors(bio_err);
  116. return 0;
  117. }
  118. if (key_file == NULL)
  119. key_file = cert_file;
  120. if (SSL_CTX_use_PrivateKey_file(ctx, key_file, SSL_FILETYPE_PEM) <= 0) {
  121. BIO_printf(bio_err, "unable to get private key from '%s'\n",
  122. key_file);
  123. ERR_print_errors(bio_err);
  124. return 0;
  125. }
  126. /*
  127. * If we are using DSA, we can copy the parameters from the private
  128. * key
  129. */
  130. /*
  131. * Now we know that a key and cert have been set against the SSL
  132. * context
  133. */
  134. if (!SSL_CTX_check_private_key(ctx)) {
  135. BIO_printf(bio_err,
  136. "Private key does not match the certificate public key\n");
  137. return 0;
  138. }
  139. }
  140. return 1;
  141. }
  142. int set_cert_key_stuff(SSL_CTX *ctx, X509 *cert, EVP_PKEY *key,
  143. STACK_OF(X509) *chain, int build_chain)
  144. {
  145. int chflags = chain ? SSL_BUILD_CHAIN_FLAG_CHECK : 0;
  146. if (cert == NULL)
  147. return 1;
  148. if (SSL_CTX_use_certificate(ctx, cert) <= 0) {
  149. BIO_printf(bio_err, "error setting certificate\n");
  150. ERR_print_errors(bio_err);
  151. return 0;
  152. }
  153. if (SSL_CTX_use_PrivateKey(ctx, key) <= 0) {
  154. BIO_printf(bio_err, "error setting private key\n");
  155. ERR_print_errors(bio_err);
  156. return 0;
  157. }
  158. /*
  159. * Now we know that a key and cert have been set against the SSL context
  160. */
  161. if (!SSL_CTX_check_private_key(ctx)) {
  162. BIO_printf(bio_err,
  163. "Private key does not match the certificate public key\n");
  164. return 0;
  165. }
  166. if (chain && !SSL_CTX_set1_chain(ctx, chain)) {
  167. BIO_printf(bio_err, "error setting certificate chain\n");
  168. ERR_print_errors(bio_err);
  169. return 0;
  170. }
  171. if (build_chain && !SSL_CTX_build_cert_chain(ctx, chflags)) {
  172. BIO_printf(bio_err, "error building certificate chain\n");
  173. ERR_print_errors(bio_err);
  174. return 0;
  175. }
  176. return 1;
  177. }
  178. static STRINT_PAIR cert_type_list[] = {
  179. {"RSA sign", TLS_CT_RSA_SIGN},
  180. {"DSA sign", TLS_CT_DSS_SIGN},
  181. {"RSA fixed DH", TLS_CT_RSA_FIXED_DH},
  182. {"DSS fixed DH", TLS_CT_DSS_FIXED_DH},
  183. {"ECDSA sign", TLS_CT_ECDSA_SIGN},
  184. {"RSA fixed ECDH", TLS_CT_RSA_FIXED_ECDH},
  185. {"ECDSA fixed ECDH", TLS_CT_ECDSA_FIXED_ECDH},
  186. {"GOST01 Sign", TLS_CT_GOST01_SIGN},
  187. {"GOST12 Sign", TLS_CT_GOST12_IANA_SIGN},
  188. {NULL}
  189. };
  190. static void ssl_print_client_cert_types(BIO *bio, SSL *s)
  191. {
  192. const unsigned char *p;
  193. int i;
  194. int cert_type_num = SSL_get0_certificate_types(s, &p);
  195. if (!cert_type_num)
  196. return;
  197. BIO_puts(bio, "Client Certificate Types: ");
  198. for (i = 0; i < cert_type_num; i++) {
  199. unsigned char cert_type = p[i];
  200. const char *cname = lookup((int)cert_type, cert_type_list, NULL);
  201. if (i)
  202. BIO_puts(bio, ", ");
  203. if (cname != NULL)
  204. BIO_puts(bio, cname);
  205. else
  206. BIO_printf(bio, "UNKNOWN (%d),", cert_type);
  207. }
  208. BIO_puts(bio, "\n");
  209. }
  210. static const char *get_sigtype(int nid)
  211. {
  212. switch (nid) {
  213. case EVP_PKEY_RSA:
  214. return "RSA";
  215. case EVP_PKEY_RSA_PSS:
  216. return "RSA-PSS";
  217. case EVP_PKEY_DSA:
  218. return "DSA";
  219. case EVP_PKEY_EC:
  220. return "ECDSA";
  221. case NID_ED25519:
  222. return "ed25519";
  223. case NID_ED448:
  224. return "ed448";
  225. case NID_id_GostR3410_2001:
  226. return "gost2001";
  227. case NID_id_GostR3410_2012_256:
  228. return "gost2012_256";
  229. case NID_id_GostR3410_2012_512:
  230. return "gost2012_512";
  231. default:
  232. /* Try to output provider-registered sig alg name */
  233. return OBJ_nid2sn(nid);
  234. }
  235. }
  236. static int do_print_sigalgs(BIO *out, SSL *s, int shared)
  237. {
  238. int i, nsig, client;
  239. client = SSL_is_server(s) ? 0 : 1;
  240. if (shared)
  241. nsig = SSL_get_shared_sigalgs(s, 0, NULL, NULL, NULL, NULL, NULL);
  242. else
  243. nsig = SSL_get_sigalgs(s, -1, NULL, NULL, NULL, NULL, NULL);
  244. if (nsig == 0)
  245. return 1;
  246. if (shared)
  247. BIO_puts(out, "Shared ");
  248. if (client)
  249. BIO_puts(out, "Requested ");
  250. BIO_puts(out, "Signature Algorithms: ");
  251. for (i = 0; i < nsig; i++) {
  252. int hash_nid, sign_nid;
  253. unsigned char rhash, rsign;
  254. const char *sstr = NULL;
  255. if (shared)
  256. SSL_get_shared_sigalgs(s, i, &sign_nid, &hash_nid, NULL,
  257. &rsign, &rhash);
  258. else
  259. SSL_get_sigalgs(s, i, &sign_nid, &hash_nid, NULL, &rsign, &rhash);
  260. if (i)
  261. BIO_puts(out, ":");
  262. switch (rsign | rhash << 8) {
  263. case 0x0809:
  264. BIO_puts(out, "rsa_pss_pss_sha256");
  265. continue;
  266. case 0x080a:
  267. BIO_puts(out, "rsa_pss_pss_sha384");
  268. continue;
  269. case 0x080b:
  270. BIO_puts(out, "rsa_pss_pss_sha512");
  271. continue;
  272. case 0x081a:
  273. BIO_puts(out, "ecdsa_brainpoolP256r1_sha256");
  274. continue;
  275. case 0x081b:
  276. BIO_puts(out, "ecdsa_brainpoolP384r1_sha384");
  277. continue;
  278. case 0x081c:
  279. BIO_puts(out, "ecdsa_brainpoolP512r1_sha512");
  280. continue;
  281. }
  282. sstr = get_sigtype(sign_nid);
  283. if (sstr)
  284. BIO_printf(out, "%s", sstr);
  285. else
  286. BIO_printf(out, "0x%02X", (int)rsign);
  287. if (hash_nid != NID_undef)
  288. BIO_printf(out, "+%s", OBJ_nid2sn(hash_nid));
  289. else if (sstr == NULL)
  290. BIO_printf(out, "+0x%02X", (int)rhash);
  291. }
  292. BIO_puts(out, "\n");
  293. return 1;
  294. }
  295. int ssl_print_sigalgs(BIO *out, SSL *s)
  296. {
  297. int nid;
  298. if (!SSL_is_server(s))
  299. ssl_print_client_cert_types(out, s);
  300. do_print_sigalgs(out, s, 0);
  301. do_print_sigalgs(out, s, 1);
  302. if (SSL_get_peer_signature_nid(s, &nid) && nid != NID_undef)
  303. BIO_printf(out, "Peer signing digest: %s\n", OBJ_nid2sn(nid));
  304. if (SSL_get_peer_signature_type_nid(s, &nid))
  305. BIO_printf(out, "Peer signature type: %s\n", get_sigtype(nid));
  306. return 1;
  307. }
  308. #ifndef OPENSSL_NO_EC
  309. int ssl_print_point_formats(BIO *out, SSL *s)
  310. {
  311. int i, nformats;
  312. const char *pformats;
  313. nformats = SSL_get0_ec_point_formats(s, &pformats);
  314. if (nformats <= 0)
  315. return 1;
  316. BIO_puts(out, "Supported Elliptic Curve Point Formats: ");
  317. for (i = 0; i < nformats; i++, pformats++) {
  318. if (i)
  319. BIO_puts(out, ":");
  320. switch (*pformats) {
  321. case TLSEXT_ECPOINTFORMAT_uncompressed:
  322. BIO_puts(out, "uncompressed");
