t1_lib.c 130 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058
  1. /*
  2. * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. #include <stdio.h>
  10. #include <stdlib.h>
  11. #include <openssl/objects.h>
  12. #include <openssl/evp.h>
  13. #include <openssl/hmac.h>
  14. #include <openssl/core_names.h>
  15. #include <openssl/ocsp.h>
  16. #include <openssl/conf.h>
  17. #include <openssl/x509v3.h>
  18. #include <openssl/dh.h>
  19. #include <openssl/bn.h>
  20. #include <openssl/provider.h>
  21. #include <openssl/param_build.h>
  22. #include "internal/nelem.h"
  23. #include "internal/sizes.h"
  24. #include "internal/tlsgroups.h"
  25. #include "ssl_local.h"
  26. #include "quic/quic_local.h"
  27. #include <openssl/ct.h>
  28. static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
  29. static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
  30. SSL3_ENC_METHOD const TLSv1_enc_data = {
  31. tls1_setup_key_block,
  32. tls1_generate_master_secret,
  33. tls1_change_cipher_state,
  34. tls1_final_finish_mac,
  35. TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
  36. TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
  37. tls1_alert_code,
  38. tls1_export_keying_material,
  39. 0,
  40. ssl3_set_handshake_header,
  41. tls_close_construct_packet,
  42. ssl3_handshake_write
  43. };
  44. SSL3_ENC_METHOD const TLSv1_1_enc_data = {
  45. tls1_setup_key_block,
  46. tls1_generate_master_secret,
  47. tls1_change_cipher_state,
  48. tls1_final_finish_mac,
  49. TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
  50. TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
  51. tls1_alert_code,
  52. tls1_export_keying_material,
  53. SSL_ENC_FLAG_EXPLICIT_IV,
  54. ssl3_set_handshake_header,
  55. tls_close_construct_packet,
  56. ssl3_handshake_write
  57. };
  58. SSL3_ENC_METHOD const TLSv1_2_enc_data = {
  59. tls1_setup_key_block,
  60. tls1_generate_master_secret,
  61. tls1_change_cipher_state,
  62. tls1_final_finish_mac,
  63. TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
  64. TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
  65. tls1_alert_code,
  66. tls1_export_keying_material,
  67. SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
  68. | SSL_ENC_FLAG_TLS1_2_CIPHERS,
  69. ssl3_set_handshake_header,
  70. tls_close_construct_packet,
  71. ssl3_handshake_write
  72. };
  73. SSL3_ENC_METHOD const TLSv1_3_enc_data = {
  74. tls13_setup_key_block,
  75. tls13_generate_master_secret,
  76. tls13_change_cipher_state,
  77. tls13_final_finish_mac,
  78. TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
  79. TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
  80. tls13_alert_code,
  81. tls13_export_keying_material,
  82. SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
  83. ssl3_set_handshake_header,
  84. tls_close_construct_packet,
  85. ssl3_handshake_write
  86. };
  87. OSSL_TIME tls1_default_timeout(void)
  88. {
  89. /*
  90. * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
  91. * http, the cache would over fill
  92. */
  93. return ossl_seconds2time(60 * 60 * 2);
  94. }
  95. int tls1_new(SSL *s)
  96. {
  97. if (!ssl3_new(s))
  98. return 0;
  99. if (!s->method->ssl_clear(s))
  100. return 0;
  101. return 1;
  102. }
  103. void tls1_free(SSL *s)
  104. {
  105. SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
  106. if (sc == NULL)
  107. return;
  108. OPENSSL_free(sc->ext.session_ticket);
  109. ssl3_free(s);
  110. }
  111. int tls1_clear(SSL *s)
  112. {
  113. SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
  114. if (sc == NULL)
  115. return 0;
  116. if (!ssl3_clear(s))
  117. return 0;
  118. if (s->method->version == TLS_ANY_VERSION)
  119. sc->version = TLS_MAX_VERSION_INTERNAL;
  120. else
  121. sc->version = s->method->version;
  122. return 1;
  123. }
  124. /* Legacy NID to group_id mapping. Only works for groups we know about */
  125. static const struct {
  126. int nid;
  127. uint16_t group_id;
  128. } nid_to_group[] = {
  129. {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
  130. {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
  131. {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
  132. {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
  133. {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
  134. {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
  135. {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
  136. {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
  137. {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
  138. {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
  139. {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
  140. {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
  141. {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
  142. {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
  143. {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
  144. {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
  145. {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
  146. {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
  147. {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
  148. {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
  149. {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
  150. {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
  151. {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
  152. {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
  153. {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
  154. {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
  155. {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
  156. {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
  157. {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
  158. {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
  159. {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
  160. {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
  161. {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
  162. {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
  163. {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
  164. {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
  165. {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
  166. {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
  167. {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
  168. {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
  169. {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
  170. {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
  171. {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
  172. {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
  173. {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
  174. };
  175. static const unsigned char ecformats_default[] = {
  176. TLSEXT_ECPOINTFORMAT_uncompressed,
  177. TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
  178. TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
  179. };
  180. /* The default curves */
  181. static const uint16_t supported_groups_default[] = {
  182. OSSL_TLS_GROUP_ID_x25519, /* X25519 (29) */
  183. OSSL_TLS_GROUP_ID_secp256r1, /* secp256r1 (23) */
  184. OSSL_TLS_GROUP_ID_x448, /* X448 (30) */
  185. OSSL_TLS_GROUP_ID_secp521r1, /* secp521r1 (25) */
  186. OSSL_TLS_GROUP_ID_secp384r1, /* secp384r1 (24) */
  187. OSSL_TLS_GROUP_ID_gc256A, /* GC256A (34) */
  188. OSSL_TLS_GROUP_ID_gc256B, /* GC256B (35) */
  189. OSSL_TLS_GROUP_ID_gc256C, /* GC256C (36) */
  190. OSSL_TLS_GROUP_ID_gc256D, /* GC256D (37) */
  191. OSSL_TLS_GROUP_ID_gc512A, /* GC512A (38) */
  192. OSSL_TLS_GROUP_ID_gc512B, /* GC512B (39) */
  193. OSSL_TLS_GROUP_ID_gc512C, /* GC512C (40) */
  194. OSSL_TLS_GROUP_ID_ffdhe2048, /* ffdhe2048 (0x100) */
  195. OSSL_TLS_GROUP_ID_ffdhe3072, /* ffdhe3072 (0x101) */
  196. OSSL_TLS_GROUP_ID_ffdhe4096, /* ffdhe4096 (0x102) */
  197. OSSL_TLS_GROUP_ID_ffdhe6144, /* ffdhe6144 (0x103) */
  198. OSSL_TLS_GROUP_ID_ffdhe8192, /* ffdhe8192 (0x104) */
  199. };
  200. static const uint16_t suiteb_curves[] = {
  201. OSSL_TLS_GROUP_ID_secp256r1,
  202. OSSL_TLS_GROUP_ID_secp384r1,
  203. };
  204. struct provider_ctx_data_st {
  205. SSL_CTX *ctx;
  206. OSSL_PROVIDER *provider;
  207. };
  208. #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
  209. static OSSL_CALLBACK add_provider_groups;
  210. static int add_provider_groups(const OSSL_PARAM params[], void *data)
  211. {
  212. struct provider_ctx_data_st *pgd = data;
  213. SSL_CTX *ctx = pgd->ctx;
  214. OSSL_PROVIDER *provider = pgd->provider;
  215. const OSSL_PARAM *p;
  216. TLS_GROUP_INFO *ginf = NULL;
  217. EVP_KEYMGMT *keymgmt;
  218. unsigned int gid;
  219. unsigned int is_kem = 0;
  220. int ret = 0;
  221. if (ctx->group_list_max_len == ctx->group_list_len) {
  222. TLS_GROUP_INFO *tmp = NULL;
  223. if (ctx->group_list_max_len == 0)
  224. tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
  225. * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
  226. else
  227. tmp = OPENSSL_realloc(ctx->group_list,
  228. (ctx->group_list_max_len
  229. + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
  230. * sizeof(TLS_GROUP_INFO));
  231. if (tmp == NULL)
  232. return 0;
  233. ctx->group_list = tmp;
  234. memset(tmp + ctx->group_list_max_len,
  235. 0,
  236. sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
  237. ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
  238. }
  239. ginf = &ctx->group_list[ctx->group_list_len];
  240. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
  241. if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
  242. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  243. goto err;
  244. }
  245. ginf->tlsname = OPENSSL_strdup(p->data);
  246. if (ginf->tlsname == NULL)
  247. goto err;
  248. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
  249. if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
  250. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  251. goto err;
  252. }
  253. ginf->realname = OPENSSL_strdup(p->data);
  254. if (ginf->realname == NULL)
  255. goto err;
  256. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
  257. if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
  258. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  259. goto err;
  260. }
  261. ginf->group_id = (uint16_t)gid;
  262. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
  263. if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
  264. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  265. goto err;
  266. }
  267. ginf->algorithm = OPENSSL_strdup(p->data);
  268. if (ginf->algorithm == NULL)
  269. goto err;
  270. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
  271. if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
  272. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  273. goto err;
  274. }
  275. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
  276. if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
  277. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  278. goto err;
  279. }
  280. ginf->is_kem = 1 & is_kem;
  281. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
  282. if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
  283. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  284. goto err;
  285. }
  286. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
  287. if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
  288. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  289. goto err;
  290. }
  291. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
  292. if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
  293. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  294. goto err;
  295. }
  296. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
  297. if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
  298. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  299. goto err;
  300. }
  301. /*
  302. * Now check that the algorithm is actually usable for our property query
  303. * string. Regardless of the result we still return success because we have
  304. * successfully processed this group, even though we may decide not to use
  305. * it.
  306. */
  307. ret = 1;
  308. ERR_set_mark();
  309. keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
  310. if (keymgmt != NULL) {
  311. /*
  312. * We have successfully fetched the algorithm - however if the provider
  313. * doesn't match this one then we ignore it.
  314. *
  315. * Note: We're cheating a little here. Technically if the same algorithm
  316. * is available from more than one provider then it is undefined which
  317. * implementation you will get back. Theoretically this could be
  318. * different every time...we assume here that you'll always get the
  319. * same one back if you repeat the exact same fetch. Is this a reasonable
  320. * assumption to make (in which case perhaps we should document this
  321. * behaviour)?
