pbkdf2.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467
  1. /*
  2. * Copyright 2018-2024 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. /*
  10. * HMAC low level APIs are deprecated for public use, but still ok for internal
  11. * use.
  12. */
  13. #include "internal/deprecated.h"
  14. #include <stdlib.h>
  15. #include <stdarg.h>
  16. #include <string.h>
  17. #include <openssl/hmac.h>
  18. #include <openssl/evp.h>
  19. #include <openssl/kdf.h>
  20. #include <openssl/core_names.h>
  21. #include <openssl/proverr.h>
  22. #include "internal/cryptlib.h"
  23. #include "internal/numbers.h"
  24. #include "crypto/evp.h"
  25. #include "prov/provider_ctx.h"
  26. #include "prov/providercommon.h"
  27. #include "prov/implementations.h"
  28. #include "prov/provider_util.h"
  29. #include "prov/securitycheck.h"
  30. #include "pbkdf2.h"
  31. /* Constants specified in SP800-132 */
  32. #define KDF_PBKDF2_MIN_KEY_LEN_BITS 112
  33. #define KDF_PBKDF2_MAX_KEY_LEN_DIGEST_RATIO 0xFFFFFFFF
  34. #define KDF_PBKDF2_MIN_ITERATIONS 1000
  35. #define KDF_PBKDF2_MIN_SALT_LEN (128 / 8)
  36. static OSSL_FUNC_kdf_newctx_fn kdf_pbkdf2_new;
  37. static OSSL_FUNC_kdf_dupctx_fn kdf_pbkdf2_dup;
  38. static OSSL_FUNC_kdf_freectx_fn kdf_pbkdf2_free;
  39. static OSSL_FUNC_kdf_reset_fn kdf_pbkdf2_reset;
  40. static OSSL_FUNC_kdf_derive_fn kdf_pbkdf2_derive;
  41. static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_pbkdf2_settable_ctx_params;
  42. static OSSL_FUNC_kdf_set_ctx_params_fn kdf_pbkdf2_set_ctx_params;
  43. static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_pbkdf2_gettable_ctx_params;
  44. static OSSL_FUNC_kdf_get_ctx_params_fn kdf_pbkdf2_get_ctx_params;
  45. typedef struct {
  46. void *provctx;
  47. unsigned char *pass;
  48. size_t pass_len;
  49. unsigned char *salt;
  50. size_t salt_len;
  51. uint64_t iter;
  52. PROV_DIGEST digest;
  53. int lower_bound_checks;
  54. OSSL_FIPS_IND_DECLARE
  55. } KDF_PBKDF2;
  56. static int pbkdf2_derive(KDF_PBKDF2 *ctx, const char *pass, size_t passlen,
  57. const unsigned char *salt, int saltlen, uint64_t iter,
  58. const EVP_MD *digest, unsigned char *key,
  59. size_t keylen, int lower_bound_checks);
  60. static void kdf_pbkdf2_init(KDF_PBKDF2 *ctx);
  61. static void *kdf_pbkdf2_new_no_init(void *provctx)
  62. {
  63. KDF_PBKDF2 *ctx;
  64. if (!ossl_prov_is_running())
  65. return NULL;
  66. ctx = OPENSSL_zalloc(sizeof(*ctx));
  67. if (ctx == NULL)
  68. return NULL;
  69. ctx->provctx = provctx;
  70. OSSL_FIPS_IND_INIT(ctx);
  71. return ctx;
  72. }
  73. static void *kdf_pbkdf2_new(void *provctx)
  74. {
  75. KDF_PBKDF2 *ctx = kdf_pbkdf2_new_no_init(provctx);
  76. if (ctx != NULL)
  77. kdf_pbkdf2_init(ctx);
  78. return ctx;
  79. }
  80. static void kdf_pbkdf2_cleanup(KDF_PBKDF2 *ctx)
  81. {
  82. ossl_prov_digest_reset(&ctx->digest);
  83. #ifdef OPENSSL_PEDANTIC_ZEROIZATION
  84. OPENSSL_clear_free(ctx->salt, ctx->salt_len);
  85. #else
  86. OPENSSL_free(ctx->salt);
  87. #endif
  88. OPENSSL_clear_free(ctx->pass, ctx->pass_len);
  89. memset(ctx, 0, sizeof(*ctx));
  90. }
  91. static void kdf_pbkdf2_free(void *vctx)
  92. {
  93. KDF_PBKDF2 *ctx = (KDF_PBKDF2 *)vctx;
  94. if (ctx != NULL) {
  95. kdf_pbkdf2_cleanup(ctx);
  96. OPENSSL_free(ctx);
  97. }
  98. }
  99. static void kdf_pbkdf2_reset(void *vctx)
  100. {
  101. KDF_PBKDF2 *ctx = (KDF_PBKDF2 *)vctx;
  102. void *provctx = ctx->provctx;
  103. kdf_pbkdf2_cleanup(ctx);
  104. ctx->provctx = provctx;
  105. kdf_pbkdf2_init(ctx);
  106. }
  107. static void *kdf_pbkdf2_dup(void *vctx)
  108. {
  109. const KDF_PBKDF2 *src = (const KDF_PBKDF2 *)vctx;
  110. KDF_PBKDF2 *dest;
  111. /* We need a new PBKDF2 object but uninitialised since we're filling it */
  112. dest = kdf_pbkdf2_new_no_init(src->provctx);
  113. if (dest != NULL) {
  114. if (!ossl_prov_memdup(src->salt, src->salt_len,
  115. &dest->salt, &dest->salt_len)