  323. break;
  324. case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime:
  325. BIO_puts(out, "ansiX962_compressed_prime");
  326. break;
  327. case TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2:
  328. BIO_puts(out, "ansiX962_compressed_char2");
  329. break;
  330. default:
  331. BIO_printf(out, "unknown(%d)", (int)*pformats);
  332. break;
  333. }
  334. }
  335. BIO_puts(out, "\n");
  336. return 1;
  337. }
  338. int ssl_print_groups(BIO *out, SSL *s, int noshared)
  339. {
  340. int i, ngroups, *groups, nid;
  341. ngroups = SSL_get1_groups(s, NULL);
  342. if (ngroups <= 0)
  343. return 1;
  344. groups = app_malloc(ngroups * sizeof(int), "groups to print");
  345. SSL_get1_groups(s, groups);
  346. BIO_puts(out, "Supported groups: ");
  347. for (i = 0; i < ngroups; i++) {
  348. if (i)
  349. BIO_puts(out, ":");
  350. nid = groups[i];
  351. BIO_printf(out, "%s", SSL_group_to_name(s, nid));
  352. }
  353. OPENSSL_free(groups);
  354. if (noshared) {
  355. BIO_puts(out, "\n");
  356. return 1;
  357. }
  358. BIO_puts(out, "\nShared groups: ");
  359. ngroups = SSL_get_shared_group(s, -1);
  360. for (i = 0; i < ngroups; i++) {
  361. if (i)
  362. BIO_puts(out, ":");
  363. nid = SSL_get_shared_group(s, i);
  364. BIO_printf(out, "%s", SSL_group_to_name(s, nid));
  365. }
  366. if (ngroups == 0)
  367. BIO_puts(out, "NONE");
  368. BIO_puts(out, "\n");
  369. return 1;
  370. }
  371. #endif
  372. int ssl_print_tmp_key(BIO *out, SSL *s)
  373. {
  374. EVP_PKEY *key;
  375. if (!SSL_get_peer_tmp_key(s, &key))
  376. return 1;
  377. BIO_puts(out, "Server Temp Key: ");
  378. switch (EVP_PKEY_get_id(key)) {
  379. case EVP_PKEY_RSA:
  380. BIO_printf(out, "RSA, %d bits\n", EVP_PKEY_get_bits(key));
  381. break;
  382. case EVP_PKEY_DH:
  383. BIO_printf(out, "DH, %d bits\n", EVP_PKEY_get_bits(key));
  384. break;
  385. #ifndef OPENSSL_NO_EC
  386. case EVP_PKEY_EC:
  387. {
  388. char name[80];
  389. size_t name_len;
  390. if (!EVP_PKEY_get_utf8_string_param(key, OSSL_PKEY_PARAM_GROUP_NAME,
  391. name, sizeof(name), &name_len))
  392. strcpy(name, "?");
  393. BIO_printf(out, "ECDH, %s, %d bits\n", name, EVP_PKEY_get_bits(key));
  394. }
  395. break;
  396. #endif
  397. default:
  398. BIO_printf(out, "%s, %d bits\n", OBJ_nid2sn(EVP_PKEY_get_id(key)),
  399. EVP_PKEY_get_bits(key));
  400. }
  401. EVP_PKEY_free(key);
  402. return 1;
  403. }
  404. long bio_dump_callback(BIO *bio, int cmd, const char *argp, size_t len,
  405. int argi, long argl, int ret, size_t *processed)
  406. {
  407. BIO *out;
  408. BIO_MMSG_CB_ARGS *mmsgargs;
  409. size_t i;
  410. out = (BIO *)BIO_get_callback_arg(bio);
  411. if (out == NULL)
  412. return ret;
  413. switch (cmd) {
  414. case (BIO_CB_READ | BIO_CB_RETURN):
  415. if (ret > 0 && processed != NULL) {
  416. BIO_printf(out, "read from %p [%p] (%zu bytes => %zu (0x%zX))\n",
  417. (void *)bio, (void *)argp, len, *processed, *processed);
  418. BIO_dump(out, argp, (int)*processed);
  419. } else {
  420. BIO_printf(out, "read from %p [%p] (%zu bytes => %d)\n",
  421. (void *)bio, (void *)argp, len, ret);
  422. }
  423. break;
  424. case (BIO_CB_WRITE | BIO_CB_RETURN):
  425. if (ret > 0 && processed != NULL) {
  426. BIO_printf(out, "write to %p [%p] (%zu bytes => %zu (0x%zX))\n",
  427. (void *)bio, (void *)argp, len, *processed, *processed);
  428. BIO_dump(out, argp, (int)*processed);
  429. } else {
  430. BIO_printf(out, "write to %p [%p] (%zu bytes => %d)\n",
  431. (void *)bio, (void *)argp, len, ret);
  432. }
  433. break;
  434. case (BIO_CB_RECVMMSG | BIO_CB_RETURN):
  435. mmsgargs = (BIO_MMSG_CB_ARGS *)argp;
  436. if (ret > 0) {
  437. for (i = 0; i < *(mmsgargs->msgs_processed); i++) {
  438. BIO_MSG *msg = (BIO_MSG *)((char *)mmsgargs->msg
  439. + (i * mmsgargs->stride));
  440. BIO_printf(out, "read from %p [%p] (%zu bytes => %zu (0x%zX))\n",
  441. (void *)bio, (void *)msg->data, msg->data_len,
  442. msg->data_len, msg->data_len);
  443. BIO_dump(out, msg->data, msg->data_len);
  444. }
  445. } else if (mmsgargs->num_msg > 0) {
  446. BIO_MSG *msg = mmsgargs->msg;
  447. BIO_printf(out, "read from %p [%p] (%zu bytes => %d)\n",
  448. (void *)bio, (void *)msg->data, msg->data_len, ret);
  449. }
  450. break;
  451. case (BIO_CB_SENDMMSG | BIO_CB_RETURN):
  452. mmsgargs = (BIO_MMSG_CB_ARGS *)argp;
  453. if (ret > 0) {
  454. for (i = 0; i < *(mmsgargs->msgs_processed); i++) {
  455. BIO_MSG *msg = (BIO_MSG *)((char *)mmsgargs->msg
  456. + (i * mmsgargs->stride));
  457. BIO_printf(out, "write to %p [%p] (%zu bytes => %zu (0x%zX))\n",
  458. (void *)bio, (void *)msg->data, msg->data_len,
  459. msg->data_len, msg->data_len);
  460. BIO_dump(out, msg->data, msg->data_len);
  461. }
  462. } else if (mmsgargs->num_msg > 0) {
  463. BIO_MSG *msg = mmsgargs->msg;
  464. BIO_printf(out, "write to %p [%p] (%zu bytes => %d)\n",
  465. (void *)bio, (void *)msg->data, msg->data_len, ret);
  466. }
  467. break;
  468. default:
  469. /* do nothing */
  470. break;
  471. }
  472. return ret;
  473. }
  474. void apps_ssl_info_callback(const SSL *s, int where, int ret)
  475. {
  476. const char *str;
  477. int w;
  478. w = where & ~SSL_ST_MASK;
  479. if (w & SSL_ST_CONNECT)
  480. str = "SSL_connect";
  481. else if (w & SSL_ST_ACCEPT)
  482. str = "SSL_accept";
  483. else
  484. str = "undefined";
  485. if (where & SSL_CB_LOOP) {
  486. BIO_printf(bio_err, "%s:%s\n", str, SSL_state_string_long(s));
  487. } else if (where & SSL_CB_ALERT) {
  488. str = (where & SSL_CB_READ) ? "read" : "write";
  489. BIO_printf(bio_err, "SSL3 alert %s:%s:%s\n",
  490. str,
  491. SSL_alert_type_string_long(ret),
  492. SSL_alert_desc_string_long(ret));
  493. } else if (where & SSL_CB_EXIT) {
  494. if (ret == 0)
  495. BIO_printf(bio_err, "%s:failed in %s\n",
  496. str, SSL_state_string_long(s));
  497. else if (ret < 0)
  498. BIO_printf(bio_err, "%s:error in %s\n",
  499. str, SSL_state_string_long(s));
  500. }
  501. }
  502. static STRINT_PAIR ssl_versions[] = {
  503. {"SSL 3.0", SSL3_VERSION},
  504. {"TLS 1.0", TLS1_VERSION},
  505. {"TLS 1.1", TLS1_1_VERSION},
  506. {"TLS 1.2", TLS1_2_VERSION},
  507. {"TLS 1.3", TLS1_3_VERSION},
  508. {"DTLS 1.0", DTLS1_VERSION},
  509. {"DTLS 1.0 (bad)", DTLS1_BAD_VER},
  510. {NULL}
  511. };
  512. static STRINT_PAIR alert_types[] = {
  513. {" close_notify", 0},
  514. {" end_of_early_data", 1},
  515. {" unexpected_message", 10},
  516. {" bad_record_mac", 20},
  517. {" decryption_failed", 21},
  518. {" record_overflow", 22},
  519. {" decompression_failure", 30},