  322. */
  323. if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
  324. /* We have a match - so we will use this group */
  325. ctx->group_list_len++;
  326. ginf = NULL;
  327. }
  328. EVP_KEYMGMT_free(keymgmt);
  329. }
  330. ERR_pop_to_mark();
  331. err:
  332. if (ginf != NULL) {
  333. OPENSSL_free(ginf->tlsname);
  334. OPENSSL_free(ginf->realname);
  335. OPENSSL_free(ginf->algorithm);
  336. ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
  337. }
  338. return ret;
  339. }
  340. static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
  341. {
  342. struct provider_ctx_data_st pgd;
  343. pgd.ctx = vctx;
  344. pgd.provider = provider;
  345. return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
  346. add_provider_groups, &pgd);
  347. }
  348. int ssl_load_groups(SSL_CTX *ctx)
  349. {
  350. size_t i, j, num_deflt_grps = 0;
  351. uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
  352. if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
  353. return 0;
  354. for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
  355. for (j = 0; j < ctx->group_list_len; j++) {
  356. if (ctx->group_list[j].group_id == supported_groups_default[i]) {
  357. tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
  358. break;
  359. }
  360. }
  361. }
  362. if (num_deflt_grps == 0)
  363. return 1;
  364. ctx->ext.supported_groups_default
  365. = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
  366. if (ctx->ext.supported_groups_default == NULL)
  367. return 0;
  368. memcpy(ctx->ext.supported_groups_default,
  369. tmp_supp_groups,
  370. num_deflt_grps * sizeof(tmp_supp_groups[0]));
  371. ctx->ext.supported_groups_default_len = num_deflt_grps;
  372. return 1;
  373. }
  374. #define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
  375. static OSSL_CALLBACK add_provider_sigalgs;
  376. static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
  377. {
  378. struct provider_ctx_data_st *pgd = data;
  379. SSL_CTX *ctx = pgd->ctx;
  380. OSSL_PROVIDER *provider = pgd->provider;
  381. const OSSL_PARAM *p;
  382. TLS_SIGALG_INFO *sinf = NULL;
  383. EVP_KEYMGMT *keymgmt;
  384. const char *keytype;
  385. unsigned int code_point = 0;
  386. int ret = 0;
  387. if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
  388. TLS_SIGALG_INFO *tmp = NULL;
  389. if (ctx->sigalg_list_max_len == 0)
  390. tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
  391. * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
  392. else
  393. tmp = OPENSSL_realloc(ctx->sigalg_list,
  394. (ctx->sigalg_list_max_len
  395. + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
  396. * sizeof(TLS_SIGALG_INFO));
  397. if (tmp == NULL)
  398. return 0;
  399. ctx->sigalg_list = tmp;
  400. memset(tmp + ctx->sigalg_list_max_len, 0,
  401. sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
  402. ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
  403. }
  404. sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
  405. /* First, mandatory parameters */
  406. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
  407. if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
  408. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  409. goto err;
  410. }
  411. OPENSSL_free(sinf->sigalg_name);
  412. sinf->sigalg_name = OPENSSL_strdup(p->data);
  413. if (sinf->sigalg_name == NULL)
  414. goto err;
  415. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
  416. if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
  417. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  418. goto err;
  419. }
  420. OPENSSL_free(sinf->name);
  421. sinf->name = OPENSSL_strdup(p->data);
  422. if (sinf->name == NULL)
  423. goto err;
  424. p = OSSL_PARAM_locate_const(params,
  425. OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
  426. if (p == NULL
  427. || !OSSL_PARAM_get_uint(p, &code_point)
  428. || code_point > UINT16_MAX) {
  429. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  430. goto err;
  431. }
  432. sinf->code_point = (uint16_t)code_point;
  433. p = OSSL_PARAM_locate_const(params,
  434. OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
  435. if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
  436. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  437. goto err;
  438. }
  439. /* Now, optional parameters */
  440. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
  441. if (p == NULL) {
  442. sinf->sigalg_oid = NULL;
  443. } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
  444. goto err;
  445. } else {
  446. OPENSSL_free(sinf->sigalg_oid);
  447. sinf->sigalg_oid = OPENSSL_strdup(p->data);
  448. if (sinf->sigalg_oid == NULL)
  449. goto err;
  450. }
  451. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
  452. if (p == NULL) {
  453. sinf->sig_name = NULL;
  454. } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
  455. goto err;
  456. } else {
  457. OPENSSL_free(sinf->sig_name);
  458. sinf->sig_name = OPENSSL_strdup(p->data);
  459. if (sinf->sig_name == NULL)
  460. goto err;
  461. }
  462. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
  463. if (p == NULL) {
  464. sinf->sig_oid = NULL;
  465. } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
  466. goto err;
  467. } else {
  468. OPENSSL_free(sinf->sig_oid);
  469. sinf->sig_oid = OPENSSL_strdup(p->data);
  470. if (sinf->sig_oid == NULL)
  471. goto err;
  472. }
  473. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
  474. if (p == NULL) {
  475. sinf->hash_name = NULL;
  476. } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
  477. goto err;
  478. } else {
  479. OPENSSL_free(sinf->hash_name);
  480. sinf->hash_name = OPENSSL_strdup(p->data);
  481. if (sinf->hash_name == NULL)
  482. goto err;
  483. }
  484. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
  485. if (p == NULL) {
  486. sinf->hash_oid = NULL;
  487. } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
  488. goto err;
  489. } else {
  490. OPENSSL_free(sinf->hash_oid);
  491. sinf->hash_oid = OPENSSL_strdup(p->data);
  492. if (sinf->hash_oid == NULL)
  493. goto err;
  494. }
  495. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
  496. if (p == NULL) {
  497. sinf->keytype = NULL;
  498. } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
  499. goto err;
  500. } else {
  501. OPENSSL_free(sinf->keytype);
  502. sinf->keytype = OPENSSL_strdup(p->data);
  503. if (sinf->keytype == NULL)
  504. goto err;
  505. }
  506. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
  507. if (p == NULL) {
  508. sinf->keytype_oid = NULL;
  509. } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
  510. goto err;
  511. } else {
  512. OPENSSL_free(sinf->keytype_oid);
  513. sinf->keytype_oid = OPENSSL_strdup(p->data);
  514. if (sinf->keytype_oid == NULL)
  515. goto err;
  516. }
  517. /* The remaining parameters below are mandatory again */
  518. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
  519. if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
  520. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  521. goto err;
  522. }
  523. if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
  524. ((sinf->mintls < TLS1_3_VERSION))) {
  525. /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
  526. ret = 1;
  527. goto err;
  528. }
  529. p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
  530. if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
  531. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  532. goto err;
  533. }
  534. if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
  535. ((sinf->maxtls < sinf->mintls))) {
  536. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  537. goto err;
  538. }
  539. if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
  540. ((sinf->maxtls < TLS1_3_VERSION))) {
  541. /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
  542. ret = 1;
  543. goto err;
  544. }
  545. /*
  546. * Now check that the algorithm is actually usable for our property query
  547. * string. Regardless of the result we still return success because we have
  548. * successfully processed this signature, even though we may decide not to
  549. * use it.
  550. */
  551. ret = 1;
  552. ERR_set_mark();
  553. keytype = (sinf->keytype != NULL
  554. ? sinf->keytype
  555. : (sinf->sig_name != NULL
  556. ? sinf->sig_name
  557. : sinf->sigalg_name));
  558. keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
  559. if (keymgmt != NULL) {
  560. /*
  561. * We have successfully fetched the algorithm - however if the provider
  562. * doesn't match this one then we ignore it.
  563. *
  564. * Note: We're cheating a little here. Technically if the same algorithm
  565. * is available from more than one provider then it is undefined which
  566. * implementation you will get back. Theoretically this could be
  567. * different every time...we assume here that you'll always get the
  568. * same one back if you repeat the exact same fetch. Is this a reasonable
  569. * assumption to make (in which case perhaps we should document this
  570. * behaviour)?
  571. */
  572. if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
  573. /*
  574. * We have a match - so we could use this signature;
  575. * Check proper object registration first, though.
  576. * Don't care about return value as this may have been
  577. * done within providers or previous calls to
  578. * add_provider_sigalgs.
  579. */
  580. OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
  581. /* sanity check: Without successful registration don't use alg */
  582. if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
  583. (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
  584. ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
  585. goto err;
  586. }
  587. if (sinf->sig_name != NULL)
  588. OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
  589. if (sinf->keytype != NULL)
  590. OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
  591. if (sinf->hash_name != NULL)
  592. OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
  593. OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
  594. (sinf->hash_name != NULL
  595. ? OBJ_txt2nid(sinf->hash_name)
  596. : NID_undef),
  597. OBJ_txt2nid(keytype));
  598. ctx->sigalg_list_len++;
  599. sinf = NULL;
  600. }
  601. EVP_KEYMGMT_free(keymgmt);
  602. }
  603. ERR_pop_to_mark();
  604. err:
  605. if (sinf != NULL) {
  606. OPENSSL_free(sinf->name);
  607. sinf->name = NULL;
  608. OPENSSL_free(sinf->sigalg_name);
  609. sinf->sigalg_name = NULL;
  610. OPENSSL_free(sinf->sigalg_oid);
  611. sinf->sigalg_oid = NULL;
  612. OPENSSL_free(sinf->sig_name);
  613. sinf->sig_name = NULL;
  614. OPENSSL_free(sinf->sig_oid);
  615. sinf->sig_oid = NULL;
  616. OPENSSL_free(sinf->hash_name);
  617. sinf->hash_name = NULL;
  618. OPENSSL_free(sinf->hash_oid);
  619. sinf->hash_oid = NULL;
  620. OPENSSL_free(sinf->keytype);
  621. sinf->keytype = NULL;
  622. OPENSSL_free(sinf->keytype_oid);
  623. sinf->keytype_oid = NULL;
  624. }
  625. return ret;
  626. }
  627. static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
  628. {
  629. struct provider_ctx_data_st pgd;
  630. pgd.ctx = vctx;
  631. pgd.provider = provider;
  632. OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
  633. add_provider_sigalgs, &pgd);
  634. /*
  635. * Always OK, even if provider doesn't support the capability:
  636. * Reconsider testing retval when legacy sigalgs are also loaded this way.
  637. */
  638. return 1;
  639. }
  640. int ssl_load_sigalgs(SSL_CTX *ctx)
  641. {
  642. size_t i;
  643. SSL_CERT_LOOKUP lu;
  644. if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
  645. return 0;
  646. /* now populate ctx->ssl_cert_info */
  647. if (ctx->sigalg_list_len > 0) {
  648. OPENSSL_free(ctx->ssl_cert_info);
  649. ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
  650. if (ctx->ssl_cert_info == NULL)
  651. return 0;
  652. for(i = 0; i < ctx->sigalg_list_len; i++) {
  653. ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
  654. ctx->ssl_cert_info[i].amask = SSL_aANY;
  655. }
  656. }
  657. /*
  658. * For now, leave it at this: legacy sigalgs stay in their own
  659. * data structures until "legacy cleanup" occurs.
  660. */
  661. return 1;
  662. }
  663. static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
  664. {
  665. size_t i;
  666. for (i = 0; i < ctx->group_list_len; i++) {
  667. if (strcmp(ctx->group_list[i].tlsname, name) == 0
  668. || strcmp(ctx->group_list[i].realname, name) == 0)
  669. return ctx->group_list[i].group_id;
  670. }
  671. return 0;
  672. }
  673. const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
  674. {
  675. size_t i;
  676. for (i = 0; i < ctx->group_list_len; i++) {
  677. if (ctx->group_list[i].group_id == group_id)
  678. return &ctx->group_list[i];
  679. }
  680. return NULL;
  681. }
  682. const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
  683. {
  684. const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
  685. if (tls_group_info == NULL)
  686. return NULL;
  687. return tls_group_info->tlsname;
  688. }
  689. int tls1_group_id2nid(uint16_t group_id, int include_unknown)
  690. {
  691. size_t i;
  692. if (group_id == 0)
  693. return NID_undef;
  694. /*
  695. * Return well known Group NIDs - for backwards compatibility. This won't
  696. * work for groups we don't know about.
  697. */
  698. for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
  699. {
  700. if (nid_to_group[i].group_id == group_id)
  701. return nid_to_group[i].nid;
  702. }
  703. if (!include_unknown)
  704. return NID_undef;
  705. return TLSEXT_nid_unknown | (int)group_id;
  706. }
  707. uint16_t tls1_nid2group_id(int nid)
  708. {
  709. size_t i;
  710. /*
  711. * Return well known Group ids - for backwards compatibility. This won't
  712. * work for groups we don't know about.
  713. */
  714. for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
  715. {
  716. if (nid_to_group[i].nid == nid)
  717. return nid_to_group[i].group_id;
  718. }
  719. return 0;
  720. }
  721. /*
  722. * Set *pgroups to the supported groups list and *pgroupslen to
  723. * the number of groups supported.
  724. */
  725. void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
  726. size_t *pgroupslen)
  727. {
  728. SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
  729. /* For Suite B mode only include P-256, P-384 */
  730. switch (tls1_suiteb(s)) {
  731. case SSL_CERT_FLAG_SUITEB_128_LOS:
  732. *pgroups = suiteb_curves;
  733. *pgroupslen = OSSL_NELEM(suiteb_curves);
  734. break;
  735. case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
  736. *pgroups = suiteb_curves;
  737. *pgroupslen = 1;
  738. break;
  739. case SSL_CERT_FLAG_SUITEB_192_LOS:
  740. *pgroups = suiteb_curves + 1;
  741. *pgroupslen = 1;
  742. break;
  743. default:
  744. if (s->ext.supportedgroups == NULL) {
  745. *pgroups = sctx->ext.supported_groups_default;
  746. *pgroupslen = sctx->ext.supported_groups_default_len;
  747. } else {
  748. *pgroups = s->ext.supportedgroups;
  749. *pgroupslen = s->ext.supportedgroups_len;
  750. }
  751. break;
  752. }
  753. }
  754. int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
  755. int minversion, int maxversion,
  756. int isec, int *okfortls13)
  757. {
  758. const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
  759. group_id);
  760. int ret;
  761. int group_minversion, group_maxversion;
  762. if (okfortls13 != NULL)
  763. *okfortls13 = 0;
  764. if (ginfo == NULL)
  765. return 0;
  766. group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
  767. group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
  768. if (group_minversion < 0 || group_maxversion < 0)
  769. return 0;
  770. if (group_maxversion == 0)
  771. ret = 1;
  772. else
  773. ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
  774. if (group_minversion > 0)
  775. ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
  776. if (!SSL_CONNECTION_IS_DTLS(s)) {
  777. if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
  778. *okfortls13 = (group_maxversion == 0)
  779. || (group_maxversion >= TLS1_3_VERSION);
  780. }
  781. ret &= !isec
  782. || strcmp(ginfo->algorithm, "EC") == 0
  783. || strcmp(ginfo->algorithm, "X25519") == 0
  784. || strcmp(ginfo->algorithm, "X448") == 0;
  785. return ret;
  786. }
  787. /* See if group is allowed by security callback */
  788. int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
  789. {
  790. const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
  791. group);
  792. unsigned char gtmp[2];
  793. if (ginfo == NULL)
  794. return 0;
  795. gtmp[0] = group >> 8;
  796. gtmp[1] = group & 0xff;
  797. return ssl_security(s, op, ginfo->secbits,
  798. tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
  799. }
  800. /* Return 1 if "id" is in "list" */
  801. static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
  802. {
  803. size_t i;
  804. for (i = 0; i < listlen; i++)
  805. if (list[i] == id)
  806. return 1;
  807. return 0;
  808. }
  809. /*-
  810. * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
  811. * if there is no match.
