| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683 | 
							- /*
 
-  * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
 
-  *
 
-  * Licensed under the Apache License 2.0 (the "License").  You may not use
 
-  * this file except in compliance with the License.  You can obtain a copy
 
-  * in the file LICENSE in the source distribution or at
 
-  * https://www.openssl.org/source/license.html
 
-  */
 
- #ifndef OSSL_CRYPTO_BN_LOCAL_H
 
- # define OSSL_CRYPTO_BN_LOCAL_H
 
- /*
 
-  * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or
 
-  * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our
 
-  * Configure script and needs to support both 32-bit and 64-bit.
 
-  */
 
- # include <openssl/opensslconf.h>
 
- # if !defined(OPENSSL_SYS_UEFI)
 
- #  include "crypto/bn_conf.h"
 
- # endif
 
- # include "crypto/bn.h"
 
- # include "internal/cryptlib.h"
 
- # include "internal/numbers.h"
 
- /*
 
-  * These preprocessor symbols control various aspects of the bignum headers
 
-  * and library code. They're not defined by any "normal" configuration, as
 
-  * they are intended for development and testing purposes. NB: defining
 
-  * them can be useful for debugging application code as well as openssl
 
-  * itself. BN_DEBUG - turn on various debugging alterations to the bignum
 
-  * code BN_RAND_DEBUG - uses random poisoning of unused words to trip up
 
-  * mismanagement of bignum internals. Enable BN_RAND_DEBUG is known to
 
-  * break some of the OpenSSL tests.
 
-  */
 
- # if defined(BN_RAND_DEBUG) && !defined(BN_DEBUG)
 
- #  define BN_DEBUG
 
- # endif
 
- # if defined(BN_RAND_DEBUG)
 
- #  include <openssl/rand.h>
 
- # endif
 
- /*
 
-  * This should limit the stack usage due to alloca to about 4K.
 
-  * BN_SOFT_LIMIT is a soft limit equivalent to 2*OPENSSL_RSA_MAX_MODULUS_BITS.
 
-  * Beyond that size bn_mul_mont is no longer used, and the constant time
 
-  * assembler code is disabled, due to the blatant alloca and bn_mul_mont usage.
 
-  * Note that bn_mul_mont does an alloca that is hidden away in assembly.
 
-  * It is not recommended to do computations with numbers exceeding this limit,
 
-  * since the result will be highly version dependent:
 
-  * While the current OpenSSL version will use non-optimized, but safe code,
 
-  * previous versions will use optimized code, that may crash due to unexpected
 
-  * stack overflow, and future versions may very well turn this into a hard
 
-  * limit.
 
-  * Note however, that it is possible to override the size limit using
 
-  * "./config -DBN_SOFT_LIMIT=<limit>" if necessary, and the O/S specific
 
-  * stack limit is known and taken into consideration.
 
-  */
 
- # ifndef BN_SOFT_LIMIT
 
- #  define BN_SOFT_LIMIT         (4096 / BN_BYTES)
 
- # endif
 
- # ifndef OPENSSL_SMALL_FOOTPRINT
 
- #  define BN_MUL_COMBA
 
- #  define BN_SQR_COMBA
 
- #  define BN_RECURSION
 
- # endif
 
- /*
 
-  * This next option uses the C libraries (2 word)/(1 word) function. If it is
 
-  * not defined, I use my C version (which is slower). The reason for this
 
-  * flag is that when the particular C compiler library routine is used, and
 
-  * the library is linked with a different compiler, the library is missing.
 
-  * This mostly happens when the library is built with gcc and then linked
 
-  * using normal cc.  This would be a common occurrence because gcc normally
 
-  * produces code that is 2 times faster than system compilers for the big
 
-  * number stuff. For machines with only one compiler (or shared libraries),
 
-  * this should be on.  Again this in only really a problem on machines using
 
-  * "long long's", are 32bit, and are not using my assembler code.
 