  520. {" handshake_failure", 40},
  521. {" bad_certificate", 42},
  522. {" unsupported_certificate", 43},
  523. {" certificate_revoked", 44},
  524. {" certificate_expired", 45},
  525. {" certificate_unknown", 46},
  526. {" illegal_parameter", 47},
  527. {" unknown_ca", 48},
  528. {" access_denied", 49},
  529. {" decode_error", 50},
  530. {" decrypt_error", 51},
  531. {" export_restriction", 60},
  532. {" protocol_version", 70},
  533. {" insufficient_security", 71},
  534. {" internal_error", 80},
  535. {" inappropriate_fallback", 86},
  536. {" user_canceled", 90},
  537. {" no_renegotiation", 100},
  538. {" missing_extension", 109},
  539. {" unsupported_extension", 110},
  540. {" certificate_unobtainable", 111},
  541. {" unrecognized_name", 112},
  542. {" bad_certificate_status_response", 113},
  543. {" bad_certificate_hash_value", 114},
  544. {" unknown_psk_identity", 115},
  545. {" certificate_required", 116},
  546. {NULL}
  547. };
  548. static STRINT_PAIR handshakes[] = {
  549. {", HelloRequest", SSL3_MT_HELLO_REQUEST},
  550. {", ClientHello", SSL3_MT_CLIENT_HELLO},
  551. {", ServerHello", SSL3_MT_SERVER_HELLO},
  552. {", HelloVerifyRequest", DTLS1_MT_HELLO_VERIFY_REQUEST},
  553. {", NewSessionTicket", SSL3_MT_NEWSESSION_TICKET},
  554. {", EndOfEarlyData", SSL3_MT_END_OF_EARLY_DATA},
  555. {", EncryptedExtensions", SSL3_MT_ENCRYPTED_EXTENSIONS},
  556. {", Certificate", SSL3_MT_CERTIFICATE},
  557. {", ServerKeyExchange", SSL3_MT_SERVER_KEY_EXCHANGE},
  558. {", CertificateRequest", SSL3_MT_CERTIFICATE_REQUEST},
  559. {", ServerHelloDone", SSL3_MT_SERVER_DONE},
  560. {", CertificateVerify", SSL3_MT_CERTIFICATE_VERIFY},
  561. {", ClientKeyExchange", SSL3_MT_CLIENT_KEY_EXCHANGE},
  562. {", Finished", SSL3_MT_FINISHED},
  563. {", CertificateUrl", SSL3_MT_CERTIFICATE_URL},
  564. {", CertificateStatus", SSL3_MT_CERTIFICATE_STATUS},
  565. {", SupplementalData", SSL3_MT_SUPPLEMENTAL_DATA},
  566. {", KeyUpdate", SSL3_MT_KEY_UPDATE},
  567. {", CompressedCertificate", SSL3_MT_COMPRESSED_CERTIFICATE},
  568. #ifndef OPENSSL_NO_NEXTPROTONEG
  569. {", NextProto", SSL3_MT_NEXT_PROTO},
  570. #endif
  571. {", MessageHash", SSL3_MT_MESSAGE_HASH},
  572. {NULL}
  573. };
  574. void msg_cb(int write_p, int version, int content_type, const void *buf,
  575. size_t len, SSL *ssl, void *arg)
  576. {
  577. BIO *bio = arg;
  578. const char *str_write_p = write_p ? ">>>" : "<<<";
  579. char tmpbuf[128];
  580. const char *str_version, *str_content_type = "", *str_details1 = "", *str_details2 = "";
  581. const unsigned char* bp = buf;
  582. if (version == SSL3_VERSION ||
  583. version == TLS1_VERSION ||
  584. version == TLS1_1_VERSION ||
  585. version == TLS1_2_VERSION ||
  586. version == TLS1_3_VERSION ||
  587. version == DTLS1_VERSION || version == DTLS1_BAD_VER) {
  588. str_version = lookup(version, ssl_versions, "???");
  589. switch (content_type) {
  590. case SSL3_RT_CHANGE_CIPHER_SPEC:
  591. /* type 20 */
  592. str_content_type = ", ChangeCipherSpec";
  593. break;
  594. case SSL3_RT_ALERT:
  595. /* type 21 */
  596. str_content_type = ", Alert";
  597. str_details1 = ", ???";
  598. if (len == 2) {
  599. switch (bp[0]) {
  600. case 1:
  601. str_details1 = ", warning";
  602. break;
  603. case 2:
  604. str_details1 = ", fatal";
  605. break;
  606. }
  607. str_details2 = lookup((int)bp[1], alert_types, " ???");
  608. }
  609. break;
  610. case SSL3_RT_HANDSHAKE:
  611. /* type 22 */
  612. str_content_type = ", Handshake";
  613. str_details1 = "???";
  614. if (len > 0)
  615. str_details1 = lookup((int)bp[0], handshakes, "???");
  616. break;
  617. case SSL3_RT_APPLICATION_DATA:
  618. /* type 23 */
  619. str_content_type = ", ApplicationData";
  620. break;
  621. case SSL3_RT_HEADER:
  622. /* type 256 */
  623. str_content_type = ", RecordHeader";
  624. break;
  625. case SSL3_RT_INNER_CONTENT_TYPE:
  626. /* type 257 */
  627. str_content_type = ", InnerContent";
  628. break;
  629. default:
  630. BIO_snprintf(tmpbuf, sizeof(tmpbuf)-1, ", Unknown (content_type=%d)", content_type);
  631. str_content_type = tmpbuf;
  632. }
  633. } else {
  634. BIO_snprintf(tmpbuf, sizeof(tmpbuf)-1, "Not TLS data or unknown version (version=%d, content_type=%d)", version, content_type);
  635. str_version = tmpbuf;
  636. }
  637. BIO_printf(bio, "%s %s%s [length %04lx]%s%s\n", str_write_p, str_version,
  638. str_content_type, (unsigned long)len, str_details1,
  639. str_details2);
  640. if (len > 0) {
  641. size_t num, i;
  642. BIO_printf(bio, " ");
  643. num = len;
  644. for (i = 0; i < num; i++) {
  645. if (i % 16 == 0 && i > 0)
  646. BIO_printf(bio, "\n ");
  647. BIO_printf(bio, " %02x", ((const unsigned char *)buf)[i]);
  648. }
  649. if (i < len)
  650. BIO_printf(bio, " ...");
  651. BIO_printf(bio, "\n");
  652. }
  653. (void)BIO_flush(bio);
  654. }
  655. static const STRINT_PAIR tlsext_types[] = {
  656. {"server name", TLSEXT_TYPE_server_name},
  657. {"max fragment length", TLSEXT_TYPE_max_fragment_length},
  658. {"client certificate URL", TLSEXT_TYPE_client_certificate_url},
  659. {"trusted CA keys", TLSEXT_TYPE_trusted_ca_keys},
  660. {"truncated HMAC", TLSEXT_TYPE_truncated_hmac},
  661. {"status request", TLSEXT_TYPE_status_request},
  662. {"user mapping", TLSEXT_TYPE_user_mapping},
  663. {"client authz", TLSEXT_TYPE_client_authz},
  664. {"server authz", TLSEXT_TYPE_server_authz},
  665. {"cert type", TLSEXT_TYPE_cert_type},
  666. {"supported_groups", TLSEXT_TYPE_supported_groups},
  667. {"EC point formats", TLSEXT_TYPE_ec_point_formats},
  668. {"SRP", TLSEXT_TYPE_srp},
  669. {"signature algorithms", TLSEXT_TYPE_signature_algorithms},
  670. {"use SRTP", TLSEXT_TYPE_use_srtp},
  671. {"session ticket", TLSEXT_TYPE_session_ticket},
  672. {"renegotiation info", TLSEXT_TYPE_renegotiate},
  673. {"signed certificate timestamps", TLSEXT_TYPE_signed_certificate_timestamp},
  674. {"client cert type", TLSEXT_TYPE_client_cert_type},
  675. {"server cert type", TLSEXT_TYPE_server_cert_type},
  676. {"TLS padding", TLSEXT_TYPE_padding},
  677. #ifdef TLSEXT_TYPE_next_proto_neg
  678. {"next protocol", TLSEXT_TYPE_next_proto_neg},
  679. #endif
  680. #ifdef TLSEXT_TYPE_encrypt_then_mac
  681. {"encrypt-then-mac", TLSEXT_TYPE_encrypt_then_mac},
  682. #endif
  683. #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation
  684. {"application layer protocol negotiation",
  685. TLSEXT_TYPE_application_layer_protocol_negotiation},
  686. #endif
  687. #ifdef TLSEXT_TYPE_extended_master_secret
  688. {"extended master secret", TLSEXT_TYPE_extended_master_secret},