  812. * For nmatch == -1, return number of matches
  813. * For nmatch == -2, return the id of the group to use for
  814. * a tmp key, or 0 if there is no match.
  815. */
  816. uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
  817. {
  818. const uint16_t *pref, *supp;
  819. size_t num_pref, num_supp, i;
  820. int k;
  821. SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
  822. /* Can't do anything on client side */
  823. if (s->server == 0)
  824. return 0;
  825. if (nmatch == -2) {
  826. if (tls1_suiteb(s)) {
  827. /*
  828. * For Suite B ciphersuite determines curve: we already know
  829. * these are acceptable due to previous checks.
  830. */
  831. unsigned long cid = s->s3.tmp.new_cipher->id;
  832. if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
  833. return OSSL_TLS_GROUP_ID_secp256r1;
  834. if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
  835. return OSSL_TLS_GROUP_ID_secp384r1;
  836. /* Should never happen */
  837. return 0;
  838. }
  839. /* If not Suite B just return first preference shared curve */
  840. nmatch = 0;
  841. }
  842. /*
  843. * If server preference set, our groups are the preference order
  844. * otherwise peer decides.
  845. */
  846. if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
  847. tls1_get_supported_groups(s, &pref, &num_pref);
  848. tls1_get_peer_groups(s, &supp, &num_supp);
  849. } else {
  850. tls1_get_peer_groups(s, &pref, &num_pref);
  851. tls1_get_supported_groups(s, &supp, &num_supp);
  852. }
  853. for (k = 0, i = 0; i < num_pref; i++) {
  854. uint16_t id = pref[i];
  855. const TLS_GROUP_INFO *inf;
  856. int minversion, maxversion;
  857. if (!tls1_in_list(id, supp, num_supp)
  858. || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
  859. continue;
  860. inf = tls1_group_id_lookup(ctx, id);
  861. if (!ossl_assert(inf != NULL))
  862. return 0;
  863. minversion = SSL_CONNECTION_IS_DTLS(s)
  864. ? inf->mindtls : inf->mintls;
  865. maxversion = SSL_CONNECTION_IS_DTLS(s)
  866. ? inf->maxdtls : inf->maxtls;
  867. if (maxversion == -1)
  868. continue;
  869. if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
  870. || (maxversion != 0
  871. && ssl_version_cmp(s, s->version, maxversion) > 0))
  872. continue;
  873. if (nmatch == k)
  874. return id;
  875. k++;
  876. }
  877. if (nmatch == -1)
  878. return k;
  879. /* Out of range (nmatch > k). */
  880. return 0;
  881. }
  882. int tls1_set_groups(uint16_t **pext, size_t *pextlen,
  883. int *groups, size_t ngroups)
  884. {
  885. uint16_t *glist;
  886. size_t i;
  887. /*
  888. * Bitmap of groups included to detect duplicates: two variables are added
  889. * to detect duplicates as some values are more than 32.
  890. */
  891. unsigned long *dup_list = NULL;
  892. unsigned long dup_list_egrp = 0;
  893. unsigned long dup_list_dhgrp = 0;
  894. if (ngroups == 0) {
  895. ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
  896. return 0;
  897. }
  898. if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
  899. return 0;
  900. for (i = 0; i < ngroups; i++) {
  901. unsigned long idmask;
  902. uint16_t id;
  903. id = tls1_nid2group_id(groups[i]);
  904. if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
  905. goto err;
  906. idmask = 1L << (id & 0x00FF);
  907. dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
  908. if (!id || ((*dup_list) & idmask))
  909. goto err;
  910. *dup_list |= idmask;
  911. glist[i] = id;
  912. }
  913. OPENSSL_free(*pext);
  914. *pext = glist;
  915. *pextlen = ngroups;
  916. return 1;
  917. err:
  918. OPENSSL_free(glist);
  919. return 0;
  920. }
  921. # define GROUPLIST_INCREMENT 40
  922. # define GROUP_NAME_BUFFER_LENGTH 64
  923. typedef struct {
  924. SSL_CTX *ctx;
  925. size_t gidcnt;
  926. size_t gidmax;
  927. uint16_t *gid_arr;
  928. } gid_cb_st;
  929. static int gid_cb(const char *elem, int len, void *arg)
  930. {
  931. gid_cb_st *garg = arg;
  932. size_t i;
  933. uint16_t gid = 0;
  934. char etmp[GROUP_NAME_BUFFER_LENGTH];
  935. int ignore_unknown = 0;
  936. if (elem == NULL)
  937. return 0;
  938. if (elem[0] == '?') {
  939. ignore_unknown = 1;
  940. ++elem;
  941. --len;
  942. }
  943. if (garg->gidcnt == garg->gidmax) {
  944. uint16_t *tmp =
  945. OPENSSL_realloc(garg->gid_arr,
  946. (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
  947. if (tmp == NULL)
  948. return 0;
  949. garg->gidmax += GROUPLIST_INCREMENT;
  950. garg->gid_arr = tmp;
  951. }
  952. if (len > (int)(sizeof(etmp) - 1))
  953. return 0;
  954. memcpy(etmp, elem, len);
  955. etmp[len] = 0;
  956. gid = tls1_group_name2id(garg->ctx, etmp);
  957. if (gid == 0) {
  958. /* Unknown group - ignore, if ignore_unknown */
  959. return ignore_unknown;
  960. }
  961. for (i = 0; i < garg->gidcnt; i++)
  962. if (garg->gid_arr[i] == gid) {
  963. /* Duplicate group - ignore */
  964. return 1;
  965. }
  966. garg->gid_arr[garg->gidcnt++] = gid;
  967. return 1;
  968. }
  969. /* Set groups based on a colon separated list */
  970. int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
  971. const char *str)
  972. {
  973. gid_cb_st gcb;
  974. uint16_t *tmparr;
  975. int ret = 0;
  976. gcb.gidcnt = 0;
  977. gcb.gidmax = GROUPLIST_INCREMENT;
  978. gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
  979. if (gcb.gid_arr == NULL)
  980. return 0;
  981. gcb.ctx = ctx;
  982. if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
  983. goto end;
  984. if (gcb.gidcnt == 0) {
  985. ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
  986. "No valid groups in '%s'", str);
  987. goto end;
  988. }
  989. if (pext == NULL) {
  990. ret = 1;
  991. goto end;
  992. }
  993. /*
  994. * gid_cb ensurse there are no duplicates so we can just go ahead and set
  995. * the result
  996. */
  997. tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
  998. if (tmparr == NULL)
  999. goto end;
  1000. OPENSSL_free(*pext);
  1001. *pext = tmparr;
  1002. *pextlen = gcb.gidcnt;
  1003. ret = 1;
  1004. end:
  1005. OPENSSL_free(gcb.gid_arr);
  1006. return ret;
  1007. }
  1008. /* Check a group id matches preferences */
  1009. int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
  1010. int check_own_groups)
  1011. {
  1012. const uint16_t *groups;
  1013. size_t groups_len;
  1014. if (group_id == 0)
  1015. return 0;
  1016. /* Check for Suite B compliance */
  1017. if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
  1018. unsigned long cid = s->s3.tmp.new_cipher->id;
  1019. if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
  1020. if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
  1021. return 0;
  1022. } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
  1023. if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
  1024. return 0;
  1025. } else {
  1026. /* Should never happen */
  1027. return 0;
  1028. }
  1029. }
  1030. if (check_own_groups) {
  1031. /* Check group is one of our preferences */
  1032. tls1_get_supported_groups(s, &groups, &groups_len);
  1033. if (!tls1_in_list(group_id, groups, groups_len))
  1034. return 0;
  1035. }
  1036. if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
  1037. return 0;
  1038. /* For clients, nothing more to check */
  1039. if (!s->server)
  1040. return 1;
  1041. /* Check group is one of peers preferences */
  1042. tls1_get_peer_groups(s, &groups, &groups_len);
  1043. /*
  1044. * RFC 4492 does not require the supported elliptic curves extension
  1045. * so if it is not sent we can just choose any curve.
  1046. * It is invalid to send an empty list in the supported groups
  1047. * extension, so groups_len == 0 always means no extension.
  1048. */
  1049. if (groups_len == 0)
  1050. return 1;
  1051. return tls1_in_list(group_id, groups, groups_len);
  1052. }
  1053. void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
  1054. size_t *num_formats)
  1055. {
  1056. /*
  1057. * If we have a custom point format list use it otherwise use default
  1058. */
  1059. if (s->ext.ecpointformats) {
  1060. *pformats = s->ext.ecpointformats;
  1061. *num_formats = s->ext.ecpointformats_len;
  1062. } else {
  1063. *pformats = ecformats_default;
  1064. /* For Suite B we don't support char2 fields */
  1065. if (tls1_suiteb(s))
  1066. *num_formats = sizeof(ecformats_default) - 1;
  1067. else
  1068. *num_formats = sizeof(ecformats_default);
  1069. }
  1070. }
  1071. /* Check a key is compatible with compression extension */
  1072. static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
  1073. {
  1074. unsigned char comp_id;
  1075. size_t i;
  1076. int point_conv;
  1077. /* If not an EC key nothing to check */
  1078. if (!EVP_PKEY_is_a(pkey, "EC"))
  1079. return 1;
  1080. /* Get required compression id */
  1081. point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
  1082. if (point_conv == 0)
  1083. return 0;
  1084. if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
  1085. comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
  1086. } else if (SSL_CONNECTION_IS_TLS13(s)) {
  1087. /*
  1088. * ec_point_formats extension is not used in TLSv1.3 so we ignore
  1089. * this check.
  1090. */
  1091. return 1;
  1092. } else {
  1093. int field_type = EVP_PKEY_get_field_type(pkey);
  1094. if (field_type == NID_X9_62_prime_field)
  1095. comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
  1096. else if (field_type == NID_X9_62_characteristic_two_field)
  1097. comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
  1098. else
  1099. return 0;
  1100. }
  1101. /*
  1102. * If point formats extension present check it, otherwise everything is
  1103. * supported (see RFC4492).
  1104. */
  1105. if (s->ext.peer_ecpointformats == NULL)
  1106. return 1;
  1107. for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
  1108. if (s->ext.peer_ecpointformats[i] == comp_id)
  1109. return 1;
  1110. }
  1111. return 0;
  1112. }
  1113. /* Return group id of a key */
  1114. static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
  1115. {
  1116. int curve_nid = ssl_get_EC_curve_nid(pkey);
  1117. if (curve_nid == NID_undef)
  1118. return 0;
  1119. return tls1_nid2group_id(curve_nid);
  1120. }
  1121. /*
  1122. * Check cert parameters compatible with extensions: currently just checks EC
  1123. * certificates have compatible curves and compression.
  1124. */
  1125. static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
  1126. {
  1127. uint16_t group_id;
  1128. EVP_PKEY *pkey;
  1129. pkey = X509_get0_pubkey(x);
  1130. if (pkey == NULL)
  1131. return 0;
  1132. /* If not EC nothing to do */
  1133. if (!EVP_PKEY_is_a(pkey, "EC"))
  1134. return 1;
  1135. /* Check compression */
  1136. if (!tls1_check_pkey_comp(s, pkey))
  1137. return 0;
  1138. group_id = tls1_get_group_id(pkey);
  1139. /*
  1140. * For a server we allow the certificate to not be in our list of supported
  1141. * groups.
  1142. */
  1143. if (!tls1_check_group_id(s, group_id, !s->server))
  1144. return 0;
  1145. /*
  1146. * Special case for suite B. We *MUST* sign using SHA256+P-256 or
  1147. * SHA384+P-384.
  1148. */
  1149. if (check_ee_md && tls1_suiteb(s)) {
  1150. int check_md;
  1151. size_t i;
  1152. /* Check to see we have necessary signing algorithm */
  1153. if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
  1154. check_md = NID_ecdsa_with_SHA256;
  1155. else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
  1156. check_md = NID_ecdsa_with_SHA384;
  1157. else
  1158. return 0; /* Should never happen */
  1159. for (i = 0; i < s->shared_sigalgslen; i++) {
  1160. if (check_md == s->shared_sigalgs[i]->sigandhash)
  1161. return 1;
  1162. }
  1163. return 0;
  1164. }
  1165. return 1;
  1166. }
  1167. /*
  1168. * tls1_check_ec_tmp_key - Check EC temporary key compatibility
  1169. * @s: SSL connection
  1170. * @cid: Cipher ID we're considering using
  1171. *
  1172. * Checks that the kECDHE cipher suite we're considering using
  1173. * is compatible with the client extensions.