-  */
 
- # if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \
 
-     defined(OPENSSL_SYS_WIN32) || defined(linux)
 
- #  define BN_DIV2W
 
- # endif
 
- /*
 
-  * 64-bit processor with LP64 ABI
 
-  */
 
- # ifdef SIXTY_FOUR_BIT_LONG
 
- #  define BN_ULLONG       unsigned long long
 
- #  define BN_BITS4        32
 
- #  define BN_MASK2        (0xffffffffffffffffL)
 
- #  define BN_MASK2l       (0xffffffffL)
 
- #  define BN_MASK2h       (0xffffffff00000000L)
 
- #  define BN_MASK2h1      (0xffffffff80000000L)
 
- #  define BN_DEC_CONV     (10000000000000000000UL)
 
- #  define BN_DEC_NUM      19
 
- #  define BN_DEC_FMT1     "%lu"
 
- #  define BN_DEC_FMT2     "%019lu"
 
- # endif
 
- /*
 
-  * 64-bit processor other than LP64 ABI
 
-  */
 
- # ifdef SIXTY_FOUR_BIT
 
- #  undef BN_LLONG
 
- #  undef BN_ULLONG
 
- #  define BN_BITS4        32
 
- #  define BN_MASK2        (0xffffffffffffffffLL)
 
- #  define BN_MASK2l       (0xffffffffL)
 
- #  define BN_MASK2h       (0xffffffff00000000LL)
 
- #  define BN_MASK2h1      (0xffffffff80000000LL)
 
- #  define BN_DEC_CONV     (10000000000000000000ULL)
 
- #  define BN_DEC_NUM      19
 
- #  define BN_DEC_FMT1     "%llu"
 
- #  define BN_DEC_FMT2     "%019llu"
 
- # endif
 
- # ifdef THIRTY_TWO_BIT
 
- #  ifdef BN_LLONG
 
- #   if defined(_WIN32) && !defined(__GNUC__)
 
- #    define BN_ULLONG     unsigned __int64
 
- #   else
 
- #    define BN_ULLONG     unsigned long long
 
- #   endif
 
- #  endif
 
- #  define BN_BITS4        16
 
- #  define BN_MASK2        (0xffffffffL)
 
- #  define BN_MASK2l       (0xffff)
 
- #  define BN_MASK2h1      (0xffff8000L)
 
- #  define BN_MASK2h       (0xffff0000L)
 
- #  define BN_DEC_CONV     (1000000000L)
 
- #  define BN_DEC_NUM      9
 
- #  define BN_DEC_FMT1     "%u"
 
- #  define BN_DEC_FMT2     "%09u"
 
- # endif
 
- /*-
 
-  * Bignum consistency macros
 
-  * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from
 
-  * bignum data after direct manipulations on the data. There is also an
 
-  * "internal" macro, bn_check_top(), for verifying that there are no leading
 
-  * zeroes. Unfortunately, some auditing is required due to the fact that
 
-  * bn_fix_top() has become an overabused duct-tape because bignum data is
 
-  * occasionally passed around in an inconsistent state. So the following
 
-  * changes have been made to sort this out;
 
-  * - bn_fix_top()s implementation has been moved to bn_correct_top()
 
-  * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and
 
-  *   bn_check_top() is as before.
 
-  * - if BN_DEBUG *is* defined;
 
-  *   - bn_check_top() tries to pollute unused words even if the bignum 'top' is
 
-  *     consistent. (ed: only if BN_RAND_DEBUG is defined)
 
-  *   - bn_fix_top() maps to bn_check_top() rather than "fixing" anything.
 
-  * The idea is to have debug builds flag up inconsistent bignums when they
 
-  * occur. If that occurs in a bn_fix_top(), we examine the code in question; if
 
-  * the use of bn_fix_top() was appropriate (ie. it follows directly after code
 
-  * that manipulates the bignum) it is converted to bn_correct_top(), and if it
 
-  * was not appropriate, we convert it permanently to bn_check_top() and track
 
-  * down the cause of the bug. Eventually, no internal code should be using the
 
-  * bn_fix_top() macro. External applications and libraries should try this with
 
-  * their own code too, both in terms of building against the openssl headers
 
-  * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it
 
-  * defined. This not only improves external code, it provides more test
 
-  * coverage for openssl's own code.
 