  689. #endif
  690. {"compress certificate", TLSEXT_TYPE_compress_certificate},
  691. {"key share", TLSEXT_TYPE_key_share},
  692. {"supported versions", TLSEXT_TYPE_supported_versions},
  693. {"psk", TLSEXT_TYPE_psk},
  694. {"psk kex modes", TLSEXT_TYPE_psk_kex_modes},
  695. {"certificate authorities", TLSEXT_TYPE_certificate_authorities},
  696. {"post handshake auth", TLSEXT_TYPE_post_handshake_auth},
  697. {"early_data", TLSEXT_TYPE_early_data},
  698. {NULL}
  699. };
  700. /* from rfc8446 4.2.3. + gost (https://tools.ietf.org/id/draft-smyshlyaev-tls12-gost-suites-04.html) */
  701. static STRINT_PAIR signature_tls13_scheme_list[] = {
  702. {"rsa_pkcs1_sha1", 0x0201 /* TLSEXT_SIGALG_rsa_pkcs1_sha1 */},
  703. {"ecdsa_sha1", 0x0203 /* TLSEXT_SIGALG_ecdsa_sha1 */},
  704. /* {"rsa_pkcs1_sha224", 0x0301 TLSEXT_SIGALG_rsa_pkcs1_sha224}, not in rfc8446 */
  705. /* {"ecdsa_sha224", 0x0303 TLSEXT_SIGALG_ecdsa_sha224} not in rfc8446 */
  706. {"rsa_pkcs1_sha256", 0x0401 /* TLSEXT_SIGALG_rsa_pkcs1_sha256 */},
  707. {"ecdsa_secp256r1_sha256", 0x0403 /* TLSEXT_SIGALG_ecdsa_secp256r1_sha256 */},
  708. {"rsa_pkcs1_sha384", 0x0501 /* TLSEXT_SIGALG_rsa_pkcs1_sha384 */},
  709. {"ecdsa_secp384r1_sha384", 0x0503 /* TLSEXT_SIGALG_ecdsa_secp384r1_sha384 */},
  710. {"rsa_pkcs1_sha512", 0x0601 /* TLSEXT_SIGALG_rsa_pkcs1_sha512 */},
  711. {"ecdsa_secp521r1_sha512", 0x0603 /* TLSEXT_SIGALG_ecdsa_secp521r1_sha512 */},
  712. {"rsa_pss_rsae_sha256", 0x0804 /* TLSEXT_SIGALG_rsa_pss_rsae_sha256 */},
  713. {"rsa_pss_rsae_sha384", 0x0805 /* TLSEXT_SIGALG_rsa_pss_rsae_sha384 */},
  714. {"rsa_pss_rsae_sha512", 0x0806 /* TLSEXT_SIGALG_rsa_pss_rsae_sha512 */},
  715. {"ed25519", 0x0807 /* TLSEXT_SIGALG_ed25519 */},
  716. {"ed448", 0x0808 /* TLSEXT_SIGALG_ed448 */},
  717. {"rsa_pss_pss_sha256", 0x0809 /* TLSEXT_SIGALG_rsa_pss_pss_sha256 */},
  718. {"rsa_pss_pss_sha384", 0x080a /* TLSEXT_SIGALG_rsa_pss_pss_sha384 */},
  719. {"rsa_pss_pss_sha512", 0x080b /* TLSEXT_SIGALG_rsa_pss_pss_sha512 */},
  720. {"gostr34102001", 0xeded /* TLSEXT_SIGALG_gostr34102001_gostr3411 */},
  721. {"gostr34102012_256", 0xeeee /* TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256 */},
  722. {"gostr34102012_512", 0xefef /* TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512 */},
  723. {NULL}
  724. };
  725. /* from rfc5246 7.4.1.4.1. */
  726. static STRINT_PAIR signature_tls12_alg_list[] = {
  727. {"anonymous", TLSEXT_signature_anonymous /* 0 */},
  728. {"RSA", TLSEXT_signature_rsa /* 1 */},
  729. {"DSA", TLSEXT_signature_dsa /* 2 */},
  730. {"ECDSA", TLSEXT_signature_ecdsa /* 3 */},
  731. {NULL}
  732. };
  733. /* from rfc5246 7.4.1.4.1. */
  734. static STRINT_PAIR signature_tls12_hash_list[] = {
  735. {"none", TLSEXT_hash_none /* 0 */},
  736. {"MD5", TLSEXT_hash_md5 /* 1 */},
  737. {"SHA1", TLSEXT_hash_sha1 /* 2 */},
  738. {"SHA224", TLSEXT_hash_sha224 /* 3 */},
  739. {"SHA256", TLSEXT_hash_sha256 /* 4 */},
  740. {"SHA384", TLSEXT_hash_sha384 /* 5 */},
  741. {"SHA512", TLSEXT_hash_sha512 /* 6 */},
  742. {NULL}
  743. };
  744. void tlsext_cb(SSL *s, int client_server, int type,
  745. const unsigned char *data, int len, void *arg)
  746. {
  747. BIO *bio = arg;
  748. const char *extname = lookup(type, tlsext_types, "unknown");
  749. BIO_printf(bio, "TLS %s extension \"%s\" (id=%d), len=%d\n",
  750. client_server ? "server" : "client", extname, type, len);
  751. BIO_dump(bio, (const char *)data, len);
  752. (void)BIO_flush(bio);
  753. }
  754. #ifndef OPENSSL_NO_SOCK
  755. int generate_stateless_cookie_callback(SSL *ssl, unsigned char *cookie,
  756. size_t *cookie_len)
  757. {
  758. unsigned char *buffer = NULL;
  759. size_t length = 0;
  760. unsigned short port;
  761. BIO_ADDR *lpeer = NULL, *peer = NULL;
  762. int res = 0;
  763. /* Initialize a random secret */
  764. if (!cookie_initialized) {
  765. if (RAND_bytes(cookie_secret, COOKIE_SECRET_LENGTH) <= 0) {
  766. BIO_printf(bio_err, "error setting random cookie secret\n");
  767. return 0;
  768. }
  769. cookie_initialized = 1;
  770. }
  771. if (SSL_is_dtls(ssl)) {
  772. lpeer = peer = BIO_ADDR_new();
  773. if (peer == NULL) {
  774. BIO_printf(bio_err, "memory full\n");
  775. return 0;
  776. }
  777. /* Read peer information */
  778. (void)BIO_dgram_get_peer(SSL_get_rbio(ssl), peer);
  779. } else {
  780. peer = ourpeer;
  781. }
  782. /* Create buffer with peer's address and port */
  783. if (!BIO_ADDR_rawaddress(peer, NULL, &length)) {
  784. BIO_printf(bio_err, "Failed getting peer address\n");
  785. BIO_ADDR_free(lpeer);
  786. return 0;
  787. }
  788. OPENSSL_assert(length != 0);
  789. port = BIO_ADDR_rawport(peer);
  790. length += sizeof(port);
  791. buffer = app_malloc(length, "cookie generate buffer");
  792. memcpy(buffer, &port, sizeof(port));
  793. BIO_ADDR_rawaddress(peer, buffer + sizeof(port), NULL);
  794. if (EVP_Q_mac(NULL, "HMAC", NULL, "SHA1", NULL,
  795. cookie_secret, COOKIE_SECRET_LENGTH, buffer, length,
  796. cookie, DTLS1_COOKIE_LENGTH, cookie_len) == NULL) {
  797. BIO_printf(bio_err,
  798. "Error calculating HMAC-SHA1 of buffer with secret\n");
  799. goto end;
  800. }
  801. res = 1;
  802. end:
  803. OPENSSL_free(buffer);
  804. BIO_ADDR_free(lpeer);
  805. return res;
  806. }
  807. int verify_stateless_cookie_callback(SSL *ssl, const unsigned char *cookie,
  808. size_t cookie_len)
  809. {
  810. unsigned char result[EVP_MAX_MD_SIZE];
  811. size_t resultlength;
  812. /* Note: we check cookie_initialized because if it's not,
  813. * it cannot be valid */
  814. if (cookie_initialized
  815. && generate_stateless_cookie_callback(ssl, result, &resultlength)
  816. && cookie_len == resultlength
  817. && memcmp(result, cookie, resultlength) == 0)
  818. return 1;
  819. return 0;
  820. }
  821. int generate_cookie_callback(SSL *ssl, unsigned char *cookie,
  822. unsigned int *cookie_len)
  823. {
  824. size_t temp = 0;
  825. int res = generate_stateless_cookie_callback(ssl, cookie, &temp);
  826. if (res != 0)
  827. *cookie_len = (unsigned int)temp;
  828. return res;
  829. }
  830. int verify_cookie_callback(SSL *ssl, const unsigned char *cookie,
  831. unsigned int cookie_len)
  832. {
  833. return verify_stateless_cookie_callback(ssl, cookie, cookie_len);
  834. }
  835. #endif
  836. /*
  837. * Example of extended certificate handling. Where the standard support of
  838. * one certificate per algorithm is not sufficient an application can decide
  839. * which certificate(s) to use at runtime based on whatever criteria it deems
  840. * appropriate.