  1174. *
  1175. * Returns 0 when the cipher can't be used or 1 when it can.
  1176. */
  1177. int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
  1178. {
  1179. /* If not Suite B just need a shared group */
  1180. if (!tls1_suiteb(s))
  1181. return tls1_shared_group(s, 0) != 0;
  1182. /*
  1183. * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
  1184. * curves permitted.
  1185. */
  1186. if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
  1187. return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
  1188. if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
  1189. return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
  1190. return 0;
  1191. }
  1192. /* Default sigalg schemes */
  1193. static const uint16_t tls12_sigalgs[] = {
  1194. TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
  1195. TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
  1196. TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
  1197. TLSEXT_SIGALG_ed25519,
  1198. TLSEXT_SIGALG_ed448,
  1199. TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
  1200. TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
  1201. TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
  1202. TLSEXT_SIGALG_rsa_pss_pss_sha256,
  1203. TLSEXT_SIGALG_rsa_pss_pss_sha384,
  1204. TLSEXT_SIGALG_rsa_pss_pss_sha512,
  1205. TLSEXT_SIGALG_rsa_pss_rsae_sha256,
  1206. TLSEXT_SIGALG_rsa_pss_rsae_sha384,
  1207. TLSEXT_SIGALG_rsa_pss_rsae_sha512,
  1208. TLSEXT_SIGALG_rsa_pkcs1_sha256,
  1209. TLSEXT_SIGALG_rsa_pkcs1_sha384,
  1210. TLSEXT_SIGALG_rsa_pkcs1_sha512,
  1211. TLSEXT_SIGALG_ecdsa_sha224,
  1212. TLSEXT_SIGALG_ecdsa_sha1,
  1213. TLSEXT_SIGALG_rsa_pkcs1_sha224,
  1214. TLSEXT_SIGALG_rsa_pkcs1_sha1,
  1215. TLSEXT_SIGALG_dsa_sha224,
  1216. TLSEXT_SIGALG_dsa_sha1,
  1217. TLSEXT_SIGALG_dsa_sha256,
  1218. TLSEXT_SIGALG_dsa_sha384,
  1219. TLSEXT_SIGALG_dsa_sha512,
  1220. #ifndef OPENSSL_NO_GOST
  1221. TLSEXT_SIGALG_gostr34102012_256_intrinsic,
  1222. TLSEXT_SIGALG_gostr34102012_512_intrinsic,
  1223. TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
  1224. TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
  1225. TLSEXT_SIGALG_gostr34102001_gostr3411,
  1226. #endif
  1227. };
  1228. static const uint16_t suiteb_sigalgs[] = {
  1229. TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
  1230. TLSEXT_SIGALG_ecdsa_secp384r1_sha384
  1231. };
  1232. static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
  1233. {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
  1234. NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
  1235. NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
  1236. {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
  1237. NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
  1238. NID_ecdsa_with_SHA384, NID_secp384r1, 1},
  1239. {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
  1240. NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
  1241. NID_ecdsa_with_SHA512, NID_secp521r1, 1},
  1242. {"ed25519", TLSEXT_SIGALG_ed25519,
  1243. NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
  1244. NID_undef, NID_undef, 1},
  1245. {"ed448", TLSEXT_SIGALG_ed448,
  1246. NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
  1247. NID_undef, NID_undef, 1},
  1248. {NULL, TLSEXT_SIGALG_ecdsa_sha224,
  1249. NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
  1250. NID_ecdsa_with_SHA224, NID_undef, 1},
  1251. {NULL, TLSEXT_SIGALG_ecdsa_sha1,
  1252. NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
  1253. NID_ecdsa_with_SHA1, NID_undef, 1},
  1254. {"ecdsa_brainpoolP256r1_sha256", TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
  1255. NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
  1256. NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1},
  1257. {"ecdsa_brainpoolP384r1_sha384", TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
  1258. NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
  1259. NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1},
  1260. {"ecdsa_brainpoolP512r1_sha512", TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
  1261. NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
  1262. NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1},
  1263. {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
  1264. NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
  1265. NID_undef, NID_undef, 1},
  1266. {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
  1267. NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
  1268. NID_undef, NID_undef, 1},
  1269. {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
  1270. NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
  1271. NID_undef, NID_undef, 1},
  1272. {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
  1273. NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
  1274. NID_undef, NID_undef, 1},
  1275. {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
  1276. NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
  1277. NID_undef, NID_undef, 1},
  1278. {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
  1279. NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
  1280. NID_undef, NID_undef, 1},
  1281. {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
  1282. NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
  1283. NID_sha256WithRSAEncryption, NID_undef, 1},
  1284. {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
  1285. NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
  1286. NID_sha384WithRSAEncryption, NID_undef, 1},
  1287. {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
  1288. NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
  1289. NID_sha512WithRSAEncryption, NID_undef, 1},
  1290. {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
  1291. NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
  1292. NID_sha224WithRSAEncryption, NID_undef, 1},
  1293. {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
  1294. NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
  1295. NID_sha1WithRSAEncryption, NID_undef, 1},
  1296. {NULL, TLSEXT_SIGALG_dsa_sha256,
  1297. NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
  1298. NID_dsa_with_SHA256, NID_undef, 1},
  1299. {NULL, TLSEXT_SIGALG_dsa_sha384,
  1300. NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
  1301. NID_undef, NID_undef, 1},
  1302. {NULL, TLSEXT_SIGALG_dsa_sha512,
  1303. NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
  1304. NID_undef, NID_undef, 1},
  1305. {NULL, TLSEXT_SIGALG_dsa_sha224,
  1306. NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
  1307. NID_undef, NID_undef, 1},
  1308. {NULL, TLSEXT_SIGALG_dsa_sha1,
  1309. NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
  1310. NID_dsaWithSHA1, NID_undef, 1},
  1311. #ifndef OPENSSL_NO_GOST
  1312. {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
  1313. NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
  1314. NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
  1315. NID_undef, NID_undef, 1},
  1316. {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
  1317. NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
  1318. NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
  1319. NID_undef, NID_undef, 1},
  1320. {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
  1321. NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
  1322. NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
  1323. NID_undef, NID_undef, 1},
  1324. {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
  1325. NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
  1326. NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
  1327. NID_undef, NID_undef, 1},
  1328. {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
  1329. NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
  1330. NID_id_GostR3410_2001, SSL_PKEY_GOST01,
  1331. NID_undef, NID_undef, 1}
  1332. #endif
  1333. };
  1334. /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
  1335. static const SIGALG_LOOKUP legacy_rsa_sigalg = {
  1336. "rsa_pkcs1_md5_sha1", 0,
  1337. NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
  1338. EVP_PKEY_RSA, SSL_PKEY_RSA,
  1339. NID_undef, NID_undef, 1
  1340. };
  1341. /*
  1342. * Default signature algorithm values used if signature algorithms not present.
  1343. * From RFC5246. Note: order must match certificate index order.
  1344. */
  1345. static const uint16_t tls_default_sigalg[] = {
  1346. TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
  1347. 0, /* SSL_PKEY_RSA_PSS_SIGN */
  1348. TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
  1349. TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
  1350. TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
  1351. TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
  1352. TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
  1353. 0, /* SSL_PKEY_ED25519 */
  1354. 0, /* SSL_PKEY_ED448 */
  1355. };
  1356. int ssl_setup_sigalgs(SSL_CTX *ctx)
  1357. {
  1358. size_t i, cache_idx, sigalgs_len;
  1359. const SIGALG_LOOKUP *lu;
  1360. SIGALG_LOOKUP *cache = NULL;
  1361. uint16_t *tls12_sigalgs_list = NULL;
  1362. EVP_PKEY *tmpkey = EVP_PKEY_new();
  1363. int ret = 0;
  1364. if (ctx == NULL)
  1365. goto err;
  1366. sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
  1367. cache = OPENSSL_malloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
  1368. if (cache == NULL || tmpkey == NULL)
  1369. goto err;
  1370. tls12_sigalgs_list = OPENSSL_malloc(sizeof(uint16_t) * sigalgs_len);
  1371. if (tls12_sigalgs_list == NULL)
  1372. goto err;
  1373. ERR_set_mark();
  1374. /* First fill cache and tls12_sigalgs list from legacy algorithm list */
  1375. for (i = 0, lu = sigalg_lookup_tbl;
  1376. i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
  1377. EVP_PKEY_CTX *pctx;
  1378. cache[i] = *lu;
  1379. tls12_sigalgs_list[i] = tls12_sigalgs[i];
  1380. /*
  1381. * Check hash is available.
  1382. * This test is not perfect. A provider could have support
  1383. * for a signature scheme, but not a particular hash. However the hash
  1384. * could be available from some other loaded provider. In that case it
  1385. * could be that the signature is available, and the hash is available
  1386. * independently - but not as a combination. We ignore this for now.
  1387. */
  1388. if (lu->hash != NID_undef
  1389. && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
  1390. cache[i].enabled = 0;
  1391. continue;
  1392. }
  1393. if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
  1394. cache[i].enabled = 0;
  1395. continue;
  1396. }
  1397. pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
  1398. /* If unable to create pctx we assume the sig algorithm is unavailable */
  1399. if (pctx == NULL)
  1400. cache[i].enabled = 0;
  1401. EVP_PKEY_CTX_free(pctx);
  1402. }
  1403. /* Now complete cache and tls12_sigalgs list with provider sig information */
  1404. cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
  1405. for (i = 0; i < ctx->sigalg_list_len; i++) {
  1406. TLS_SIGALG_INFO si = ctx->sigalg_list[i];
  1407. cache[cache_idx].name = si.name;
  1408. cache[cache_idx].sigalg = si.code_point;
  1409. tls12_sigalgs_list[cache_idx] = si.code_point;
  1410. cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
  1411. cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
  1412. cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
  1413. cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
  1414. cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
  1415. cache[cache_idx].curve = NID_undef;
  1416. /* all provided sigalgs are enabled by load */
  1417. cache[cache_idx].enabled = 1;
  1418. cache_idx++;
  1419. }
  1420. ERR_pop_to_mark();
  1421. ctx->sigalg_lookup_cache = cache;
  1422. ctx->tls12_sigalgs = tls12_sigalgs_list;
  1423. ctx->tls12_sigalgs_len = sigalgs_len;
  1424. cache = NULL;
  1425. tls12_sigalgs_list = NULL;
  1426. ret = 1;
  1427. err:
  1428. OPENSSL_free(cache);
  1429. OPENSSL_free(tls12_sigalgs_list);
  1430. EVP_PKEY_free(tmpkey);
  1431. return ret;
  1432. }
  1433. /* Lookup TLS signature algorithm */
  1434. static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,
  1435. uint16_t sigalg)
  1436. {
  1437. size_t i;
  1438. const SIGALG_LOOKUP *lu;
  1439. for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;
  1440. i < SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
  1441. lu++, i++) {
  1442. if (lu->sigalg == sigalg) {
  1443. if (!lu->enabled)
  1444. return NULL;
  1445. return lu;
  1446. }
  1447. }
  1448. return NULL;
  1449. }
  1450. /* Lookup hash: return 0 if invalid or not enabled */
  1451. int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
  1452. {
  1453. const EVP_MD *md;
  1454. if (lu == NULL)
  1455. return 0;
  1456. /* lu->hash == NID_undef means no associated digest */
  1457. if (lu->hash == NID_undef) {
  1458. md = NULL;
  1459. } else {
  1460. md = ssl_md(ctx, lu->hash_idx);
  1461. if (md == NULL)
  1462. return 0;
  1463. }
  1464. if (pmd)
  1465. *pmd = md;
  1466. return 1;
  1467. }
  1468. /*
  1469. * Check if key is large enough to generate RSA-PSS signature.
  1470. *
  1471. * The key must greater than or equal to 2 * hash length + 2.
  1472. * SHA512 has a hash length of 64 bytes, which is incompatible
  1473. * with a 128 byte (1024 bit) key.
  1474. */
  1475. #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
  1476. static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
  1477. const SIGALG_LOOKUP *lu)
  1478. {
  1479. const EVP_MD *md;
  1480. if (pkey == NULL)
  1481. return 0;
  1482. if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
  1483. return 0;
  1484. if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
  1485. return 0;
  1486. return 1;
  1487. }
  1488. /*
  1489. * Returns a signature algorithm when the peer did not send a list of supported
  1490. * signature algorithms. The signature algorithm is fixed for the certificate
  1491. * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
  1492. * certificate type from |s| will be used.
  1493. * Returns the signature algorithm to use, or NULL on error.
