| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378 |
- #! /usr/bin/env perl
- # This file is dual-licensed, meaning that you can use it under your
- # choice of either of the following two licenses:
- #
- # Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
- #
- # Licensed under the Apache License 2.0 (the "License"). You can obtain
- # a copy in the file LICENSE in the source distribution or at
- # https://www.openssl.org/source/license.html
- #
- # or
- #
- # Copyright (c) 2023, Christoph Müllner <[email protected]>
- # All rights reserved.
- #
- # Redistribution and use in source and binary forms, with or without
- # modification, are permitted provided that the following conditions
- # are met:
- # 1. Redistributions of source code must retain the above copyright
- # notice, this list of conditions and the following disclaimer.
- # 2. Redistributions in binary form must reproduce the above copyright
- # notice, this list of conditions and the following disclaimer in the
- # documentation and/or other materials provided with the distribution.
- #
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- # - RV64I
- # - RISC-V Vector ('V') with VLEN >= 128
- # - RISC-V Vector Cryptography Bit-manipulation extension ('Zvkb')
- # - RISC-V Vector Carryless Multiplication extension ('Zvbc')
- use strict;
- use warnings;
- use FindBin qw($Bin);
- use lib "$Bin";
- use lib "$Bin/../../perlasm";
- use riscv;
- # $output is the last argument if it looks like a file (it has an extension)
- # $flavour is the first argument if it doesn't look like a file
- my $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
- my $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
- $output and open STDOUT,">$output";
- my $code=<<___;
- .text
- ___
- ################################################################################
- # void gcm_init_rv64i_zvkb_zvbc(u128 Htable[16], const u64 H[2]);
- #
- # input: H: 128-bit H - secret parameter E(K, 0^128)
- # output: Htable: Preprocessed key data for gcm_gmult_rv64i_zvkb_zvbc and
- # gcm_ghash_rv64i_zvkb_zvbc
- {
- my ($Htable,$H,$TMP0,$TMP1,$TMP2) = ("a0","a1","t0","t1","t2");
- my ($V0,$V1,$V2,$V3,$V4,$V5,$V6) = ("v0","v1","v2","v3","v4","v5","v6");
- $code .= <<___;
- .p2align 3
- .globl gcm_init_rv64i_zvkb_zvbc
- .type gcm_init_rv64i_zvkb_zvbc,\@function
- gcm_init_rv64i_zvkb_zvbc:
- # Load/store data in reverse order.
- # This is needed as a part of endianness swap.
- add $H, $H, 8
- li $TMP0, -8
- li $TMP1, 63
- la $TMP2, Lpolymod
- @{[vsetivli__x0_2_e64_m1_tu_mu]} # vsetivli x0, 2, e64, m1, tu, mu
- @{[vlse64_v $V1, $H, $TMP0]} # vlse64.v v1, (a1), t0
- @{[vle64_v $V2, $TMP2]} # vle64.v v2, (t2)
- # Shift one left and get the carry bits.
- @{[vsrl_vx $V3, $V1, $TMP1]} # vsrl.vx v3, v1, t1
- @{[vsll_vi $V1, $V1, 1]} # vsll.vi v1, v1, 1
- # Use the fact that the polynomial degree is no more than 128,
- # i.e. only the LSB of the upper half could be set.
- # Thanks to this we don't need to do the full reduction here.
- # Instead simply subtract the reduction polynomial.
- # This idea was taken from x86 ghash implementation in OpenSSL.
- @{[vslideup_vi $V4, $V3, 1]} # vslideup.vi v4, v3, 1
- @{[vslidedown_vi $V3, $V3, 1]} # vslidedown.vi v3, v3, 1
- @{[vmv_v_i $V0, 2]} # vmv.v.i v0, 2
- @{[vor_vv_v0t $V1, $V1, $V4]} # vor.vv v1, v1, v4, v0.t
- # Need to set the mask to 3, if the carry bit is set.