  841. */
  842. /* Linked list of certificates, keys and chains */
  843. struct ssl_excert_st {
  844. int certform;
  845. const char *certfile;
  846. int keyform;
  847. const char *keyfile;
  848. const char *chainfile;
  849. X509 *cert;
  850. EVP_PKEY *key;
  851. STACK_OF(X509) *chain;
  852. int build_chain;
  853. struct ssl_excert_st *next, *prev;
  854. };
  855. static STRINT_PAIR chain_flags[] = {
  856. {"Overall Validity", CERT_PKEY_VALID},
  857. {"Sign with EE key", CERT_PKEY_SIGN},
  858. {"EE signature", CERT_PKEY_EE_SIGNATURE},
  859. {"CA signature", CERT_PKEY_CA_SIGNATURE},
  860. {"EE key parameters", CERT_PKEY_EE_PARAM},
  861. {"CA key parameters", CERT_PKEY_CA_PARAM},
  862. {"Explicitly sign with EE key", CERT_PKEY_EXPLICIT_SIGN},
  863. {"Issuer Name", CERT_PKEY_ISSUER_NAME},
  864. {"Certificate Type", CERT_PKEY_CERT_TYPE},
  865. {NULL}
  866. };
  867. static void print_chain_flags(SSL *s, int flags)
  868. {
  869. STRINT_PAIR *pp;
  870. for (pp = chain_flags; pp->name; ++pp)
  871. BIO_printf(bio_err, "\t%s: %s\n",
  872. pp->name,
  873. (flags & pp->retval) ? "OK" : "NOT OK");
  874. BIO_printf(bio_err, "\tSuite B: ");
  875. if (SSL_set_cert_flags(s, 0) & SSL_CERT_FLAG_SUITEB_128_LOS)
  876. BIO_puts(bio_err, flags & CERT_PKEY_SUITEB ? "OK\n" : "NOT OK\n");
  877. else
  878. BIO_printf(bio_err, "not tested\n");
  879. }
  880. /*
  881. * Very basic selection callback: just use any certificate chain reported as
  882. * valid. More sophisticated could prioritise according to local policy.
  883. */
  884. static int set_cert_cb(SSL *ssl, void *arg)
  885. {
  886. int i, rv;
  887. SSL_EXCERT *exc = arg;
  888. #ifdef CERT_CB_TEST_RETRY
  889. static int retry_cnt;
  890. if (retry_cnt < 5) {
  891. retry_cnt++;
  892. BIO_printf(bio_err,
  893. "Certificate callback retry test: count %d\n",
  894. retry_cnt);
  895. return -1;
  896. }
  897. #endif
  898. SSL_certs_clear(ssl);
  899. if (exc == NULL)
  900. return 1;
  901. /*
  902. * Go to end of list and traverse backwards since we prepend newer
  903. * entries this retains the original order.
  904. */
  905. while (exc->next != NULL)
  906. exc = exc->next;
  907. i = 0;
  908. while (exc != NULL) {
  909. i++;
  910. rv = SSL_check_chain(ssl, exc->cert, exc->key, exc->chain);
  911. BIO_printf(bio_err, "Checking cert chain %d:\nSubject: ", i);
  912. X509_NAME_print_ex(bio_err, X509_get_subject_name(exc->cert), 0,
  913. get_nameopt());
  914. BIO_puts(bio_err, "\n");
  915. print_chain_flags(ssl, rv);
  916. if (rv & CERT_PKEY_VALID) {
  917. if (!SSL_use_certificate(ssl, exc->cert)
  918. || !SSL_use_PrivateKey(ssl, exc->key)) {
  919. return 0;
  920. }
  921. /*
  922. * NB: we wouldn't normally do this as it is not efficient
  923. * building chains on each connection better to cache the chain
  924. * in advance.
  925. */
  926. if (exc->build_chain) {
  927. if (!SSL_build_cert_chain(ssl, 0))
  928. return 0;
  929. } else if (exc->chain != NULL) {
  930. if (!SSL_set1_chain(ssl, exc->chain))
  931. return 0;
  932. }
  933. }
  934. exc = exc->prev;
  935. }
  936. return 1;
  937. }
  938. void ssl_ctx_set_excert(SSL_CTX *ctx, SSL_EXCERT *exc)
  939. {
  940. SSL_CTX_set_cert_cb(ctx, set_cert_cb, exc);
  941. }
  942. static int ssl_excert_prepend(SSL_EXCERT **pexc)
  943. {
  944. SSL_EXCERT *exc = app_malloc(sizeof(*exc), "prepend cert");
  945. memset(exc, 0, sizeof(*exc));
  946. exc->next = *pexc;
  947. *pexc = exc;
  948. if (exc->next) {
  949. exc->certform = exc->next->certform;
  950. exc->keyform = exc->next->keyform;
  951. exc->next->prev = exc;
  952. } else {
  953. exc->certform = FORMAT_PEM;
  954. exc->keyform = FORMAT_PEM;
  955. }
  956. return 1;
  957. }
  958. void ssl_excert_free(SSL_EXCERT *exc)
  959. {
  960. SSL_EXCERT *curr;
  961. if (exc == NULL)
  962. return;
  963. while (exc) {
  964. X509_free(exc->cert);
  965. EVP_PKEY_free(exc->key);
  966. OSSL_STACK_OF_X509_free(exc->chain);
  967. curr = exc;
  968. exc = exc->next;
  969. OPENSSL_free(curr);
  970. }
  971. }
  972. int load_excert(SSL_EXCERT **pexc)
  973. {
  974. SSL_EXCERT *exc = *pexc;
  975. if (exc == NULL)
  976. return 1;
  977. /* If nothing in list, free and set to NULL */
  978. if (exc->certfile == NULL && exc->next == NULL) {
  979. ssl_excert_free(exc);
  980. *pexc = NULL;
  981. return 1;
  982. }
  983. for (; exc; exc = exc->next) {
  984. if (exc->certfile == NULL) {
  985. BIO_printf(bio_err, "Missing filename\n");
  986. return 0;
  987. }
  988. exc->cert = load_cert(exc->certfile, exc->certform,
  989. "Server Certificate");
  990. if (exc->cert == NULL)
  991. return 0;
  992. if (exc->keyfile != NULL) {
  993. exc->key = load_key(exc->keyfile, exc->keyform,
  994. 0, NULL, NULL, "server key");
  995. } else {
  996. exc->key = load_key(exc->certfile, exc->certform,