  1494. */
  1495. static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
  1496. int idx)
  1497. {
  1498. if (idx == -1) {
  1499. if (s->server) {
  1500. size_t i;
  1501. /* Work out index corresponding to ciphersuite */
  1502. for (i = 0; i < s->ssl_pkey_num; i++) {
  1503. const SSL_CERT_LOOKUP *clu
  1504. = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
  1505. if (clu == NULL)
  1506. continue;
  1507. if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
  1508. idx = i;
  1509. break;
  1510. }
  1511. }
  1512. /*
  1513. * Some GOST ciphersuites allow more than one signature algorithms
  1514. * */
  1515. if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
  1516. int real_idx;
  1517. for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
  1518. real_idx--) {
  1519. if (s->cert->pkeys[real_idx].privatekey != NULL) {
  1520. idx = real_idx;
  1521. break;
  1522. }
  1523. }
  1524. }
  1525. /*
  1526. * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
  1527. * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
  1528. */
  1529. else if (idx == SSL_PKEY_GOST12_256) {
  1530. int real_idx;
  1531. for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
  1532. real_idx--) {
  1533. if (s->cert->pkeys[real_idx].privatekey != NULL) {
  1534. idx = real_idx;
  1535. break;
  1536. }
  1537. }
  1538. }
  1539. } else {
  1540. idx = s->cert->key - s->cert->pkeys;
  1541. }
  1542. }
  1543. if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
  1544. return NULL;
  1545. if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
  1546. const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
  1547. if (lu == NULL)
  1548. return NULL;
  1549. if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
  1550. return NULL;
  1551. if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
  1552. return NULL;
  1553. return lu;
  1554. }
  1555. if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
  1556. return NULL;
  1557. return &legacy_rsa_sigalg;
  1558. }
  1559. /* Set peer sigalg based key type */
  1560. int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
  1561. {
  1562. size_t idx;
  1563. const SIGALG_LOOKUP *lu;
  1564. if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
  1565. return 0;
  1566. lu = tls1_get_legacy_sigalg(s, idx);
  1567. if (lu == NULL)
  1568. return 0;
  1569. s->s3.tmp.peer_sigalg = lu;
  1570. return 1;
  1571. }
  1572. size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
  1573. {
  1574. /*
  1575. * If Suite B mode use Suite B sigalgs only, ignore any other
  1576. * preferences.
  1577. */
  1578. switch (tls1_suiteb(s)) {
  1579. case SSL_CERT_FLAG_SUITEB_128_LOS:
  1580. *psigs = suiteb_sigalgs;
  1581. return OSSL_NELEM(suiteb_sigalgs);
  1582. case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
  1583. *psigs = suiteb_sigalgs;
  1584. return 1;
  1585. case SSL_CERT_FLAG_SUITEB_192_LOS:
  1586. *psigs = suiteb_sigalgs + 1;
  1587. return 1;
  1588. }
  1589. /*
  1590. * We use client_sigalgs (if not NULL) if we're a server
  1591. * and sending a certificate request or if we're a client and
  1592. * determining which shared algorithm to use.
  1593. */
  1594. if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
  1595. *psigs = s->cert->client_sigalgs;
  1596. return s->cert->client_sigalgslen;
  1597. } else if (s->cert->conf_sigalgs) {
  1598. *psigs = s->cert->conf_sigalgs;
  1599. return s->cert->conf_sigalgslen;
  1600. } else {
  1601. *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
  1602. return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
  1603. }
  1604. }
  1605. /*
  1606. * Called by servers only. Checks that we have a sig alg that supports the
  1607. * specified EC curve.
  1608. */
  1609. int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
  1610. {
  1611. const uint16_t *sigs;
  1612. size_t siglen, i;
  1613. if (s->cert->conf_sigalgs) {
  1614. sigs = s->cert->conf_sigalgs;
  1615. siglen = s->cert->conf_sigalgslen;
  1616. } else {
  1617. sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
  1618. siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
  1619. }
  1620. for (i = 0; i < siglen; i++) {
  1621. const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
  1622. if (lu == NULL)
  1623. continue;
  1624. if (lu->sig == EVP_PKEY_EC
  1625. && lu->curve != NID_undef
  1626. && curve == lu->curve)
  1627. return 1;
  1628. }
  1629. return 0;
  1630. }
  1631. /*
  1632. * Return the number of security bits for the signature algorithm, or 0 on
  1633. * error.
  1634. */
  1635. static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
  1636. {
  1637. const EVP_MD *md = NULL;
  1638. int secbits = 0;
  1639. if (!tls1_lookup_md(ctx, lu, &md))
  1640. return 0;
  1641. if (md != NULL)
  1642. {
  1643. int md_type = EVP_MD_get_type(md);
  1644. /* Security bits: half digest bits */
  1645. secbits = EVP_MD_get_size(md) * 4;
  1646. /*
  1647. * SHA1 and MD5 are known to be broken. Reduce security bits so that
  1648. * they're no longer accepted at security level 1. The real values don't
  1649. * really matter as long as they're lower than 80, which is our
  1650. * security level 1.
  1651. * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
  1652. * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
  1653. * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
  1654. * puts a chosen-prefix attack for MD5 at 2^39.
  1655. */
  1656. if (md_type == NID_sha1)
  1657. secbits = 64;
  1658. else if (md_type == NID_md5_sha1)
  1659. secbits = 67;
  1660. else if (md_type == NID_md5)
  1661. secbits = 39;
  1662. } else {
  1663. /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
  1664. if (lu->sigalg == TLSEXT_SIGALG_ed25519)
  1665. secbits = 128;
  1666. else if (lu->sigalg == TLSEXT_SIGALG_ed448)
  1667. secbits = 224;
  1668. }
  1669. /*
  1670. * For provider-based sigalgs we have secbits information available
  1671. * in the (provider-loaded) sigalg_list structure
  1672. */
  1673. if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
  1674. && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
  1675. secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
  1676. }
  1677. return secbits;
  1678. }
  1679. /*
  1680. * Check signature algorithm is consistent with sent supported signature
  1681. * algorithms and if so set relevant digest and signature scheme in
  1682. * s.
  1683. */
  1684. int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
  1685. {
  1686. const uint16_t *sent_sigs;
  1687. const EVP_MD *md = NULL;
  1688. char sigalgstr[2];
  1689. size_t sent_sigslen, i, cidx;
  1690. int pkeyid = -1;
  1691. const SIGALG_LOOKUP *lu;
  1692. int secbits = 0;
  1693. pkeyid = EVP_PKEY_get_id(pkey);
  1694. if (SSL_CONNECTION_IS_TLS13(s)) {
  1695. /* Disallow DSA for TLS 1.3 */
  1696. if (pkeyid == EVP_PKEY_DSA) {
  1697. SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
  1698. return 0;
  1699. }
  1700. /* Only allow PSS for TLS 1.3 */
  1701. if (pkeyid == EVP_PKEY_RSA)
  1702. pkeyid = EVP_PKEY_RSA_PSS;
  1703. }
  1704. lu = tls1_lookup_sigalg(s, sig);
  1705. /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
  1706. if ((pkeyid == EVP_PKEY_KEYMGMT) && (lu != NULL))
  1707. pkeyid = lu->sig;
  1708. /* Should never happen */
  1709. if (pkeyid == -1)
  1710. return -1;
  1711. /*
  1712. * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
  1713. * is consistent with signature: RSA keys can be used for RSA-PSS
  1714. */
  1715. if (lu == NULL
  1716. || (SSL_CONNECTION_IS_TLS13(s)
  1717. && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
  1718. || (pkeyid != lu->sig
  1719. && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
  1720. SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
  1721. return 0;
  1722. }
  1723. /* Check the sigalg is consistent with the key OID */
  1724. if (!ssl_cert_lookup_by_nid(
  1725. (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
  1726. &cidx, SSL_CONNECTION_GET_CTX(s))
  1727. || lu->sig_idx != (int)cidx) {
  1728. SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
  1729. return 0;
  1730. }
  1731. if (pkeyid == EVP_PKEY_EC) {
  1732. /* Check point compression is permitted */
  1733. if (!tls1_check_pkey_comp(s, pkey)) {
  1734. SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
  1735. SSL_R_ILLEGAL_POINT_COMPRESSION);
  1736. return 0;
  1737. }
  1738. /* For TLS 1.3 or Suite B check curve matches signature algorithm */
  1739. if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
  1740. int curve = ssl_get_EC_curve_nid(pkey);
  1741. if (lu->curve != NID_undef && curve != lu->curve) {
  1742. SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
  1743. return 0;
  1744. }
  1745. }
  1746. if (!SSL_CONNECTION_IS_TLS13(s)) {
  1747. /* Check curve matches extensions */
  1748. if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
  1749. SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
  1750. return 0;
  1751. }
  1752. if (tls1_suiteb(s)) {
  1753. /* Check sigalg matches a permissible Suite B value */
  1754. if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
  1755. && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
  1756. SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
  1757. SSL_R_WRONG_SIGNATURE_TYPE);
  1758. return 0;
  1759. }
  1760. }
  1761. }
  1762. } else if (tls1_suiteb(s)) {
  1763. SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
  1764. return 0;
  1765. }
  1766. /* Check signature matches a type we sent */
  1767. sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
  1768. for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
  1769. if (sig == *sent_sigs)
  1770. break;
  1771. }
  1772. /* Allow fallback to SHA1 if not strict mode */
  1773. if (i == sent_sigslen && (lu->hash != NID_sha1
  1774. || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
  1775. SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
  1776. return 0;
  1777. }
  1778. if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
  1779. SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
  1780. return 0;
  1781. }
  1782. /*
  1783. * Make sure security callback allows algorithm. For historical
  1784. * reasons we have to pass the sigalg as a two byte char array.
  1785. */
  1786. sigalgstr[0] = (sig >> 8) & 0xff;
  1787. sigalgstr[1] = sig & 0xff;
  1788. secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
  1789. if (secbits == 0 ||
  1790. !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
  1791. md != NULL ? EVP_MD_get_type(md) : NID_undef,
  1792. (void *)sigalgstr)) {
  1793. SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
  1794. return 0;
  1795. }
  1796. /* Store the sigalg the peer uses */
  1797. s->s3.tmp.peer_sigalg = lu;
  1798. return 1;
  1799. }
  1800. int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
  1801. {
  1802. const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
  1803. if (sc == NULL)
  1804. return 0;
  1805. if (sc->s3.tmp.peer_sigalg == NULL)
  1806. return 0;
  1807. *pnid = sc->s3.tmp.peer_sigalg->sig;
  1808. return 1;
  1809. }
  1810. int SSL_get_signature_type_nid(const SSL *s, int *pnid)
  1811. {
  1812. const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
  1813. if (sc == NULL)
  1814. return 0;
  1815. if (sc->s3.tmp.sigalg == NULL)
  1816. return 0;
  1817. *pnid = sc->s3.tmp.sigalg->sig;
  1818. return 1;
  1819. }
  1820. /*
  1821. * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
  1822. * supported, doesn't appear in supported signature algorithms, isn't supported
  1823. * by the enabled protocol versions or by the security level.
  1824. *
  1825. * This function should only be used for checking which ciphers are supported
  1826. * by the client.
  1827. *
  1828. * Call ssl_cipher_disabled() to check that it's enabled or not.
  1829. */
  1830. int ssl_set_client_disabled(SSL_CONNECTION *s)
  1831. {
  1832. s->s3.tmp.mask_a = 0;
  1833. s->s3.tmp.mask_k = 0;
  1834. ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
  1835. if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
  1836. &s->s3.tmp.max_ver, NULL) != 0)
  1837. return 0;
  1838. #ifndef OPENSSL_NO_PSK
  1839. /* with PSK there must be client callback set */
  1840. if (!s->psk_client_callback) {
  1841. s->s3.tmp.mask_a |= SSL_aPSK;
  1842. s->s3.tmp.mask_k |= SSL_PSK;
  1843. }
  1844. #endif /* OPENSSL_NO_PSK */
  1845. #ifndef OPENSSL_NO_SRP
  1846. if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
  1847. s->s3.tmp.mask_a |= SSL_aSRP;
  1848. s->s3.tmp.mask_k |= SSL_kSRP;
  1849. }
  1850. #endif
  1851. return 1;
  1852. }
  1853. /*
  1854. * ssl_cipher_disabled - check that a cipher is disabled or not
  1855. * @s: SSL connection that you want to use the cipher on
  1856. * @c: cipher to check
  1857. * @op: Security check that you want to do
  1858. * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
  1859. *
  1860. * Returns 1 when it's disabled, 0 when enabled.