-  */
 
- # ifdef BN_DEBUG
 
- /*
 
-  * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with
 
-  * bn_correct_top, in other words such vectors are permitted to have zeros
 
-  * in most significant limbs. Such vectors are used internally to achieve
 
-  * execution time invariance for critical operations with private keys.
 
-  * It's BN_DEBUG-only flag, because user application is not supposed to
 
-  * observe it anyway. Moreover, optimizing compiler would actually remove
 
-  * all operations manipulating the bit in question in non-BN_DEBUG build.
 
-  */
 
- #  define BN_FLG_FIXED_TOP 0x10000
 
- #  ifdef BN_RAND_DEBUG
 
- #   define bn_pollute(a) \
 
-         do { \
 
-             const BIGNUM *_bnum1 = (a); \
 
-             if (_bnum1->top < _bnum1->dmax) { \
 
-                 unsigned char _tmp_char; \
 
-                 /* We cast away const without the compiler knowing, any \
 
-                  * *genuinely* constant variables that aren't mutable \
 
-                  * wouldn't be constructed with top!=dmax. */ \
 
-                 BN_ULONG *_not_const; \
 
-                 memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \
 
-                 (void)RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\
 
-                 memset(_not_const + _bnum1->top, _tmp_char, \
 
-                        sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \
 
-             } \
 
-         } while(0)
 
- #  else
 
- #   define bn_pollute(a)
 
- #  endif
 
- #  define bn_check_top(a) \
 
-         do { \
 
-                 const BIGNUM *_bnum2 = (a); \
 
-                 if (_bnum2 != NULL) { \
 
-                         int _top = _bnum2->top; \
 
-                         (void)ossl_assert((_top == 0 && !_bnum2->neg) || \
 
-                                   (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \
 
-                                             || _bnum2->d[_top - 1] != 0))); \
 
-                         bn_pollute(_bnum2); \
 
-                 } \
 
-         } while(0)
 
- #  define bn_fix_top(a)           bn_check_top(a)
 
- #  define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2)
 
- #  define bn_wcheck_size(bn, words) \
 
-         do { \
 
-                 const BIGNUM *_bnum2 = (bn); \
 
-                 assert((words) <= (_bnum2)->dmax && \
 
-                        (words) >= (_bnum2)->top); \
 
-                 /* avoid unused variable warning with NDEBUG */ \
 
-                 (void)(_bnum2); \
 
-         } while(0)
 
- # else                          /* !BN_DEBUG */
 
- #  define BN_FLG_FIXED_TOP 0
 
- #  define bn_pollute(a)
 
- #  define bn_check_top(a)
 
- #  define bn_fix_top(a)           bn_correct_top(a)
 
- #  define bn_check_size(bn, bits)
 
- #  define bn_wcheck_size(bn, words)
 
- # endif
 
- BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
 
-                           BN_ULONG w);
 
- BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w);
 
- void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num);
 
- BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
 
- BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
 
-                       int num);
 
- BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
 
-                       int num);
 
- struct bignum_st {
 
-     BN_ULONG *d;                /*
 
-                                  * Pointer to an array of 'BN_BITS2' bit
 
-                                  * chunks. These chunks are organised in
 
-                                  * a least significant chunk first order.
 
-                                  */
 
-     int top;                    /* Index of last used d +1. */
 
-     /* The next are internal book keeping for bn_expand. */
 
-     int dmax;                   /* Size of the d array. */
 
-     int neg;                    /* one if the number is negative */
 
-     int flags;
 
- };
 
- /* Used for montgomery multiplication */
 
- struct bn_mont_ctx_st {
 
-     int ri;                     /* number of bits in R */
 
-     BIGNUM RR;                  /* used to convert to montgomery form,
 
-                                    possibly zero-padded */
 
-     BIGNUM N;                   /* The modulus */
 
-     BIGNUM Ni;                  /* R*(1/R mod N) - N*Ni = 1 (Ni is only
 
-                                  * stored for bignum algorithm) */
 
-     BN_ULONG n0[2];             /* least significant word(s) of Ni; (type
 
-                                  * changed with 0.9.9, was "BN_ULONG n0;"
 
-                                  * before) */
 
-     int flags;
 
- };
 