  997. 0, NULL, NULL, "server key");
  998. }
  999. if (exc->key == NULL)
  1000. return 0;
  1001. if (exc->chainfile != NULL) {
  1002. if (!load_certs(exc->chainfile, 0, &exc->chain, NULL, "server chain"))
  1003. return 0;
  1004. }
  1005. }
  1006. return 1;
  1007. }
  1008. enum range { OPT_X_ENUM };
  1009. int args_excert(int opt, SSL_EXCERT **pexc)
  1010. {
  1011. SSL_EXCERT *exc = *pexc;
  1012. assert(opt > OPT_X__FIRST);
  1013. assert(opt < OPT_X__LAST);
  1014. if (exc == NULL) {
  1015. if (!ssl_excert_prepend(&exc)) {
  1016. BIO_printf(bio_err, " %s: Error initialising xcert\n",
  1017. opt_getprog());
  1018. goto err;
  1019. }
  1020. *pexc = exc;
  1021. }
  1022. switch ((enum range)opt) {
  1023. case OPT_X__FIRST:
  1024. case OPT_X__LAST:
  1025. return 0;
  1026. case OPT_X_CERT:
  1027. if (exc->certfile != NULL && !ssl_excert_prepend(&exc)) {
  1028. BIO_printf(bio_err, "%s: Error adding xcert\n", opt_getprog());
  1029. goto err;
  1030. }
  1031. *pexc = exc;
  1032. exc->certfile = opt_arg();
  1033. break;
  1034. case OPT_X_KEY:
  1035. if (exc->keyfile != NULL) {
  1036. BIO_printf(bio_err, "%s: Key already specified\n", opt_getprog());
  1037. goto err;
  1038. }
  1039. exc->keyfile = opt_arg();
  1040. break;
  1041. case OPT_X_CHAIN:
  1042. if (exc->chainfile != NULL) {
  1043. BIO_printf(bio_err, "%s: Chain already specified\n",
  1044. opt_getprog());
  1045. goto err;
  1046. }
  1047. exc->chainfile = opt_arg();
  1048. break;
  1049. case OPT_X_CHAIN_BUILD:
  1050. exc->build_chain = 1;
  1051. break;
  1052. case OPT_X_CERTFORM:
  1053. if (!opt_format(opt_arg(), OPT_FMT_ANY, &exc->certform))
  1054. return 0;
  1055. break;
  1056. case OPT_X_KEYFORM:
  1057. if (!opt_format(opt_arg(), OPT_FMT_ANY, &exc->keyform))
  1058. return 0;
  1059. break;
  1060. }
  1061. return 1;
  1062. err:
  1063. ERR_print_errors(bio_err);
  1064. ssl_excert_free(exc);
  1065. *pexc = NULL;
  1066. return 0;
  1067. }
  1068. static void print_raw_cipherlist(SSL *s)
  1069. {
  1070. const unsigned char *rlist;
  1071. static const unsigned char scsv_id[] = { 0, 0xFF };
  1072. size_t i, rlistlen, num;
  1073. if (!SSL_is_server(s))
  1074. return;
  1075. num = SSL_get0_raw_cipherlist(s, NULL);
  1076. OPENSSL_assert(num == 2);
  1077. rlistlen = SSL_get0_raw_cipherlist(s, &rlist);
  1078. BIO_puts(bio_err, "Client cipher list: ");
  1079. for (i = 0; i < rlistlen; i += num, rlist += num) {
  1080. const SSL_CIPHER *c = SSL_CIPHER_find(s, rlist);
  1081. if (i)
  1082. BIO_puts(bio_err, ":");
  1083. if (c != NULL) {
  1084. BIO_puts(bio_err, SSL_CIPHER_get_name(c));
  1085. } else if (memcmp(rlist, scsv_id, num) == 0) {
  1086. BIO_puts(bio_err, "SCSV");
  1087. } else {
  1088. size_t j;
  1089. BIO_puts(bio_err, "0x");
  1090. for (j = 0; j < num; j++)
  1091. BIO_printf(bio_err, "%02X", rlist[j]);
  1092. }
  1093. }
  1094. BIO_puts(bio_err, "\n");
  1095. }
  1096. /*
  1097. * Hex encoder for TLSA RRdata, not ':' delimited.
  1098. */
  1099. static char *hexencode(const unsigned char *data, size_t len)
  1100. {
  1101. static const char *hex = "0123456789abcdef";
  1102. char *out;
  1103. char *cp;
  1104. size_t outlen = 2 * len + 1;
  1105. int ilen = (int) outlen;
  1106. if (outlen < len || ilen < 0 || outlen != (size_t)ilen) {
  1107. BIO_printf(bio_err, "%s: %zu-byte buffer too large to hexencode\n",
  1108. opt_getprog(), len);
  1109. exit(1);
  1110. }
  1111. cp = out = app_malloc(ilen, "TLSA hex data buffer");
  1112. while (len-- > 0) {
  1113. *cp++ = hex[(*data >> 4) & 0x0f];
  1114. *cp++ = hex[*data++ & 0x0f];
  1115. }
  1116. *cp = '\0';
  1117. return out;
  1118. }
  1119. void print_verify_detail(SSL *s, BIO *bio)
  1120. {
  1121. int mdpth;
  1122. EVP_PKEY *mspki = NULL;
  1123. long verify_err = SSL_get_verify_result(s);
  1124. if (verify_err == X509_V_OK) {
  1125. const char *peername = SSL_get0_peername(s);
  1126. BIO_printf(bio, "Verification: OK\n");
  1127. if (peername != NULL)
  1128. BIO_printf(bio, "Verified peername: %s\n", peername);
  1129. } else {
  1130. const char *reason = X509_verify_cert_error_string(verify_err);
  1131. BIO_printf(bio, "Verification error: %s\n", reason);
  1132. }
  1133. if ((mdpth = SSL_get0_dane_authority(s, NULL, &mspki)) >= 0) {
  1134. uint8_t usage, selector, mtype;
  1135. const unsigned char *data = NULL;
  1136. size_t dlen = 0;
  1137. char *hexdata;
  1138. mdpth = SSL_get0_dane_tlsa(s, &usage, &selector, &mtype, &data, &dlen);
  1139. /*
  1140. * The TLSA data field can be quite long when it is a certificate,
  1141. * public key or even a SHA2-512 digest. Because the initial octets of
  1142. * ASN.1 certificates and public keys contain mostly boilerplate OIDs
  1143. * and lengths, we show the last 12 bytes of the data instead, as these
  1144. * are more likely to distinguish distinct TLSA records.