  1861. */
  1862. int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
  1863. int op, int ecdhe)
  1864. {
  1865. int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
  1866. int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
  1867. if (c->algorithm_mkey & s->s3.tmp.mask_k
  1868. || c->algorithm_auth & s->s3.tmp.mask_a)
  1869. return 1;
  1870. if (s->s3.tmp.max_ver == 0)
  1871. return 1;
  1872. if (SSL_IS_QUIC_HANDSHAKE(s))
  1873. /* For QUIC, only allow these ciphersuites. */
  1874. switch (SSL_CIPHER_get_id(c)) {
  1875. case TLS1_3_CK_AES_128_GCM_SHA256:
  1876. case TLS1_3_CK_AES_256_GCM_SHA384:
  1877. case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
  1878. break;
  1879. default:
  1880. return 1;
  1881. }
  1882. /*
  1883. * For historical reasons we will allow ECHDE to be selected by a server
  1884. * in SSLv3 if we are a client
  1885. */
  1886. if (minversion == TLS1_VERSION
  1887. && ecdhe
  1888. && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
  1889. minversion = SSL3_VERSION;
  1890. if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
  1891. || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
  1892. return 1;
  1893. return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
  1894. }
  1895. int tls_use_ticket(SSL_CONNECTION *s)
  1896. {
  1897. if ((s->options & SSL_OP_NO_TICKET))
  1898. return 0;
  1899. return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
  1900. }
  1901. int tls1_set_server_sigalgs(SSL_CONNECTION *s)
  1902. {
  1903. size_t i;
  1904. /* Clear any shared signature algorithms */
  1905. OPENSSL_free(s->shared_sigalgs);
  1906. s->shared_sigalgs = NULL;
  1907. s->shared_sigalgslen = 0;
  1908. /* Clear certificate validity flags */
  1909. if (s->s3.tmp.valid_flags)
  1910. memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
  1911. else
  1912. s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
  1913. if (s->s3.tmp.valid_flags == NULL)
  1914. return 0;
  1915. /*
  1916. * If peer sent no signature algorithms check to see if we support
  1917. * the default algorithm for each certificate type
  1918. */
  1919. if (s->s3.tmp.peer_cert_sigalgs == NULL
  1920. && s->s3.tmp.peer_sigalgs == NULL) {
  1921. const uint16_t *sent_sigs;
  1922. size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
  1923. for (i = 0; i < s->ssl_pkey_num; i++) {
  1924. const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
  1925. size_t j;
  1926. if (lu == NULL)
  1927. continue;
  1928. /* Check default matches a type we sent */
  1929. for (j = 0; j < sent_sigslen; j++) {
  1930. if (lu->sigalg == sent_sigs[j]) {
  1931. s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
  1932. break;
  1933. }
  1934. }
  1935. }
  1936. return 1;
  1937. }
  1938. if (!tls1_process_sigalgs(s)) {
  1939. SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
  1940. return 0;
  1941. }
  1942. if (s->shared_sigalgs != NULL)
  1943. return 1;
  1944. /* Fatal error if no shared signature algorithms */
  1945. SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
  1946. SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
  1947. return 0;
  1948. }
  1949. /*-
  1950. * Gets the ticket information supplied by the client if any.
  1951. *
  1952. * hello: The parsed ClientHello data
  1953. * ret: (output) on return, if a ticket was decrypted, then this is set to
  1954. * point to the resulting session.
  1955. */
  1956. SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
  1957. CLIENTHELLO_MSG *hello,
  1958. SSL_SESSION **ret)
  1959. {
  1960. size_t size;
  1961. RAW_EXTENSION *ticketext;
  1962. *ret = NULL;
  1963. s->ext.ticket_expected = 0;
  1964. /*
  1965. * If tickets disabled or not supported by the protocol version
  1966. * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
  1967. * resumption.
  1968. */
  1969. if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
  1970. return SSL_TICKET_NONE;
  1971. ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
  1972. if (!ticketext->present)
  1973. return SSL_TICKET_NONE;
  1974. size = PACKET_remaining(&ticketext->data);
  1975. return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
  1976. hello->session_id, hello->session_id_len, ret);
  1977. }
  1978. /*-
  1979. * tls_decrypt_ticket attempts to decrypt a session ticket.
  1980. *
  1981. * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
  1982. * expecting a pre-shared key ciphersuite, in which case we have no use for
  1983. * session tickets and one will never be decrypted, nor will
  1984. * s->ext.ticket_expected be set to 1.
  1985. *
  1986. * Side effects:
  1987. * Sets s->ext.ticket_expected to 1 if the server will have to issue
  1988. * a new session ticket to the client because the client indicated support
  1989. * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
  1990. * a session ticket or we couldn't use the one it gave us, or if
  1991. * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
  1992. * Otherwise, s->ext.ticket_expected is set to 0.
  1993. *
  1994. * etick: points to the body of the session ticket extension.
  1995. * eticklen: the length of the session tickets extension.
  1996. * sess_id: points at the session ID.
  1997. * sesslen: the length of the session ID.
  1998. * psess: (output) on return, if a ticket was decrypted, then this is set to
  1999. * point to the resulting session.
  2000. */
  2001. SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
  2002. const unsigned char *etick,
  2003. size_t eticklen,
  2004. const unsigned char *sess_id,
  2005. size_t sesslen, SSL_SESSION **psess)
  2006. {
  2007. SSL_SESSION *sess = NULL;
  2008. unsigned char *sdec;
  2009. const unsigned char *p;
  2010. int slen, ivlen, renew_ticket = 0, declen;
  2011. SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
  2012. size_t mlen;
  2013. unsigned char tick_hmac[EVP_MAX_MD_SIZE];
  2014. SSL_HMAC *hctx = NULL;
  2015. EVP_CIPHER_CTX *ctx = NULL;
  2016. SSL_CTX *tctx = s->session_ctx;
  2017. SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
  2018. if (eticklen == 0) {
  2019. /*
  2020. * The client will accept a ticket but doesn't currently have
  2021. * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
  2022. */
  2023. ret = SSL_TICKET_EMPTY;
  2024. goto end;
  2025. }
  2026. if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
  2027. /*
  2028. * Indicate that the ticket couldn't be decrypted rather than
  2029. * generating the session from ticket now, trigger
  2030. * abbreviated handshake based on external mechanism to
  2031. * calculate the master secret later.
  2032. */
  2033. ret = SSL_TICKET_NO_DECRYPT;
  2034. goto end;
  2035. }
  2036. /* Need at least keyname + iv */
  2037. if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
  2038. ret = SSL_TICKET_NO_DECRYPT;
  2039. goto end;
  2040. }
  2041. /* Initialize session ticket encryption and HMAC contexts */
  2042. hctx = ssl_hmac_new(tctx);
  2043. if (hctx == NULL) {
  2044. ret = SSL_TICKET_FATAL_ERR_MALLOC;
  2045. goto end;
  2046. }
  2047. ctx = EVP_CIPHER_CTX_new();
  2048. if (ctx == NULL) {
  2049. ret = SSL_TICKET_FATAL_ERR_MALLOC;
  2050. goto end;
  2051. }
  2052. #ifndef OPENSSL_NO_DEPRECATED_3_0
  2053. if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
  2054. #else
  2055. if (tctx->ext.ticket_key_evp_cb != NULL)
  2056. #endif
  2057. {
  2058. unsigned char *nctick = (unsigned char *)etick;
  2059. int rv = 0;
  2060. if (tctx->ext.ticket_key_evp_cb != NULL)
  2061. rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
  2062. nctick,
  2063. nctick + TLSEXT_KEYNAME_LENGTH,
  2064. ctx,
  2065. ssl_hmac_get0_EVP_MAC_CTX(hctx),
  2066. 0);
  2067. #ifndef OPENSSL_NO_DEPRECATED_3_0
  2068. else if (tctx->ext.ticket_key_cb != NULL)
  2069. /* if 0 is returned, write an empty ticket */
  2070. rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
  2071. nctick + TLSEXT_KEYNAME_LENGTH,
  2072. ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
  2073. #endif
  2074. if (rv < 0) {
  2075. ret = SSL_TICKET_FATAL_ERR_OTHER;
  2076. goto end;
  2077. }
  2078. if (rv == 0) {
  2079. ret = SSL_TICKET_NO_DECRYPT;
  2080. goto end;
  2081. }
  2082. if (rv == 2)
  2083. renew_ticket = 1;
  2084. } else {
  2085. EVP_CIPHER *aes256cbc = NULL;
  2086. /* Check key name matches */
  2087. if (memcmp(etick, tctx->ext.tick_key_name,
  2088. TLSEXT_KEYNAME_LENGTH) != 0) {
  2089. ret = SSL_TICKET_NO_DECRYPT;
  2090. goto end;
  2091. }
  2092. aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
  2093. sctx->propq);
  2094. if (aes256cbc == NULL
  2095. || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
  2096. sizeof(tctx->ext.secure->tick_hmac_key),
  2097. "SHA256") <= 0
  2098. || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
  2099. tctx->ext.secure->tick_aes_key,
  2100. etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
  2101. EVP_CIPHER_free(aes256cbc);
  2102. ret = SSL_TICKET_FATAL_ERR_OTHER;
  2103. goto end;
  2104. }
  2105. EVP_CIPHER_free(aes256cbc);
  2106. if (SSL_CONNECTION_IS_TLS13(s))
  2107. renew_ticket = 1;
  2108. }
  2109. /*
  2110. * Attempt to process session ticket, first conduct sanity and integrity
  2111. * checks on ticket.
  2112. */
  2113. mlen = ssl_hmac_size(hctx);
  2114. if (mlen == 0) {
  2115. ret = SSL_TICKET_FATAL_ERR_OTHER;
  2116. goto end;
  2117. }
  2118. ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
  2119. if (ivlen < 0) {
  2120. ret = SSL_TICKET_FATAL_ERR_OTHER;
  2121. goto end;
  2122. }
  2123. /* Sanity check ticket length: must exceed keyname + IV + HMAC */
  2124. if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
  2125. ret = SSL_TICKET_NO_DECRYPT;
  2126. goto end;
  2127. }
  2128. eticklen -= mlen;
  2129. /* Check HMAC of encrypted ticket */
  2130. if (ssl_hmac_update(hctx, etick, eticklen) <= 0
  2131. || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
  2132. ret = SSL_TICKET_FATAL_ERR_OTHER;
  2133. goto end;
  2134. }
  2135. if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
  2136. ret = SSL_TICKET_NO_DECRYPT;
  2137. goto end;
  2138. }
  2139. /* Attempt to decrypt session data */
  2140. /* Move p after IV to start of encrypted ticket, update length */
  2141. p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
  2142. eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
  2143. sdec = OPENSSL_malloc(eticklen);
  2144. if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
  2145. (int)eticklen) <= 0) {
  2146. OPENSSL_free(sdec);
  2147. ret = SSL_TICKET_FATAL_ERR_OTHER;
  2148. goto end;
  2149. }
  2150. if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
  2151. OPENSSL_free(sdec);
  2152. ret = SSL_TICKET_NO_DECRYPT;
  2153. goto end;
  2154. }
  2155. slen += declen;
  2156. p = sdec;
  2157. sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
  2158. slen -= p - sdec;
  2159. OPENSSL_free(sdec);
  2160. if (sess) {
  2161. /* Some additional consistency checks */
  2162. if (slen != 0) {
  2163. SSL_SESSION_free(sess);
  2164. sess = NULL;
  2165. ret = SSL_TICKET_NO_DECRYPT;
  2166. goto end;
  2167. }
  2168. /*
  2169. * The session ID, if non-empty, is used by some clients to detect
  2170. * that the ticket has been accepted. So we copy it to the session
  2171. * structure. If it is empty set length to zero as required by
  2172. * standard.
  2173. */
  2174. if (sesslen) {
  2175. memcpy(sess->session_id, sess_id, sesslen);
  2176. sess->session_id_length = sesslen;
  2177. }
  2178. if (renew_ticket)
  2179. ret = SSL_TICKET_SUCCESS_RENEW;
  2180. else
  2181. ret = SSL_TICKET_SUCCESS;
  2182. goto end;
  2183. }
  2184. ERR_clear_error();
  2185. /*
  2186. * For session parse failure, indicate that we need to send a new ticket.