- /*
 
-  * Used for reciprocal division/mod functions It cannot be shared between
 
-  * threads
 
-  */
 
- struct bn_recp_ctx_st {
 
-     BIGNUM N;                   /* the divisor */
 
-     BIGNUM Nr;                  /* the reciprocal */
 
-     int num_bits;
 
-     int shift;
 
-     int flags;
 
- };
 
- /* Used for slow "generation" functions. */
 
- struct bn_gencb_st {
 
-     unsigned int ver;           /* To handle binary (in)compatibility */
 
-     void *arg;                  /* callback-specific data */
 
-     union {
 
-         /* if (ver==1) - handles old style callbacks */
 
-         void (*cb_1) (int, int, void *);
 
-         /* if (ver==2) - new callback style */
 
-         int (*cb_2) (int, int, BN_GENCB *);
 
-     } cb;
 
- };
 
- /*-
 
-  * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
 
-  *
 
-  *
 
-  * For window size 'w' (w >= 2) and a random 'b' bits exponent,
 
-  * the number of multiplications is a constant plus on average
 
-  *
 
-  *    2^(w-1) + (b-w)/(w+1);
 
-  *
 
-  * here  2^(w-1)  is for precomputing the table (we actually need
 
-  * entries only for windows that have the lowest bit set), and
 
-  * (b-w)/(w+1)  is an approximation for the expected number of
 
-  * w-bit windows, not counting the first one.
 
-  *
 
-  * Thus we should use
 
-  *
 
-  *    w >= 6  if        b > 671
 
-  *     w = 5  if  671 > b > 239
 
-  *     w = 4  if  239 > b >  79
 
-  *     w = 3  if   79 > b >  23
 
-  *    w <= 2  if   23 > b
 
-  *
 
-  * (with draws in between).  Very small exponents are often selected
 
-  * with low Hamming weight, so we use  w = 1  for b <= 23.
 
-  */
 
- # define BN_window_bits_for_exponent_size(b) \
 
-                 ((b) > 671 ? 6 : \
 
-                  (b) > 239 ? 5 : \
 
-                  (b) >  79 ? 4 : \
 
-                  (b) >  23 ? 3 : 1)
 
- /*
 
-  * BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache
 
-  * line width of the target processor is at least the following value.
 
-  */
 
- # define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH      ( 64 )
 
- # define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK       (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
 
- /*
 
-  * Window sizes optimized for fixed window size modular exponentiation
 
-  * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of
 
-  * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed
 
-  * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are
 
-  * defined for cache line sizes of 32 and 64, cache line sizes where
 
-  * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be
 
-  * used on processors that have a 128 byte or greater cache line size.
 
-  */
 
- # if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
 
- #  define BN_window_bits_for_ctime_exponent_size(b) \
 
-                 ((b) > 937 ? 6 : \
 
-                  (b) > 306 ? 5 : \
 
-                  (b) >  89 ? 4 : \
 
-                  (b) >  22 ? 3 : 1)
 
- #  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (6)
 
- # elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
 
- #  define BN_window_bits_for_ctime_exponent_size(b) \
 
-                 ((b) > 306 ? 5 : \
 
-                  (b) >  89 ? 4 : \
 
-                  (b) >  22 ? 3 : 1)
 
- #  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE    (5)
 
- # endif
 
- /* Pentium pro 16,16,16,32,64 */
 
- /* Alpha       16,16,16,16.64 */
 
- # define BN_MULL_SIZE_NORMAL                     (16)/* 32 */
 
- # define BN_MUL_RECURSIVE_SIZE_NORMAL            (16)/* 32 less than */
 
- # define BN_SQR_RECURSIVE_SIZE_NORMAL            (16)/* 32 */
 
- # define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL        (32)/* 32 */
 
- # define BN_MONT_CTX_SET_SIZE_WORD               (64)/* 32 */
 
- # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
 
- /*
 
-  * BN_UMULT_HIGH section.
 