- @{[vmv_v_v $V0, $V3]} # vmv.v.v v0, v3
- @{[vmv_v_i $V3, 0]} # vmv.v.i v3, 0
- @{[vmerge_vim $V3, $V3, 3]} # vmerge.vim v3, v3, 3, v0
- @{[vmv_v_v $V0, $V3]} # vmv.v.v v0, v3
- @{[vxor_vv_v0t $V1, $V1, $V2]} # vxor.vv v1, v1, v2, v0.t
- @{[vse64_v $V1, $Htable]} # vse64.v v1, (a0)
- ret
- .size gcm_init_rv64i_zvkb_zvbc,.-gcm_init_rv64i_zvkb_zvbc
- ___
- }
- ################################################################################
- # void gcm_gmult_rv64i_zvkb_zvbc(u64 Xi[2], const u128 Htable[16]);
- #
- # input: Xi: current hash value
- # Htable: preprocessed H
- # output: Xi: next hash value Xi = (Xi * H mod f)
- {
- my ($Xi,$Htable,$TMP0,$TMP1,$TMP2,$TMP3,$TMP4) = ("a0","a1","t0","t1","t2","t3","t4");
- my ($V0,$V1,$V2,$V3,$V4,$V5,$V6) = ("v0","v1","v2","v3","v4","v5","v6");
- $code .= <<___;
- .text
- .p2align 3
- .globl gcm_gmult_rv64i_zvkb_zvbc
- .type gcm_gmult_rv64i_zvkb_zvbc,\@function
- gcm_gmult_rv64i_zvkb_zvbc:
- ld $TMP0, ($Htable)
- ld $TMP1, 8($Htable)
- li $TMP2, 63
- la $TMP3, Lpolymod
- ld $TMP3, 8($TMP3)
- # Load/store data in reverse order.
- # This is needed as a part of endianness swap.
- add $Xi, $Xi, 8
- li $TMP4, -8
- @{[vsetivli__x0_2_e64_m1_tu_mu]} # vsetivli x0, 2, e64, m1, tu, mu
- @{[vlse64_v $V5, $Xi, $TMP4]} # vlse64.v v5, (a0), t4
- @{[vrev8_v $V5, $V5]} # vrev8.v v5, v5
- # Multiplication
- # Do two 64x64 multiplications in one go to save some time
- # and simplify things.
- # A = a1a0 (t1, t0)
- # B = b1b0 (v5)
- # C = c1c0 (256 bit)
- # c1 = a1b1 + (a0b1)h + (a1b0)h
- # c0 = a0b0 + (a0b1)l + (a1b0)h
- # v1 = (a0b1)l,(a0b0)l
- @{[vclmul_vx $V1, $V5, $TMP0]} # vclmul.vx v1, v5, t0
- # v3 = (a0b1)h,(a0b0)h
- @{[vclmulh_vx $V3, $V5, $TMP0]} # vclmulh.vx v3, v5, t0
- # v4 = (a1b1)l,(a1b0)l
- @{[vclmul_vx $V4, $V5, $TMP1]} # vclmul.vx v4, v5, t1
- # v2 = (a1b1)h,(a1b0)h
- @{[vclmulh_vx $V2, $V5, $TMP1]} # vclmulh.vx v2, v5, t1
- # Is there a better way to do this?
- # Would need to swap the order of elements within a vector register.
- @{[vslideup_vi $V5, $V3, 1]} # vslideup.vi v5, v3, 1
- @{[vslideup_vi $V6, $V4, 1]} # vslideup.vi v6, v4, 1
- @{[vslidedown_vi $V3, $V3, 1]} # vslidedown.vi v3, v3, 1
- @{[vslidedown_vi $V4, $V4, 1]} # vslidedown.vi v4, v4, 1
- @{[vmv_v_i $V0, 1]} # vmv.v.i v0, 1
- # v2 += (a0b1)h
- @{[vxor_vv_v0t $V2, $V2, $V3]} # vxor.vv v2, v2, v3, v0.t
- # v2 += (a1b1)l
- @{[vxor_vv_v0t $V2, $V2, $V4]} # vxor.vv v2, v2, v4, v0.t
- @{[vmv_v_i $V0, 2]} # vmv.v.i v0, 2
- # v1 += (a0b0)h,0
- @{[vxor_vv_v0t $V1, $V1, $V5]} # vxor.vv v1, v1, v5, v0.t
- # v1 += (a1b0)l,0
- @{[vxor_vv_v0t $V1, $V1, $V6]} # vxor.vv v1, v1, v6, v0.t
- # Now the 256bit product should be stored in (v2,v1)
- # v1 = (a0b1)l + (a0b0)h + (a1b0)l, (a0b0)l
- # v2 = (a1b1)h, (a1b0)h + (a0b1)h + (a1b1)l
- # Reduction
- # Let C := A*B = c3,c2,c1,c0 = v2[1],v2[0],v1[1],v1[0]
- # This is a slight variation of the Gueron's Montgomery reduction.
- # The difference being the order of some operations has been changed,
- # to make a better use of vclmul(h) instructions.