  116. || !ossl_prov_memdup(src->pass, src->pass_len,
  117. &dest->pass, &dest->pass_len)
  118. || !ossl_prov_digest_copy(&dest->digest, &src->digest))
  119. goto err;
  120. dest->iter = src->iter;
  121. dest->lower_bound_checks = src->lower_bound_checks;
  122. OSSL_FIPS_IND_COPY(dest, src)
  123. }
  124. return dest;
  125. err:
  126. kdf_pbkdf2_free(dest);
  127. return NULL;
  128. }
  129. static void kdf_pbkdf2_init(KDF_PBKDF2 *ctx)
  130. {
  131. OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END };
  132. OSSL_LIB_CTX *provctx = PROV_LIBCTX_OF(ctx->provctx);
  133. params[0] = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST,
  134. SN_sha1, 0);
  135. if (!ossl_prov_digest_load_from_params(&ctx->digest, params, provctx))
  136. /* This is an error, but there is no way to indicate such directly */
  137. ossl_prov_digest_reset(&ctx->digest);
  138. ctx->iter = PKCS5_DEFAULT_ITER;
  139. ctx->lower_bound_checks = ossl_kdf_pbkdf2_default_checks;
  140. }
  141. static int pbkdf2_set_membuf(unsigned char **buffer, size_t *buflen,
  142. const OSSL_PARAM *p)
  143. {
  144. OPENSSL_clear_free(*buffer, *buflen);
  145. *buffer = NULL;
  146. *buflen = 0;
  147. if (p->data_size == 0) {
  148. if ((*buffer = OPENSSL_malloc(1)) == NULL)
  149. return 0;
  150. } else if (p->data != NULL) {
  151. if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen))
  152. return 0;
  153. }
  154. return 1;
  155. }
  156. static int pbkdf2_lower_bound_check_passed(int saltlen, uint64_t iter,
  157. size_t keylen, int *error,
  158. const char **desc)
  159. {
  160. if ((keylen * 8) < KDF_PBKDF2_MIN_KEY_LEN_BITS) {
  161. *error = PROV_R_KEY_SIZE_TOO_SMALL;
  162. if (desc != NULL)
  163. *desc = "Key size";
  164. return 0;
  165. }
  166. if (saltlen < KDF_PBKDF2_MIN_SALT_LEN) {
  167. *error = PROV_R_INVALID_SALT_LENGTH;
  168. if (desc != NULL)
  169. *desc = "Salt size";
  170. return 0;
  171. }
  172. if (iter < KDF_PBKDF2_MIN_ITERATIONS) {
  173. *error = PROV_R_INVALID_ITERATION_COUNT;
  174. if (desc != NULL)
  175. *desc = "Iteration count";
  176. return 0;
  177. }
  178. return 1;
  179. }
  180. #ifdef FIPS_MODULE
  181. static int fips_lower_bound_check_passed(KDF_PBKDF2 *ctx, size_t keylen)
  182. {
  183. OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx);
  184. int error = 0;
  185. const char *desc = NULL;
  186. int approved = pbkdf2_lower_bound_check_passed(ctx->salt_len, ctx->iter,
  187. keylen, &error, &desc);
  188. if (!approved) {
  189. if (!OSSL_FIPS_IND_ON_UNAPPROVED(ctx, OSSL_FIPS_IND_SETTABLE0, libctx,
  190. "PBKDF2", desc,
  191. ossl_fips_config_pbkdf2_lower_bound_check)) {
  192. ERR_raise(ERR_LIB_PROV, error);
  193. return 0;
  194. }
  195. }
  196. return 1;
  197. }
  198. #endif
  199. static int kdf_pbkdf2_derive(void *vctx, unsigned char *key, size_t keylen,
  200. const OSSL_PARAM params[])
  201. {
  202. KDF_PBKDF2 *ctx = (KDF_PBKDF2 *)vctx;
  203. const EVP_MD *md;
  204. if (!ossl_prov_is_running() || !kdf_pbkdf2_set_ctx_params(ctx, params))
  205. return 0;
  206. if (ctx->pass == NULL) {
  207. ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS);
  208. return 0;
  209. }
  210. if (ctx->salt == NULL) {
  211. ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
  212. return 0;
  213. }
  214. md = ossl_prov_digest_md(&ctx->digest);
  215. return pbkdf2_derive(ctx, (char *)ctx->pass, ctx->pass_len,
  216. ctx->salt, ctx->salt_len, ctx->iter,
  217. md, key, keylen, ctx->lower_bound_checks);
  218. }
  219. static int kdf_pbkdf2_set_ctx_params(void *vctx, const OSSL_PARAM params[])
  220. {
  221. const OSSL_PARAM *p;
  222. KDF_PBKDF2 *ctx = vctx;
  223. OSSL_LIB_CTX *provctx = PROV_LIBCTX_OF(ctx->provctx);
  224. int pkcs5;
  225. uint64_t iter, min_iter;
  226. const EVP_MD *md;
  227. if (ossl_param_is_empty(params))
  228. return 1;
  229. if (OSSL_PARAM_locate_const(params, OSSL_ALG_PARAM_DIGEST) != NULL) {