-  * If the compiler doesn't support 2*N integer type, then you have to
 
-  * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some
 
-  * shifts and additions which unavoidably results in severe performance
 
-  * penalties. Of course provided that the hardware is capable of producing
 
-  * 2*N result... That's when you normally start considering assembler
 
-  * implementation. However! It should be pointed out that some CPUs (e.g.,
 
-  * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating
 
-  * the upper half of the product placing the result into a general
 
-  * purpose register. Now *if* the compiler supports inline assembler,
 
-  * then it's not impossible to implement the "bignum" routines (and have
 
-  * the compiler optimize 'em) exhibiting "native" performance in C. That's
 
-  * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do
 
-  * support 2*64 integer type, which is also used here.
 
-  */
 
- #  if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \
 
-       (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
 
- #   define BN_UMULT_HIGH(a,b)          (((uint128_t)(a)*(b))>>64)
 
- #   define BN_UMULT_LOHI(low,high,a,b) ({       \
 
-         uint128_t ret=(uint128_t)(a)*(b);   \
 
-         (high)=ret>>64; (low)=ret;      })
 
- #  elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
 
- #   if defined(__DECC)
 
- #    include <c_asm.h>
 
- #    define BN_UMULT_HIGH(a,b)   (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
 
- #   elif defined(__GNUC__) && __GNUC__>=2
 
- #    define BN_UMULT_HIGH(a,b)   ({     \
 
-         register BN_ULONG ret;          \
 
-         asm ("umulh     %1,%2,%0"       \
 
-              : "=r"(ret)                \
 
-              : "r"(a), "r"(b));         \
 
-         ret;                      })
 
- #   endif                       /* compiler */
 
- #  elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG)
 
- #   if defined(__GNUC__) && __GNUC__>=2
 
- #    define BN_UMULT_HIGH(a,b)   ({     \
 
-         register BN_ULONG ret;          \
 
-         asm ("mulhdu    %0,%1,%2"       \
 
-              : "=r"(ret)                \
 
-              : "r"(a), "r"(b));         \
 
-         ret;                      })
 
- #   endif                       /* compiler */
 
- #  elif (defined(__x86_64) || defined(__x86_64__)) && \
 
-        (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
 
- #   if defined(__GNUC__) && __GNUC__>=2
 
- #    define BN_UMULT_HIGH(a,b)   ({     \
 
-         register BN_ULONG ret,discard;  \
 
-         asm ("mulq      %3"             \
 
-              : "=a"(discard),"=d"(ret)  \
 
-              : "a"(a), "g"(b)           \
 
-              : "cc");                   \
 
-         ret;                      })
 
- #    define BN_UMULT_LOHI(low,high,a,b) \
 
-         asm ("mulq      %3"             \
 
-                 : "=a"(low),"=d"(high)  \
 
-                 : "a"(a),"g"(b)         \
 
-                 : "cc");
 
- #   endif
 
- #  elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
 
- #   if defined(_MSC_VER) && _MSC_VER>=1400
 
- unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b);
 
- unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b,
 
-                           unsigned __int64 *h);
 
- #    pragma intrinsic(__umulh,_umul128)
 
- #    define BN_UMULT_HIGH(a,b)           __umulh((a),(b))
 
- #    define BN_UMULT_LOHI(low,high,a,b)  ((low)=_umul128((a),(b),&(high)))
 
- #   endif
 
- #  elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG))
 
- #   if defined(__GNUC__) && __GNUC__>=2
 
- #    define BN_UMULT_HIGH(a,b) ({       \
 
-         register BN_ULONG ret;          \
 
-         asm ("dmultu    %1,%2"          \
 
-              : "=h"(ret)                \
 
-              : "r"(a), "r"(b) : "l");   \
 
-         ret;                    })
 
- #    define BN_UMULT_LOHI(low,high,a,b) \
 
-         asm ("dmultu    %2,%3"          \
 
-              : "=l"(low),"=h"(high)     \
 
-              : "r"(a), "r"(b));
 
- #   endif
 
- #  elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG)
 
- #   if defined(__GNUC__) && __GNUC__>=2
 
- #    define BN_UMULT_HIGH(a,b)   ({     \
 
-         register BN_ULONG ret;          \
 
-         asm ("umulh     %0,%1,%2"       \
 
-              : "=r"(ret)                \
 
-              : "r"(a), "r"(b));         \
 
-         ret;                      })
 
- #   endif
 
- #  endif                        /* cpu */
 
- # endif                         /* OPENSSL_NO_ASM */
 
- # ifdef BN_RAND_DEBUG
 
- #  define bn_clear_top2max(a) \
 
-         { \
 
-         int      ind = (a)->dmax - (a)->top; \
 
-         BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
 
-         for (; ind != 0; ind--) \
 
-                 *(++ftl) = 0x0; \
 
-         }
 
- # else
 
- #  define bn_clear_top2max(a)
 
- # endif
 
- # ifdef BN_LLONG
 
- /*******************************************************************
 
-  * Using the long long type, has to be twice as wide as BN_ULONG...
 