- # First step:
- # c1 += (c0 * P)l
- # vmv.v.i v0, 2
- @{[vslideup_vi_v0t $V3, $V1, 1]} # vslideup.vi v3, v1, 1, v0.t
- @{[vclmul_vx_v0t $V3, $V3, $TMP3]} # vclmul.vx v3, v3, t3, v0.t
- @{[vxor_vv_v0t $V1, $V1, $V3]} # vxor.vv v1, v1, v3, v0.t
- # Second step:
- # D = d1,d0 is final result
- # We want:
- # m1 = c1 + (c1 * P)h
- # m0 = (c1 * P)l + (c0 * P)h + c0
- # d1 = c3 + m1
- # d0 = c2 + m0
- #v3 = (c1 * P)l, 0
- @{[vclmul_vx_v0t $V3, $V1, $TMP3]} # vclmul.vx v3, v1, t3, v0.t
- #v4 = (c1 * P)h, (c0 * P)h
- @{[vclmulh_vx $V4, $V1, $TMP3]} # vclmulh.vx v4, v1, t3
- @{[vmv_v_i $V0, 1]} # vmv.v.i v0, 1
- @{[vslidedown_vi $V3, $V3, 1]} # vslidedown.vi v3, v3, 1
- @{[vxor_vv $V1, $V1, $V4]} # vxor.vv v1, v1, v4
- @{[vxor_vv_v0t $V1, $V1, $V3]} # vxor.vv v1, v1, v3, v0.t
- # XOR in the upper upper part of the product
- @{[vxor_vv $V2, $V2, $V1]} # vxor.vv v2, v2, v1
- @{[vrev8_v $V2, $V2]} # vrev8.v v2, v2
- @{[vsse64_v $V2, $Xi, $TMP4]} # vsse64.v v2, (a0), t4
- ret
- .size gcm_gmult_rv64i_zvkb_zvbc,.-gcm_gmult_rv64i_zvkb_zvbc
- ___
- }
- ################################################################################
- # void gcm_ghash_rv64i_zvkb_zvbc(u64 Xi[2], const u128 Htable[16],
- # const u8 *inp, size_t len);
- #
- # input: Xi: current hash value
- # Htable: preprocessed H
- # inp: pointer to input data
- # len: length of input data in bytes (multiple of block size)
- # output: Xi: Xi+1 (next hash value Xi)
- {
- my ($Xi,$Htable,$inp,$len,$TMP0,$TMP1,$TMP2,$TMP3,$M8,$TMP5,$TMP6) = ("a0","a1","a2","a3","t0","t1","t2","t3","t4","t5","t6");
- my ($V0,$V1,$V2,$V3,$V4,$V5,$V6,$Vinp) = ("v0","v1","v2","v3","v4","v5","v6","v7");
- $code .= <<___;
- .p2align 3
- .globl gcm_ghash_rv64i_zvkb_zvbc
- .type gcm_ghash_rv64i_zvkb_zvbc,\@function
- gcm_ghash_rv64i_zvkb_zvbc:
- ld $TMP0, ($Htable)
- ld $TMP1, 8($Htable)
- li $TMP2, 63
- la $TMP3, Lpolymod
- ld $TMP3, 8($TMP3)
- # Load/store data in reverse order.
- # This is needed as a part of endianness swap.
- add $Xi, $Xi, 8
- add $inp, $inp, 8
- li $M8, -8
- @{[vsetivli__x0_2_e64_m1_tu_mu]} # vsetivli x0, 2, e64, m1, tu, mu
- @{[vlse64_v $V5, $Xi, $M8]} # vlse64.v v5, (a0), t4
- Lstep:
- # Read input data
- @{[vlse64_v $Vinp, $inp, $M8]} # vle64.v v0, (a2)
- add $inp, $inp, 16
- add $len, $len, -16
- # XOR them into Xi
- @{[vxor_vv $V5, $V5, $Vinp]} # vxor.vv v0, v0, v1
- @{[vrev8_v $V5, $V5]} # vrev8.v v5, v5
- # Multiplication
- # Do two 64x64 multiplications in one go to save some time
- # and simplify things.
- # A = a1a0 (t1, t0)
- # B = b1b0 (v5)
- # C = c1c0 (256 bit)
- # c1 = a1b1 + (a0b1)h + (a1b0)h
- # c0 = a0b0 + (a0b1)l + (a1b0)h
- # v1 = (a0b1)l,(a0b0)l
- @{[vclmul_vx $V1, $V5, $TMP0]} # vclmul.vx v1, v5, t0
- # v3 = (a0b1)h,(a0b0)h
- @{[vclmulh_vx $V3, $V5, $TMP0]} # vclmulh.vx v3, v5, t0
- # v4 = (a1b1)l,(a1b0)l
- @{[vclmul_vx $V4, $V5, $TMP1]} # vclmul.vx v4, v5, t1
- # v2 = (a1b1)h,(a1b0)h
- @{[vclmulh_vx $V2, $V5, $TMP1]} # vclmulh.vx v2, v5, t1
- # Is there a better way to do this?