  230. if (!ossl_prov_digest_load_from_params(&ctx->digest, params, provctx))
  231. return 0;
  232. md = ossl_prov_digest_md(&ctx->digest);
  233. if (EVP_MD_xof(md)) {
  234. ERR_raise(ERR_LIB_PROV, PROV_R_XOF_DIGESTS_NOT_ALLOWED);
  235. return 0;
  236. }
  237. }
  238. if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PKCS5)) != NULL) {
  239. if (!OSSL_PARAM_get_int(p, &pkcs5))
  240. return 0;
  241. ctx->lower_bound_checks = pkcs5 == 0;
  242. #ifdef FIPS_MODULE
  243. ossl_FIPS_IND_set_settable(OSSL_FIPS_IND_GET(ctx),
  244. OSSL_FIPS_IND_SETTABLE0,
  245. ctx->lower_bound_checks);
  246. #endif
  247. }
  248. if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL)
  249. if (!pbkdf2_set_membuf(&ctx->pass, &ctx->pass_len, p))
  250. return 0;
  251. if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL) {
  252. if (ctx->lower_bound_checks != 0
  253. && p->data_size < KDF_PBKDF2_MIN_SALT_LEN) {
  254. ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH);
  255. return 0;
  256. }
  257. if (!pbkdf2_set_membuf(&ctx->salt, &ctx->salt_len, p))
  258. return 0;
  259. }
  260. if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_ITER)) != NULL) {
  261. if (!OSSL_PARAM_get_uint64(p, &iter))
  262. return 0;
  263. min_iter = ctx->lower_bound_checks != 0 ? KDF_PBKDF2_MIN_ITERATIONS : 1;
  264. if (iter < min_iter) {
  265. ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_ITERATION_COUNT);
  266. return 0;
  267. }
  268. ctx->iter = iter;
  269. }
  270. return 1;
  271. }
  272. static const OSSL_PARAM *kdf_pbkdf2_settable_ctx_params(ossl_unused void *ctx,
  273. ossl_unused void *p_ctx)
  274. {
  275. static const OSSL_PARAM known_settable_ctx_params[] = {
  276. OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
  277. OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0),
  278. OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
  279. OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
  280. OSSL_PARAM_uint64(OSSL_KDF_PARAM_ITER, NULL),
  281. OSSL_PARAM_int(OSSL_KDF_PARAM_PKCS5, NULL),
  282. OSSL_PARAM_END
  283. };
  284. return known_settable_ctx_params;
  285. }
  286. static int kdf_pbkdf2_get_ctx_params(void *vctx, OSSL_PARAM params[])
  287. {
  288. OSSL_PARAM *p;
  289. if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
  290. if (!OSSL_PARAM_set_size_t(p, SIZE_MAX))
  291. return 0;
  292. if (!OSSL_FIPS_IND_GET_CTX_PARAM((KDF_PBKDF2 *) vctx, params))
  293. return 0;
  294. return 1;
  295. }
  296. static const OSSL_PARAM *kdf_pbkdf2_gettable_ctx_params(ossl_unused void *ctx,
  297. ossl_unused void *p_ctx)
  298. {
  299. static const OSSL_PARAM known_gettable_ctx_params[] = {
  300. OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
  301. OSSL_FIPS_IND_GETTABLE_CTX_PARAM()
  302. OSSL_PARAM_END
  303. };
  304. return known_gettable_ctx_params;
  305. }
  306. const OSSL_DISPATCH ossl_kdf_pbkdf2_functions[] = {
  307. { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_pbkdf2_new },
  308. { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_pbkdf2_dup },
  309. { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_pbkdf2_free },
  310. { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_pbkdf2_reset },
  311. { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_pbkdf2_derive },
  312. { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
  313. (void(*)(void))kdf_pbkdf2_settable_ctx_params },
  314. { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_pbkdf2_set_ctx_params },
  315. { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
  316. (void(*)(void))kdf_pbkdf2_gettable_ctx_params },
  317. { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_pbkdf2_get_ctx_params },
  318. OSSL_DISPATCH_END
  319. };
  320. /*
  321. * This is an implementation of PKCS#5 v2.0 password based encryption key
  322. * derivation function PBKDF2. SHA1 version verified against test vectors
  323. * posted by Peter Gutmann to the PKCS-TNG mailing list.