  1145. */
  1146. #define TLSA_TAIL_SIZE 12
  1147. if (dlen > TLSA_TAIL_SIZE)
  1148. hexdata = hexencode(data + dlen - TLSA_TAIL_SIZE, TLSA_TAIL_SIZE);
  1149. else
  1150. hexdata = hexencode(data, dlen);
  1151. BIO_printf(bio, "DANE TLSA %d %d %d %s%s ",
  1152. usage, selector, mtype,
  1153. (dlen > TLSA_TAIL_SIZE) ? "..." : "", hexdata);
  1154. if (SSL_get0_peer_rpk(s) == NULL)
  1155. BIO_printf(bio, "%s certificate at depth %d\n",
  1156. (mspki != NULL) ? "signed the peer" :
  1157. mdpth ? "matched the TA" : "matched the EE", mdpth);
  1158. else
  1159. BIO_printf(bio, "matched the peer raw public key\n");
  1160. OPENSSL_free(hexdata);
  1161. }
  1162. }
  1163. void print_ssl_summary(SSL *s)
  1164. {
  1165. const SSL_CIPHER *c;
  1166. X509 *peer = SSL_get0_peer_certificate(s);
  1167. EVP_PKEY *peer_rpk = SSL_get0_peer_rpk(s);
  1168. int nid;
  1169. BIO_printf(bio_err, "Protocol version: %s\n", SSL_get_version(s));
  1170. print_raw_cipherlist(s);
  1171. c = SSL_get_current_cipher(s);
  1172. BIO_printf(bio_err, "Ciphersuite: %s\n", SSL_CIPHER_get_name(c));
  1173. do_print_sigalgs(bio_err, s, 0);
  1174. if (peer != NULL) {
  1175. BIO_puts(bio_err, "Peer certificate: ");
  1176. X509_NAME_print_ex(bio_err, X509_get_subject_name(peer),
  1177. 0, get_nameopt());
  1178. BIO_puts(bio_err, "\n");
  1179. if (SSL_get_peer_signature_nid(s, &nid))
  1180. BIO_printf(bio_err, "Hash used: %s\n", OBJ_nid2sn(nid));
  1181. if (SSL_get_peer_signature_type_nid(s, &nid))
  1182. BIO_printf(bio_err, "Signature type: %s\n", get_sigtype(nid));
  1183. print_verify_detail(s, bio_err);
  1184. } else if (peer_rpk != NULL) {
  1185. BIO_printf(bio_err, "Peer used raw public key\n");
  1186. if (SSL_get_peer_signature_type_nid(s, &nid))
  1187. BIO_printf(bio_err, "Signature type: %s\n", get_sigtype(nid));
  1188. print_verify_detail(s, bio_err);
  1189. } else {
  1190. BIO_puts(bio_err, "No peer certificate or raw public key\n");
  1191. }
  1192. #ifndef OPENSSL_NO_EC
  1193. ssl_print_point_formats(bio_err, s);
  1194. if (SSL_is_server(s))
  1195. ssl_print_groups(bio_err, s, 1);
  1196. else
  1197. ssl_print_tmp_key(bio_err, s);
  1198. #else
  1199. if (!SSL_is_server(s))
  1200. ssl_print_tmp_key(bio_err, s);
  1201. #endif
  1202. }
  1203. int config_ctx(SSL_CONF_CTX *cctx, STACK_OF(OPENSSL_STRING) *str,
  1204. SSL_CTX *ctx)
  1205. {
  1206. int i;
  1207. SSL_CONF_CTX_set_ssl_ctx(cctx, ctx);
  1208. for (i = 0; i < sk_OPENSSL_STRING_num(str); i += 2) {
  1209. const char *flag = sk_OPENSSL_STRING_value(str, i);
  1210. const char *arg = sk_OPENSSL_STRING_value(str, i + 1);
  1211. if (SSL_CONF_cmd(cctx, flag, arg) <= 0) {
  1212. BIO_printf(bio_err, "Call to SSL_CONF_cmd(%s, %s) failed\n",
  1213. flag, arg == NULL ? "<NULL>" : arg);
  1214. ERR_print_errors(bio_err);
  1215. return 0;
  1216. }
  1217. }
  1218. if (!SSL_CONF_CTX_finish(cctx)) {
  1219. BIO_puts(bio_err, "Error finishing context\n");
  1220. ERR_print_errors(bio_err);
  1221. return 0;
  1222. }
  1223. return 1;
  1224. }
  1225. static int add_crls_store(X509_STORE *st, STACK_OF(X509_CRL) *crls)
  1226. {
  1227. X509_CRL *crl;
  1228. int i, ret = 1;
  1229. for (i = 0; i < sk_X509_CRL_num(crls); i++) {
  1230. crl = sk_X509_CRL_value(crls, i);
  1231. if (!X509_STORE_add_crl(st, crl))
  1232. ret = 0;
  1233. }
  1234. return ret;
  1235. }
  1236. int ssl_ctx_add_crls(SSL_CTX *ctx, STACK_OF(X509_CRL) *crls, int crl_download)
  1237. {
  1238. X509_STORE *st;
  1239. st = SSL_CTX_get_cert_store(ctx);
  1240. add_crls_store(st, crls);
  1241. if (crl_download)
  1242. store_setup_crl_download(st);
  1243. return 1;
  1244. }
  1245. int ssl_load_stores(SSL_CTX *ctx,
  1246. const char *vfyCApath, const char *vfyCAfile,
  1247. const char *vfyCAstore,
  1248. const char *chCApath, const char *chCAfile,
  1249. const char *chCAstore,
  1250. STACK_OF(X509_CRL) *crls, int crl_download)
  1251. {
  1252. X509_STORE *vfy = NULL, *ch = NULL;
  1253. int rv = 0;
  1254. if (vfyCApath != NULL || vfyCAfile != NULL || vfyCAstore != NULL) {
  1255. vfy = X509_STORE_new();
  1256. if (vfy == NULL)
  1257. goto err;
  1258. if (vfyCAfile != NULL && !X509_STORE_load_file(vfy, vfyCAfile))
  1259. goto err;
  1260. if (vfyCApath != NULL && !X509_STORE_load_path(vfy, vfyCApath))
  1261. goto err;
  1262. if (vfyCAstore != NULL && !X509_STORE_load_store(vfy, vfyCAstore))
  1263. goto err;
  1264. add_crls_store(vfy, crls);
  1265. if (SSL_CTX_set1_verify_cert_store(ctx, vfy) == 0)
  1266. goto err;
  1267. if (crl_download)
  1268. store_setup_crl_download(vfy);
  1269. }
  1270. if (chCApath != NULL || chCAfile != NULL || chCAstore != NULL) {
  1271. ch = X509_STORE_new();
  1272. if (ch == NULL)
  1273. goto err;
  1274. if (chCAfile != NULL && !X509_STORE_load_file(ch, chCAfile))
  1275. goto err;
  1276. if (chCApath != NULL && !X509_STORE_load_path(ch, chCApath))
  1277. goto err;
  1278. if (chCAstore != NULL && !X509_STORE_load_store(ch, chCAstore))
  1279. goto err;
  1280. if (SSL_CTX_set1_chain_cert_store(ctx, ch) == 0)
  1281. goto err;
  1282. }
  1283. rv = 1;
  1284. err:
  1285. X509_STORE_free(vfy);
  1286. X509_STORE_free(ch);
  1287. return rv;
  1288. }
  1289. /* Verbose print out of security callback */
  1290. typedef struct {
  1291. BIO *out;
  1292. int verbose;
  1293. int (*old_cb) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid,
  1294. void *other, void *ex);
  1295. } security_debug_ex;
  1296. static STRINT_PAIR callback_types[] = {
  1297. {"Supported Ciphersuite", SSL_SECOP_CIPHER_SUPPORTED},
  1298. {"Shared Ciphersuite", SSL_SECOP_CIPHER_SHARED},
  1299. {"Check Ciphersuite", SSL_SECOP_CIPHER_CHECK},
  1300. #ifndef OPENSSL_NO_DH
  1301. {"Temp DH key bits", SSL_SECOP_TMP_DH},
  1302. #endif
  1303. {"Supported Curve", SSL_SECOP_CURVE_SUPPORTED},
  1304. {"Shared Curve", SSL_SECOP_CURVE_SHARED},
  1305. {"Check Curve", SSL_SECOP_CURVE_CHECK},
  1306. {"Supported Signature Algorithm", SSL_SECOP_SIGALG_SUPPORTED},
  1307. {"Shared Signature Algorithm", SSL_SECOP_SIGALG_SHARED},
  1308. {"Check Signature Algorithm", SSL_SECOP_SIGALG_CHECK},
  1309. {"Signature Algorithm mask", SSL_SECOP_SIGALG_MASK},
  1310. {"Certificate chain EE key", SSL_SECOP_EE_KEY},
  1311. {"Certificate chain CA key", SSL_SECOP_CA_KEY},
  1312. {"Peer Chain EE key", SSL_SECOP_PEER_EE_KEY},
  1313. {"Peer Chain CA key", SSL_SECOP_PEER_CA_KEY},
  1314. {"Certificate chain CA digest", SSL_SECOP_CA_MD},
  1315. {"Peer chain CA digest", SSL_SECOP_PEER_CA_MD},
  1316. {"SSL compression", SSL_SECOP_COMPRESSION},
  1317. {"Session ticket", SSL_SECOP_TICKET},
  1318. {NULL}
  1319. };