-  */
 
- #  define Lw(t)    (((BN_ULONG)(t))&BN_MASK2)
 
- #  define Hw(t)    (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
 
- #  define mul_add(r,a,w,c) { \
 
-         BN_ULLONG t; \
 
-         t=(BN_ULLONG)w * (a) + (r) + (c); \
 
-         (r)= Lw(t); \
 
-         (c)= Hw(t); \
 
-         }
 
- #  define mul(r,a,w,c) { \
 
-         BN_ULLONG t; \
 
-         t=(BN_ULLONG)w * (a) + (c); \
 
-         (r)= Lw(t); \
 
-         (c)= Hw(t); \
 
-         }
 
- #  define sqr(r0,r1,a) { \
 
-         BN_ULLONG t; \
 
-         t=(BN_ULLONG)(a)*(a); \
 
-         (r0)=Lw(t); \
 
-         (r1)=Hw(t); \
 
-         }
 
- # elif defined(BN_UMULT_LOHI)
 
- #  define mul_add(r,a,w,c) {              \
 
-         BN_ULONG high,low,ret,tmp=(a);  \
 
-         ret =  (r);                     \
 
-         BN_UMULT_LOHI(low,high,w,tmp);  \
 
-         ret += (c);                     \
 
-         (c) =  (ret<(c));               \
 
-         (c) += high;                    \
 
-         ret += low;                     \
 
-         (c) += (ret<low);               \
 
-         (r) =  ret;                     \
 
-         }
 
- #  define mul(r,a,w,c)    {               \
 
-         BN_ULONG high,low,ret,ta=(a);   \
 
-         BN_UMULT_LOHI(low,high,w,ta);   \
 
-         ret =  low + (c);               \
 
-         (c) =  high;                    \
 
-         (c) += (ret<low);               \
 
-         (r) =  ret;                     \
 
-         }
 
- #  define sqr(r0,r1,a)    {               \
 
-         BN_ULONG tmp=(a);               \
 
-         BN_UMULT_LOHI(r0,r1,tmp,tmp);   \
 
-         }
 
- # elif defined(BN_UMULT_HIGH)
 
- #  define mul_add(r,a,w,c) {              \
 
-         BN_ULONG high,low,ret,tmp=(a);  \
 
-         ret =  (r);                     \
 
-         high=  BN_UMULT_HIGH(w,tmp);    \
 
-         ret += (c);                     \
 
-         low =  (w) * tmp;               \
 
-         (c) =  (ret<(c));               \
 
-         (c) += high;                    \
 
-         ret += low;                     \
 
-         (c) += (ret<low);               \
 
-         (r) =  ret;                     \
 
-         }
 
- #  define mul(r,a,w,c)    {               \
 
-         BN_ULONG high,low,ret,ta=(a);   \
 
-         low =  (w) * ta;                \
 
-         high=  BN_UMULT_HIGH(w,ta);     \
 
-         ret =  low + (c);               \
 
-         (c) =  high;                    \
 
-         (c) += (ret<low);               \
 
-         (r) =  ret;                     \
 
-         }
 
- #  define sqr(r0,r1,a)    {               \
 
-         BN_ULONG tmp=(a);               \
 
-         (r0) = tmp * tmp;               \
 
-         (r1) = BN_UMULT_HIGH(tmp,tmp);  \
 
-         }
 
- # else
 
- /*************************************************************
 
-  * No long long type
 
-  */
 
- #  define LBITS(a)        ((a)&BN_MASK2l)
 
- #  define HBITS(a)        (((a)>>BN_BITS4)&BN_MASK2l)
 