  2187. */
  2188. ret = SSL_TICKET_NO_DECRYPT;
  2189. end:
  2190. EVP_CIPHER_CTX_free(ctx);
  2191. ssl_hmac_free(hctx);
  2192. /*
  2193. * If set, the decrypt_ticket_cb() is called unless a fatal error was
  2194. * detected above. The callback is responsible for checking |ret| before it
  2195. * performs any action
  2196. */
  2197. if (s->session_ctx->decrypt_ticket_cb != NULL
  2198. && (ret == SSL_TICKET_EMPTY
  2199. || ret == SSL_TICKET_NO_DECRYPT
  2200. || ret == SSL_TICKET_SUCCESS
  2201. || ret == SSL_TICKET_SUCCESS_RENEW)) {
  2202. size_t keyname_len = eticklen;
  2203. int retcb;
  2204. if (keyname_len > TLSEXT_KEYNAME_LENGTH)
  2205. keyname_len = TLSEXT_KEYNAME_LENGTH;
  2206. retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
  2207. sess, etick, keyname_len,
  2208. ret,
  2209. s->session_ctx->ticket_cb_data);
  2210. switch (retcb) {
  2211. case SSL_TICKET_RETURN_ABORT:
  2212. ret = SSL_TICKET_FATAL_ERR_OTHER;
  2213. break;
  2214. case SSL_TICKET_RETURN_IGNORE:
  2215. ret = SSL_TICKET_NONE;
  2216. SSL_SESSION_free(sess);
  2217. sess = NULL;
  2218. break;
  2219. case SSL_TICKET_RETURN_IGNORE_RENEW:
  2220. if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
  2221. ret = SSL_TICKET_NO_DECRYPT;
  2222. /* else the value of |ret| will already do the right thing */
  2223. SSL_SESSION_free(sess);
  2224. sess = NULL;
  2225. break;
  2226. case SSL_TICKET_RETURN_USE:
  2227. case SSL_TICKET_RETURN_USE_RENEW:
  2228. if (ret != SSL_TICKET_SUCCESS
  2229. && ret != SSL_TICKET_SUCCESS_RENEW)
  2230. ret = SSL_TICKET_FATAL_ERR_OTHER;
  2231. else if (retcb == SSL_TICKET_RETURN_USE)
  2232. ret = SSL_TICKET_SUCCESS;
  2233. else
  2234. ret = SSL_TICKET_SUCCESS_RENEW;
  2235. break;
  2236. default:
  2237. ret = SSL_TICKET_FATAL_ERR_OTHER;
  2238. }
  2239. }
  2240. if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
  2241. switch (ret) {
  2242. case SSL_TICKET_NO_DECRYPT:
  2243. case SSL_TICKET_SUCCESS_RENEW:
  2244. case SSL_TICKET_EMPTY:
  2245. s->ext.ticket_expected = 1;
  2246. }
  2247. }
  2248. *psess = sess;
  2249. return ret;
  2250. }
  2251. /* Check to see if a signature algorithm is allowed */
  2252. static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
  2253. const SIGALG_LOOKUP *lu)
  2254. {
  2255. unsigned char sigalgstr[2];
  2256. int secbits;
  2257. if (lu == NULL || !lu->enabled)
  2258. return 0;
  2259. /* DSA is not allowed in TLS 1.3 */
  2260. if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
  2261. return 0;
  2262. /*
  2263. * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
  2264. * spec
  2265. */
  2266. if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
  2267. && s->s3.tmp.min_ver >= TLS1_3_VERSION
  2268. && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
  2269. || lu->hash_idx == SSL_MD_MD5_IDX
  2270. || lu->hash_idx == SSL_MD_SHA224_IDX))
  2271. return 0;
  2272. /* See if public key algorithm allowed */
  2273. if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
  2274. return 0;
  2275. if (lu->sig == NID_id_GostR3410_2012_256
  2276. || lu->sig == NID_id_GostR3410_2012_512
  2277. || lu->sig == NID_id_GostR3410_2001) {
  2278. /* We never allow GOST sig algs on the server with TLSv1.3 */
  2279. if (s->server && SSL_CONNECTION_IS_TLS13(s))
  2280. return 0;
  2281. if (!s->server
  2282. && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
  2283. && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
  2284. int i, num;
  2285. STACK_OF(SSL_CIPHER) *sk;
  2286. /*
  2287. * We're a client that could negotiate TLSv1.3. We only allow GOST
  2288. * sig algs if we could negotiate TLSv1.2 or below and we have GOST
  2289. * ciphersuites enabled.
  2290. */
  2291. if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
  2292. return 0;
  2293. sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
  2294. num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
  2295. for (i = 0; i < num; i++) {
  2296. const SSL_CIPHER *c;
  2297. c = sk_SSL_CIPHER_value(sk, i);
  2298. /* Skip disabled ciphers */
  2299. if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
  2300. continue;
  2301. if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
  2302. break;
  2303. }
  2304. if (i == num)
  2305. return 0;
  2306. }
  2307. }
  2308. /* Finally see if security callback allows it */
  2309. secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
  2310. sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
  2311. sigalgstr[1] = lu->sigalg & 0xff;
  2312. return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
  2313. }
  2314. /*
  2315. * Get a mask of disabled public key algorithms based on supported signature
  2316. * algorithms. For example if no signature algorithm supports RSA then RSA is
  2317. * disabled.
  2318. */
  2319. void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
  2320. {
  2321. const uint16_t *sigalgs;
  2322. size_t i, sigalgslen;
  2323. uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
  2324. /*
  2325. * Go through all signature algorithms seeing if we support any
  2326. * in disabled_mask.
  2327. */
  2328. sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
  2329. for (i = 0; i < sigalgslen; i++, sigalgs++) {
  2330. const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
  2331. const SSL_CERT_LOOKUP *clu;
  2332. if (lu == NULL)
  2333. continue;
  2334. clu = ssl_cert_lookup_by_idx(lu->sig_idx,
  2335. SSL_CONNECTION_GET_CTX(s));
  2336. if (clu == NULL)
  2337. continue;
  2338. /* If algorithm is disabled see if we can enable it */
  2339. if ((clu->amask & disabled_mask) != 0
  2340. && tls12_sigalg_allowed(s, op, lu))
  2341. disabled_mask &= ~clu->amask;
  2342. }
  2343. *pmask_a |= disabled_mask;
  2344. }
  2345. int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
  2346. const uint16_t *psig, size_t psiglen)
  2347. {
  2348. size_t i;
  2349. int rv = 0;
  2350. for (i = 0; i < psiglen; i++, psig++) {
  2351. const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
  2352. if (lu == NULL
  2353. || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
  2354. continue;
  2355. if (!WPACKET_put_bytes_u16(pkt, *psig))
  2356. return 0;
  2357. /*
  2358. * If TLS 1.3 must have at least one valid TLS 1.3 message
  2359. * signing algorithm: i.e. neither RSA nor SHA1/SHA224
  2360. */
  2361. if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
  2362. || (lu->sig != EVP_PKEY_RSA
  2363. && lu->hash != NID_sha1
  2364. && lu->hash != NID_sha224)))
  2365. rv = 1;
  2366. }
  2367. if (rv == 0)
  2368. ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
  2369. return rv;
  2370. }
  2371. /* Given preference and allowed sigalgs set shared sigalgs */
  2372. static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
  2373. const SIGALG_LOOKUP **shsig,
  2374. const uint16_t *pref, size_t preflen,
  2375. const uint16_t *allow, size_t allowlen)
  2376. {
  2377. const uint16_t *ptmp, *atmp;
  2378. size_t i, j, nmatch = 0;
  2379. for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
  2380. const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
  2381. /* Skip disabled hashes or signature algorithms */
  2382. if (lu == NULL
  2383. || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
  2384. continue;
  2385. for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
  2386. if (*ptmp == *atmp) {
  2387. nmatch++;
  2388. if (shsig)
  2389. *shsig++ = lu;
  2390. break;
  2391. }
  2392. }
  2393. }
  2394. return nmatch;
  2395. }
  2396. /* Set shared signature algorithms for SSL structures */
  2397. static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
  2398. {
  2399. const uint16_t *pref, *allow, *conf;
  2400. size_t preflen, allowlen, conflen;
  2401. size_t nmatch;
  2402. const SIGALG_LOOKUP **salgs = NULL;
  2403. CERT *c = s->cert;
  2404. unsigned int is_suiteb = tls1_suiteb(s);
  2405. OPENSSL_free(s->shared_sigalgs);
  2406. s->shared_sigalgs = NULL;
  2407. s->shared_sigalgslen = 0;
  2408. /* If client use client signature algorithms if not NULL */
  2409. if (!s->server && c->client_sigalgs && !is_suiteb) {
  2410. conf = c->client_sigalgs;
  2411. conflen = c->client_sigalgslen;
  2412. } else if (c->conf_sigalgs && !is_suiteb) {
  2413. conf = c->conf_sigalgs;
  2414. conflen = c->conf_sigalgslen;
  2415. } else
  2416. conflen = tls12_get_psigalgs(s, 0, &conf);
  2417. if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
  2418. pref = conf;
  2419. preflen = conflen;
  2420. allow = s->s3.tmp.peer_sigalgs;
  2421. allowlen = s->s3.tmp.peer_sigalgslen;
  2422. } else {
  2423. allow = conf;
  2424. allowlen = conflen;
  2425. pref = s->s3.tmp.peer_sigalgs;
  2426. preflen = s->s3.tmp.peer_sigalgslen;
  2427. }
  2428. nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
  2429. if (nmatch) {
  2430. if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
  2431. return 0;
  2432. nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
  2433. } else {
  2434. salgs = NULL;
  2435. }
  2436. s->shared_sigalgs = salgs;
  2437. s->shared_sigalgslen = nmatch;
  2438. return 1;
  2439. }
  2440. int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
  2441. {
  2442. unsigned int stmp;
  2443. size_t size, i;
  2444. uint16_t *buf;
  2445. size = PACKET_remaining(pkt);
  2446. /* Invalid data length */
  2447. if (size == 0 || (size & 1) != 0)
  2448. return 0;
  2449. size >>= 1;
  2450. if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
  2451. return 0;
  2452. for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
  2453. buf[i] = stmp;
  2454. if (i != size) {
  2455. OPENSSL_free(buf);
  2456. return 0;
  2457. }
  2458. OPENSSL_free(*pdest);
  2459. *pdest = buf;
  2460. *pdestlen = size;
  2461. return 1;
  2462. }
  2463. int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
  2464. {
  2465. /* Extension ignored for inappropriate versions */
  2466. if (!SSL_USE_SIGALGS(s))
  2467. return 1;
  2468. /* Should never happen */
  2469. if (s->cert == NULL)
  2470. return 0;
  2471. if (cert)
  2472. return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
  2473. &s->s3.tmp.peer_cert_sigalgslen);
  2474. else
  2475. return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
  2476. &s->s3.tmp.peer_sigalgslen);
  2477. }
  2478. /* Set preferred digest for each key type */
  2479. int tls1_process_sigalgs(SSL_CONNECTION *s)
  2480. {
  2481. size_t i;
  2482. uint32_t *pvalid = s->s3.tmp.valid_flags;
  2483. if (!tls1_set_shared_sigalgs(s))
  2484. return 0;
  2485. for (i = 0; i < s->ssl_pkey_num; i++)
  2486. pvalid[i] = 0;
  2487. for (i = 0; i < s->shared_sigalgslen; i++) {
  2488. const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
  2489. int idx = sigptr->sig_idx;
  2490. /* Ignore PKCS1 based sig algs in TLSv1.3 */
  2491. if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
  2492. continue;
  2493. /* If not disabled indicate we can explicitly sign */
  2494. if (pvalid[idx] == 0
  2495. && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
  2496. pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
  2497. }
  2498. return 1;
  2499. }
  2500. int SSL_get_sigalgs(SSL *s, int idx,
  2501. int *psign, int *phash, int *psignhash,
  2502. unsigned char *rsig, unsigned char *rhash)
  2503. {
  2504. uint16_t *psig;
  2505. size_t numsigalgs;
  2506. SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
  2507. if (sc == NULL)
  2508. return 0;
  2509. psig = sc->s3.tmp.peer_sigalgs;
  2510. numsigalgs = sc->s3.tmp.peer_sigalgslen;
  2511. if (psig == NULL || numsigalgs > INT_MAX)
  2512. return 0;
  2513. if (idx >= 0) {
  2514. const SIGALG_LOOKUP *lu;
  2515. if (idx >= (int)numsigalgs)
  2516. return 0;
  2517. psig += idx;
  2518. if (rhash != NULL)
  2519. *rhash = (unsigned char)((*psig >> 8) & 0xff);
  2520. if (rsig != NULL)
  2521. *rsig = (unsigned char)(*psig & 0xff);
  2522. lu = tls1_lookup_sigalg(sc, *psig);
  2523. if (psign != NULL)
  2524. *psign = lu != NULL ? lu->sig : NID_undef;
  2525. if (phash != NULL)
  2526. *phash = lu != NULL ? lu->hash : NID_undef;
  2527. if (psignhash != NULL)
  2528. *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
  2529. }
  2530. return (int)numsigalgs;
  2531. }
  2532. int SSL_get_shared_sigalgs(SSL *s, int idx,
  2533. int *psign, int *phash, int *psignhash,
  2534. unsigned char *rsig, unsigned char *rhash)
  2535. {
  2536. const SIGALG_LOOKUP *shsigalgs;
  2537. SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
  2538. if (sc == NULL)
  2539. return 0;
  2540. if (sc->shared_sigalgs == NULL
  2541. || idx < 0
  2542. || idx >= (int)sc->shared_sigalgslen
  2543. || sc->shared_sigalgslen > INT_MAX)
  2544. return 0;
  2545. shsigalgs = sc->shared_sigalgs[idx];
  2546. if (phash != NULL)
  2547. *phash = shsigalgs->hash;
  2548. if (psign != NULL)
  2549. *psign = shsigalgs->sig;
  2550. if (psignhash != NULL)
  2551. *psignhash = shsigalgs->sigandhash;
  2552. if (rsig != NULL)
  2553. *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
  2554. if (rhash != NULL)
  2555. *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
  2556. return (int)sc->shared_sigalgslen;
  2557. }
  2558. /* Maximum possible number of unique entries in sigalgs array */
  2559. #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
  2560. typedef struct {
  2561. size_t sigalgcnt;
  2562. /* TLSEXT_SIGALG_XXX values */
  2563. uint16_t sigalgs[TLS_MAX_SIGALGCNT];
  2564. SSL_CTX *ctx;
  2565. } sig_cb_st;
  2566. static void get_sigorhash(int *psig, int *phash, const char *str)
  2567. {
  2568. if (strcmp(str, "RSA") == 0) {
  2569. *psig = EVP_PKEY_RSA;
  2570. } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
  2571. *psig = EVP_PKEY_RSA_PSS;
  2572. } else if (strcmp(str, "DSA") == 0) {
  2573. *psig = EVP_PKEY_DSA;
  2574. } else if (strcmp(str, "ECDSA") == 0) {
  2575. *psig = EVP_PKEY_EC;
  2576. } else {
  2577. *phash = OBJ_sn2nid(str);
  2578. if (*phash == NID_undef)
  2579. *phash = OBJ_ln2nid(str);
  2580. }
  2581. }
  2582. /* Maximum length of a signature algorithm string component */
  2583. #define TLS_MAX_SIGSTRING_LEN 40
  2584. static int sig_cb(const char *elem, int len, void *arg)
  2585. {
  2586. sig_cb_st *sarg = arg;
  2587. size_t i = 0;
  2588. const SIGALG_LOOKUP *s;
  2589. char etmp[TLS_MAX_SIGSTRING_LEN], *p;
  2590. int sig_alg = NID_undef, hash_alg = NID_undef;
  2591. int ignore_unknown = 0;
  2592. if (elem == NULL)
  2593. return 0;
  2594. if (elem[0] == '?') {
  2595. ignore_unknown = 1;
  2596. ++elem;
  2597. --len;
  2598. }
  2599. if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
  2600. return 0;
  2601. if (len > (int)(sizeof(etmp) - 1))
  2602. return 0;
  2603. memcpy(etmp, elem, len);
  2604. etmp[len] = 0;
  2605. p = strchr(etmp, '+');
  2606. /*
  2607. * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
  2608. * if there's no '+' in the provided name, look for the new-style combined
  2609. * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
  2610. * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
  2611. * rsa_pss_rsae_* that differ only by public key OID; in such cases
  2612. * we will pick the _rsae_ variant, by virtue of them appearing earlier
  2613. * in the table.