  1320. static int security_callback_debug(const SSL *s, const SSL_CTX *ctx,
  1321. int op, int bits, int nid,
  1322. void *other, void *ex)
  1323. {
  1324. security_debug_ex *sdb = ex;
  1325. int rv, show_bits = 1, cert_md = 0;
  1326. const char *nm;
  1327. int show_nm;
  1328. rv = sdb->old_cb(s, ctx, op, bits, nid, other, ex);
  1329. if (rv == 1 && sdb->verbose < 2)
  1330. return 1;
  1331. BIO_puts(sdb->out, "Security callback: ");
  1332. nm = lookup(op, callback_types, NULL);
  1333. show_nm = nm != NULL;
  1334. switch (op) {
  1335. case SSL_SECOP_TICKET:
  1336. case SSL_SECOP_COMPRESSION:
  1337. show_bits = 0;
  1338. show_nm = 0;
  1339. break;
  1340. case SSL_SECOP_VERSION:
  1341. BIO_printf(sdb->out, "Version=%s", lookup(nid, ssl_versions, "???"));
  1342. show_bits = 0;
  1343. show_nm = 0;
  1344. break;
  1345. case SSL_SECOP_CA_MD:
  1346. case SSL_SECOP_PEER_CA_MD:
  1347. cert_md = 1;
  1348. break;
  1349. case SSL_SECOP_SIGALG_SUPPORTED:
  1350. case SSL_SECOP_SIGALG_SHARED:
  1351. case SSL_SECOP_SIGALG_CHECK:
  1352. case SSL_SECOP_SIGALG_MASK:
  1353. show_nm = 0;
  1354. break;
  1355. }
  1356. if (show_nm)
  1357. BIO_printf(sdb->out, "%s=", nm);
  1358. switch (op & SSL_SECOP_OTHER_TYPE) {
  1359. case SSL_SECOP_OTHER_CIPHER:
  1360. BIO_puts(sdb->out, SSL_CIPHER_get_name(other));
  1361. break;
  1362. #ifndef OPENSSL_NO_EC
  1363. case SSL_SECOP_OTHER_CURVE:
  1364. {
  1365. const char *cname;
  1366. cname = EC_curve_nid2nist(nid);
  1367. if (cname == NULL)
  1368. cname = OBJ_nid2sn(nid);
  1369. BIO_puts(sdb->out, cname);
  1370. }
  1371. break;
  1372. #endif
  1373. case SSL_SECOP_OTHER_CERT:
  1374. {
  1375. if (cert_md) {
  1376. int sig_nid = X509_get_signature_nid(other);
  1377. BIO_puts(sdb->out, OBJ_nid2sn(sig_nid));
  1378. } else {
  1379. EVP_PKEY *pkey = X509_get0_pubkey(other);
  1380. if (pkey == NULL) {
  1381. BIO_printf(sdb->out, "Public key missing");
  1382. } else {
  1383. const char *algname = "";
  1384. EVP_PKEY_asn1_get0_info(NULL, NULL, NULL, NULL,
  1385. &algname, EVP_PKEY_get0_asn1(pkey));
  1386. BIO_printf(sdb->out, "%s, bits=%d",
  1387. algname, EVP_PKEY_get_bits(pkey));
  1388. }
  1389. }
  1390. break;
  1391. }
  1392. case SSL_SECOP_OTHER_SIGALG:
  1393. {
  1394. const unsigned char *salg = other;
  1395. const char *sname = NULL;
  1396. int raw_sig_code = (salg[0] << 8) + salg[1]; /* always big endian (msb, lsb) */
  1397. /* raw_sig_code: signature_scheme from tls1.3, or signature_and_hash from tls1.2 */
  1398. if (nm != NULL)
  1399. BIO_printf(sdb->out, "%s", nm);
  1400. else
  1401. BIO_printf(sdb->out, "s_cb.c:security_callback_debug op=0x%x", op);
  1402. sname = lookup(raw_sig_code, signature_tls13_scheme_list, NULL);
  1403. if (sname != NULL) {
  1404. BIO_printf(sdb->out, " scheme=%s", sname);
  1405. } else {
  1406. int alg_code = salg[1];
  1407. int hash_code = salg[0];
  1408. const char *alg_str = lookup(alg_code, signature_tls12_alg_list, NULL);
  1409. const char *hash_str = lookup(hash_code, signature_tls12_hash_list, NULL);
  1410. if (alg_str != NULL && hash_str != NULL)
  1411. BIO_printf(sdb->out, " digest=%s, algorithm=%s", hash_str, alg_str);
  1412. else
  1413. BIO_printf(sdb->out, " scheme=unknown(0x%04x)", raw_sig_code);
  1414. }
  1415. }
  1416. }
  1417. if (show_bits)
  1418. BIO_printf(sdb->out, ", security bits=%d", bits);
  1419. BIO_printf(sdb->out, ": %s\n", rv ? "yes" : "no");
  1420. return rv;
  1421. }
  1422. void ssl_ctx_security_debug(SSL_CTX *ctx, int verbose)
  1423. {
  1424. static security_debug_ex sdb;
  1425. sdb.out = bio_err;
  1426. sdb.verbose = verbose;
  1427. sdb.old_cb = SSL_CTX_get_security_callback(ctx);
  1428. SSL_CTX_set_security_callback(ctx, security_callback_debug);
  1429. SSL_CTX_set0_security_ex_data(ctx, &sdb);
  1430. }
  1431. static void keylog_callback(const SSL *ssl, const char *line)
  1432. {
  1433. if (bio_keylog == NULL) {
  1434. BIO_printf(bio_err, "Keylog callback is invoked without valid file!\n");
  1435. return;
  1436. }
  1437. /*
  1438. * There might be concurrent writers to the keylog file, so we must ensure
  1439. * that the given line is written at once.
  1440. */
  1441. BIO_printf(bio_keylog, "%s\n", line);
  1442. (void)BIO_flush(bio_keylog);
  1443. }
  1444. int set_keylog_file(SSL_CTX *ctx, const char *keylog_file)
  1445. {
  1446. /* Close any open files */
  1447. BIO_free_all(bio_keylog);
  1448. bio_keylog = NULL;
  1449. if (ctx == NULL || keylog_file == NULL) {
  1450. /* Keylogging is disabled, OK. */
  1451. return 0;
  1452. }
  1453. /*
  1454. * Append rather than write in order to allow concurrent modification.
  1455. * Furthermore, this preserves existing keylog files which is useful when
  1456. * the tool is run multiple times.
  1457. */
  1458. bio_keylog = BIO_new_file(keylog_file, "a");
  1459. if (bio_keylog == NULL) {
  1460. BIO_printf(bio_err, "Error writing keylog file %s\n", keylog_file);
  1461. return 1;
  1462. }
  1463. /* Write a header for seekable, empty files (this excludes pipes). */
  1464. if (BIO_tell(bio_keylog) == 0) {
  1465. BIO_puts(bio_keylog,
  1466. "# SSL/TLS secrets log file, generated by OpenSSL\n");
  1467. (void)BIO_flush(bio_keylog);
  1468. }
  1469. SSL_CTX_set_keylog_callback(ctx, keylog_callback);
  1470. return 0;
  1471. }
  1472. void print_ca_names(BIO *bio, SSL *s)
  1473. {
  1474. const char *cs = SSL_is_server(s) ? "server" : "client";
  1475. const STACK_OF(X509_NAME) *sk = SSL_get0_peer_CA_list(s);
  1476. int i;
  1477. if (sk == NULL || sk_X509_NAME_num(sk) == 0) {
  1478. if (!SSL_is_server(s))
  1479. BIO_printf(bio, "---\nNo %s certificate CA names sent\n", cs);
  1480. return;
  1481. }
  1482. BIO_printf(bio, "---\nAcceptable %s certificate CA names\n", cs);
  1483. for (i = 0; i < sk_X509_NAME_num(sk); i++) {
  1484. X509_NAME_print_ex(bio, sk_X509_NAME_value(sk, i), 0, get_nameopt());
  1485. BIO_write(bio, "\n", 1);
  1486. }
  1487. }
  1488. void ssl_print_secure_renegotiation_notes(BIO *bio, SSL *s)
  1489. {
  1490. if (SSL_VERSION_ALLOWS_RENEGOTIATION(s)) {
  1491. BIO_printf(bio, "Secure Renegotiation IS%s supported\n",
  1492. SSL_get_secure_renegotiation_support(s) ? "" : " NOT");
  1493. } else {
  1494. BIO_printf(bio, "This TLS version forbids renegotiation.\n");
  1495. }
  1496. }
  1497. int progress_cb(EVP_PKEY_CTX *ctx)
  1498. {
  1499. BIO *b = EVP_PKEY_CTX_get_app_data(ctx);
  1500. int p = EVP_PKEY_CTX_get_keygen_info(ctx, 0);
  1501. static const char symbols[] = ".+*\n";
  1502. char c = (p >= 0 && (size_t)p <= sizeof(symbols) - 1) ? symbols[p] : '?';
  1503. BIO_write(b, &c, 1);
  1504. (void)BIO_flush(b);
  1505. return 1;
  1506. }