- #  define L2HBITS(a)      (((a)<<BN_BITS4)&BN_MASK2)
 
- #  define LLBITS(a)       ((a)&BN_MASKl)
 
- #  define LHBITS(a)       (((a)>>BN_BITS2)&BN_MASKl)
 
- #  define LL2HBITS(a)     ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
 
- #  define mul64(l,h,bl,bh) \
 
-         { \
 
-         BN_ULONG m,m1,lt,ht; \
 
-  \
 
-         lt=l; \
 
-         ht=h; \
 
-         m =(bh)*(lt); \
 
-         lt=(bl)*(lt); \
 
-         m1=(bl)*(ht); \
 
-         ht =(bh)*(ht); \
 
-         m=(m+m1)&BN_MASK2; ht += L2HBITS((BN_ULONG)(m < m1)); \
 
-         ht+=HBITS(m); \
 
-         m1=L2HBITS(m); \
 
-         lt=(lt+m1)&BN_MASK2; ht += (lt < m1); \
 
-         (l)=lt; \
 
-         (h)=ht; \
 
-         }
 
- #  define sqr64(lo,ho,in) \
 
-         { \
 
-         BN_ULONG l,h,m; \
 
-  \
 
-         h=(in); \
 
-         l=LBITS(h); \
 
-         h=HBITS(h); \
 
-         m =(l)*(h); \
 
-         l*=l; \
 
-         h*=h; \
 
-         h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
 
-         m =(m&BN_MASK2l)<<(BN_BITS4+1); \
 
-         l=(l+m)&BN_MASK2; h += (l < m); \
 
-         (lo)=l; \
 
-         (ho)=h; \
 
-         }
 
- #  define mul_add(r,a,bl,bh,c) { \
 
-         BN_ULONG l,h; \
 
-  \
 
-         h= (a); \
 
-         l=LBITS(h); \
 
-         h=HBITS(h); \
 
-         mul64(l,h,(bl),(bh)); \
 
-  \
 
-         /* non-multiply part */ \
 
-         l=(l+(c))&BN_MASK2; h += (l < (c)); \
 
-         (c)=(r); \
 
-         l=(l+(c))&BN_MASK2; h += (l < (c)); \
 
-         (c)=h&BN_MASK2; \
 
-         (r)=l; \
 
-         }
 
- #  define mul(r,a,bl,bh,c) { \
 
-         BN_ULONG l,h; \
 
-  \
 
-         h= (a); \
 
-         l=LBITS(h); \
 
-         h=HBITS(h); \
 
-         mul64(l,h,(bl),(bh)); \
 
-  \
 
-         /* non-multiply part */ \
 
-         l+=(c); h += ((l&BN_MASK2) < (c)); \
 
-         (c)=h&BN_MASK2; \
 
-         (r)=l&BN_MASK2; \
 
-         }
 
- # endif                         /* !BN_LLONG */
 
- void BN_RECP_CTX_init(BN_RECP_CTX *recp);
 
- void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
 
- void bn_init(BIGNUM *a);
 
- void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb);
 
- void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
 
- void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
 
- void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
 
- void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a);
 
- void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a);
 
- int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n);
 
- int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl);
 
- void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
 
-                       int dna, int dnb, BN_ULONG *t);
 
- void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
 
-                            int n, int tna, int tnb, BN_ULONG *t);
 
- void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
 
- void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
 
- void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
 
-                           BN_ULONG *t);
 
- BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
 
-                            int cl, int dl);
 
- int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
 
-                 const BN_ULONG *np, const BN_ULONG *n0, int num);
 
- void bn_correct_top_consttime(BIGNUM *a);
 
- BIGNUM *int_bn_mod_inverse(BIGNUM *in,
 
-                            const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
 
-                            int *noinv);
 
- static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)
 
- {
 
-     if (bits > (INT_MAX - BN_BITS2 + 1))
 
-         return NULL;
 
-     if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax)
 
-         return a;
 
-     return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2);
 
- }
 
- int ossl_bn_check_prime(const BIGNUM *w, int checks, BN_CTX *ctx,
 
-                         int do_trial_division, BN_GENCB *cb);
 
- #endif
 
 
  |