- # Would need to swap the order of elements within a vector register.
- @{[vslideup_vi $V5, $V3, 1]} # vslideup.vi v5, v3, 1
- @{[vslideup_vi $V6, $V4, 1]} # vslideup.vi v6, v4, 1
- @{[vslidedown_vi $V3, $V3, 1]} # vslidedown.vi v3, v3, 1
- @{[vslidedown_vi $V4, $V4, 1]} # vslidedown.vi v4, v4, 1
- @{[vmv_v_i $V0, 1]} # vmv.v.i v0, 1
- # v2 += (a0b1)h
- @{[vxor_vv_v0t $V2, $V2, $V3]} # vxor.vv v2, v2, v3, v0.t
- # v2 += (a1b1)l
- @{[vxor_vv_v0t $V2, $V2, $V4]} # vxor.vv v2, v2, v4, v0.t
- @{[vmv_v_i $V0, 2]} # vmv.v.i v0, 2
- # v1 += (a0b0)h,0
- @{[vxor_vv_v0t $V1, $V1, $V5]} # vxor.vv v1, v1, v5, v0.t
- # v1 += (a1b0)l,0
- @{[vxor_vv_v0t $V1, $V1, $V6]} # vxor.vv v1, v1, v6, v0.t
- # Now the 256bit product should be stored in (v2,v1)
- # v1 = (a0b1)l + (a0b0)h + (a1b0)l, (a0b0)l
- # v2 = (a1b1)h, (a1b0)h + (a0b1)h + (a1b1)l
- # Reduction
- # Let C := A*B = c3,c2,c1,c0 = v2[1],v2[0],v1[1],v1[0]
- # This is a slight variation of the Gueron's Montgomery reduction.
- # The difference being the order of some operations has been changed,
- # to make a better use of vclmul(h) instructions.
- # First step:
- # c1 += (c0 * P)l
- # vmv.v.i v0, 2
- @{[vslideup_vi_v0t $V3, $V1, 1]} # vslideup.vi v3, v1, 1, v0.t
- @{[vclmul_vx_v0t $V3, $V3, $TMP3]} # vclmul.vx v3, v3, t3, v0.t
- @{[vxor_vv_v0t $V1, $V1, $V3]} # vxor.vv v1, v1, v3, v0.t
- # Second step:
- # D = d1,d0 is final result
- # We want:
- # m1 = c1 + (c1 * P)h
- # m0 = (c1 * P)l + (c0 * P)h + c0
- # d1 = c3 + m1
- # d0 = c2 + m0
- #v3 = (c1 * P)l, 0
- @{[vclmul_vx_v0t $V3, $V1, $TMP3]} # vclmul.vx v3, v1, t3, v0.t
- #v4 = (c1 * P)h, (c0 * P)h
- @{[vclmulh_vx $V4, $V1, $TMP3]} # vclmulh.vx v4, v1, t3
- @{[vmv_v_i $V0, 1]} # vmv.v.i v0, 1
- @{[vslidedown_vi $V3, $V3, 1]} # vslidedown.vi v3, v3, 1
- @{[vxor_vv $V1, $V1, $V4]} # vxor.vv v1, v1, v4
- @{[vxor_vv_v0t $V1, $V1, $V3]} # vxor.vv v1, v1, v3, v0.t
- # XOR in the upper upper part of the product
- @{[vxor_vv $V2, $V2, $V1]} # vxor.vv v2, v2, v1
- @{[vrev8_v $V5, $V2]} # vrev8.v v2, v2
- bnez $len, Lstep
- @{[vsse64_v $V5, $Xi, $M8]} # vsse64.v v2, (a0), t4
- ret
- .size gcm_ghash_rv64i_zvkb_zvbc,.-gcm_ghash_rv64i_zvkb_zvbc
- ___
- }
- $code .= <<___;
- .p2align 4
- Lpolymod:
- .dword 0x0000000000000001
- .dword 0xc200000000000000
- .size Lpolymod,.-Lpolymod
- ___
- print $code;
- close STDOUT or die "error closing STDOUT: $!";
|