  324. *
  325. * The constraints specified by SP800-132 have been added i.e.
  326. * - Check the range of the key length.
  327. * - Minimum iteration count of 1000.
  328. * - Randomly-generated portion of the salt shall be at least 128 bits.
  329. */
  330. static int pbkdf2_derive(KDF_PBKDF2 *ctx, const char *pass, size_t passlen,
  331. const unsigned char *salt, int saltlen, uint64_t iter,
  332. const EVP_MD *digest, unsigned char *key,
  333. size_t keylen, int lower_bound_checks)
  334. {
  335. int ret = 0;
  336. unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4];
  337. int cplen, k, tkeylen, mdlen;
  338. uint64_t j;
  339. unsigned long i = 1;
  340. HMAC_CTX *hctx_tpl = NULL, *hctx = NULL;
  341. mdlen = EVP_MD_get_size(digest);
  342. if (mdlen <= 0)
  343. return 0;
  344. /*
  345. * This check should always be done because keylen / mdlen >= (2^32 - 1)
  346. * results in an overflow of the loop counter 'i'.
  347. */
  348. if ((keylen / mdlen) >= KDF_PBKDF2_MAX_KEY_LEN_DIGEST_RATIO) {
  349. ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH);
  350. return 0;
  351. }
  352. #ifdef FIPS_MODULE
  353. if (!fips_lower_bound_check_passed(ctx, keylen))
  354. return 0;
  355. #else
  356. if (lower_bound_checks) {
  357. int error = 0;
  358. int passed = pbkdf2_lower_bound_check_passed(saltlen, iter, keylen,
  359. &error, NULL);
  360. if (!passed) {
  361. ERR_raise(ERR_LIB_PROV, error);
  362. return 0;
  363. }
  364. }
  365. #endif
  366. hctx_tpl = HMAC_CTX_new();
  367. if (hctx_tpl == NULL)
  368. return 0;
  369. p = key;
  370. tkeylen = keylen;
  371. if (!HMAC_Init_ex(hctx_tpl, pass, passlen, digest, NULL))
  372. goto err;
  373. hctx = HMAC_CTX_new();
  374. if (hctx == NULL)
  375. goto err;
  376. while (tkeylen) {
  377. if (tkeylen > mdlen)
  378. cplen = mdlen;
  379. else
  380. cplen = tkeylen;
  381. /*
  382. * We are unlikely to ever use more than 256 blocks (5120 bits!) but
  383. * just in case...
  384. */
  385. itmp[0] = (unsigned char)((i >> 24) & 0xff);
  386. itmp[1] = (unsigned char)((i >> 16) & 0xff);
  387. itmp[2] = (unsigned char)((i >> 8) & 0xff);
  388. itmp[3] = (unsigned char)(i & 0xff);
  389. if (!HMAC_CTX_copy(hctx, hctx_tpl))
  390. goto err;
  391. if (!HMAC_Update(hctx, salt, saltlen)
  392. || !HMAC_Update(hctx, itmp, 4)
  393. || !HMAC_Final(hctx, digtmp, NULL))
  394. goto err;
  395. memcpy(p, digtmp, cplen);
  396. for (j = 1; j < iter; j++) {
  397. if (!HMAC_CTX_copy(hctx, hctx_tpl))
  398. goto err;
  399. if (!HMAC_Update(hctx, digtmp, mdlen)
  400. || !HMAC_Final(hctx, digtmp, NULL))
  401. goto err;
  402. for (k = 0; k < cplen; k++)
  403. p[k] ^= digtmp[k];
  404. }
  405. tkeylen -= cplen;
  406. i++;
  407. p += cplen;
  408. }
  409. ret = 1;
  410. err:
  411. HMAC_CTX_free(hctx);
  412. HMAC_CTX_free(hctx_tpl);
  413. return ret;
  414. }