  2614. */
  2615. if (p == NULL) {
  2616. /* Load provider sigalgs */
  2617. if (sarg->ctx != NULL) {
  2618. /* Check if a provider supports the sigalg */
  2619. for (i = 0; i < sarg->ctx->sigalg_list_len; i++) {
  2620. if (sarg->ctx->sigalg_list[i].sigalg_name != NULL
  2621. && strcmp(etmp,
  2622. sarg->ctx->sigalg_list[i].sigalg_name) == 0) {
  2623. sarg->sigalgs[sarg->sigalgcnt++] =
  2624. sarg->ctx->sigalg_list[i].code_point;
  2625. break;
  2626. }
  2627. }
  2628. }
  2629. /* Check the built-in sigalgs */
  2630. if (sarg->ctx == NULL || i == sarg->ctx->sigalg_list_len) {
  2631. for (i = 0, s = sigalg_lookup_tbl;
  2632. i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
  2633. if (s->name != NULL && strcmp(etmp, s->name) == 0) {
  2634. sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
  2635. break;
  2636. }
  2637. }
  2638. if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
  2639. /* Ignore unknown algorithms if ignore_unknown */
  2640. return ignore_unknown;
  2641. }
  2642. }
  2643. } else {
  2644. *p = 0;
  2645. p++;
  2646. if (*p == 0)
  2647. return 0;
  2648. get_sigorhash(&sig_alg, &hash_alg, etmp);
  2649. get_sigorhash(&sig_alg, &hash_alg, p);
  2650. if (sig_alg == NID_undef || hash_alg == NID_undef) {
  2651. /* Ignore unknown algorithms if ignore_unknown */
  2652. return ignore_unknown;
  2653. }
  2654. for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
  2655. i++, s++) {
  2656. if (s->hash == hash_alg && s->sig == sig_alg) {
  2657. sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
  2658. break;
  2659. }
  2660. }
  2661. if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
  2662. /* Ignore unknown algorithms if ignore_unknown */
  2663. return ignore_unknown;
  2664. }
  2665. }
  2666. /* Ignore duplicates */
  2667. for (i = 0; i < sarg->sigalgcnt - 1; i++) {
  2668. if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
  2669. sarg->sigalgcnt--;
  2670. return 1;
  2671. }
  2672. }
  2673. return 1;
  2674. }
  2675. /*
  2676. * Set supported signature algorithms based on a colon separated list of the
  2677. * form sig+hash e.g. RSA+SHA512:DSA+SHA512
  2678. */
  2679. int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
  2680. {
  2681. sig_cb_st sig;
  2682. sig.sigalgcnt = 0;
  2683. if (ctx != NULL)
  2684. sig.ctx = ctx;
  2685. if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
  2686. return 0;
  2687. if (sig.sigalgcnt == 0) {
  2688. ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
  2689. "No valid signature algorithms in '%s'", str);
  2690. return 0;
  2691. }
  2692. if (c == NULL)
  2693. return 1;
  2694. return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
  2695. }
  2696. int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
  2697. int client)
  2698. {
  2699. uint16_t *sigalgs;
  2700. if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
  2701. return 0;
  2702. memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
  2703. if (client) {
  2704. OPENSSL_free(c->client_sigalgs);
  2705. c->client_sigalgs = sigalgs;
  2706. c->client_sigalgslen = salglen;
  2707. } else {
  2708. OPENSSL_free(c->conf_sigalgs);
  2709. c->conf_sigalgs = sigalgs;
  2710. c->conf_sigalgslen = salglen;
  2711. }
  2712. return 1;
  2713. }
  2714. int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
  2715. {
  2716. uint16_t *sigalgs, *sptr;
  2717. size_t i;
  2718. if (salglen & 1)
  2719. return 0;
  2720. if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
  2721. return 0;
  2722. for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
  2723. size_t j;
  2724. const SIGALG_LOOKUP *curr;
  2725. int md_id = *psig_nids++;
  2726. int sig_id = *psig_nids++;
  2727. for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
  2728. j++, curr++) {
  2729. if (curr->hash == md_id && curr->sig == sig_id) {
  2730. *sptr++ = curr->sigalg;
  2731. break;
  2732. }
  2733. }
  2734. if (j == OSSL_NELEM(sigalg_lookup_tbl))
  2735. goto err;
  2736. }
  2737. if (client) {
  2738. OPENSSL_free(c->client_sigalgs);
  2739. c->client_sigalgs = sigalgs;
  2740. c->client_sigalgslen = salglen / 2;
  2741. } else {
  2742. OPENSSL_free(c->conf_sigalgs);
  2743. c->conf_sigalgs = sigalgs;
  2744. c->conf_sigalgslen = salglen / 2;
  2745. }
  2746. return 1;
  2747. err:
  2748. OPENSSL_free(sigalgs);
  2749. return 0;
  2750. }
  2751. static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
  2752. {
  2753. int sig_nid, use_pc_sigalgs = 0;
  2754. size_t i;
  2755. const SIGALG_LOOKUP *sigalg;
  2756. size_t sigalgslen;
  2757. if (default_nid == -1)
  2758. return 1;
  2759. sig_nid = X509_get_signature_nid(x);
  2760. if (default_nid)
  2761. return sig_nid == default_nid ? 1 : 0;
  2762. if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
  2763. /*
  2764. * If we're in TLSv1.3 then we only get here if we're checking the
  2765. * chain. If the peer has specified peer_cert_sigalgs then we use them
  2766. * otherwise we default to normal sigalgs.
  2767. */
  2768. sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
  2769. use_pc_sigalgs = 1;
  2770. } else {
  2771. sigalgslen = s->shared_sigalgslen;
  2772. }
  2773. for (i = 0; i < sigalgslen; i++) {
  2774. sigalg = use_pc_sigalgs
  2775. ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
  2776. : s->shared_sigalgs[i];
  2777. if (sigalg != NULL && sig_nid == sigalg->sigandhash)
  2778. return 1;
  2779. }
  2780. return 0;
  2781. }
  2782. /* Check to see if a certificate issuer name matches list of CA names */
  2783. static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
  2784. {
  2785. const X509_NAME *nm;
  2786. int i;
  2787. nm = X509_get_issuer_name(x);
  2788. for (i = 0; i < sk_X509_NAME_num(names); i++) {
  2789. if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
  2790. return 1;
  2791. }
  2792. return 0;
  2793. }
  2794. /*
  2795. * Check certificate chain is consistent with TLS extensions and is usable by
  2796. * server. This servers two purposes: it allows users to check chains before
  2797. * passing them to the server and it allows the server to check chains before
  2798. * attempting to use them.
  2799. */
  2800. /* Flags which need to be set for a certificate when strict mode not set */
  2801. #define CERT_PKEY_VALID_FLAGS \
  2802. (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
  2803. /* Strict mode flags */
  2804. #define CERT_PKEY_STRICT_FLAGS \
  2805. (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
  2806. | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
  2807. int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
  2808. STACK_OF(X509) *chain, int idx)
  2809. {
  2810. int i;
  2811. int rv = 0;
  2812. int check_flags = 0, strict_mode;
  2813. CERT_PKEY *cpk = NULL;
  2814. CERT *c = s->cert;
  2815. uint32_t *pvalid;
  2816. unsigned int suiteb_flags = tls1_suiteb(s);
  2817. /*
  2818. * Meaning of idx:
  2819. * idx == -1 means SSL_check_chain() invocation
  2820. * idx == -2 means checking client certificate chains
  2821. * idx >= 0 means checking SSL_PKEY index
  2822. *
  2823. * For RPK, where there may be no cert, we ignore -1
  2824. */
  2825. if (idx != -1) {
  2826. if (idx == -2) {
  2827. cpk = c->key;
  2828. idx = (int)(cpk - c->pkeys);
  2829. } else
  2830. cpk = c->pkeys + idx;
  2831. pvalid = s->s3.tmp.valid_flags + idx;
  2832. x = cpk->x509;
  2833. pk = cpk->privatekey;
  2834. chain = cpk->chain;
  2835. strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
  2836. if (tls12_rpk_and_privkey(s, idx)) {
  2837. if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
  2838. return 0;
  2839. *pvalid = rv = CERT_PKEY_RPK;
  2840. return rv;
  2841. }
  2842. /* If no cert or key, forget it */
  2843. if (x == NULL || pk == NULL)
  2844. goto end;
  2845. } else {
  2846. size_t certidx;
  2847. if (x == NULL || pk == NULL)
  2848. return 0;
  2849. if (ssl_cert_lookup_by_pkey(pk, &certidx,
  2850. SSL_CONNECTION_GET_CTX(s)) == NULL)
  2851. return 0;
  2852. idx = certidx;
  2853. pvalid = s->s3.tmp.valid_flags + idx;
  2854. if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
  2855. check_flags = CERT_PKEY_STRICT_FLAGS;
  2856. else
  2857. check_flags = CERT_PKEY_VALID_FLAGS;
  2858. strict_mode = 1;
  2859. }
  2860. if (suiteb_flags) {
  2861. int ok;
  2862. if (check_flags)
  2863. check_flags |= CERT_PKEY_SUITEB;
  2864. ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
  2865. if (ok == X509_V_OK)
  2866. rv |= CERT_PKEY_SUITEB;
  2867. else if (!check_flags)
  2868. goto end;
  2869. }
  2870. /*
  2871. * Check all signature algorithms are consistent with signature
  2872. * algorithms extension if TLS 1.2 or later and strict mode.
  2873. */
  2874. if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
  2875. && strict_mode) {
  2876. int default_nid;
  2877. int rsign = 0;
  2878. if (s->s3.tmp.peer_cert_sigalgs != NULL
  2879. || s->s3.tmp.peer_sigalgs != NULL) {
  2880. default_nid = 0;
  2881. /* If no sigalgs extension use defaults from RFC5246 */
  2882. } else {
  2883. switch (idx) {
  2884. case SSL_PKEY_RSA:
  2885. rsign = EVP_PKEY_RSA;
  2886. default_nid = NID_sha1WithRSAEncryption;
  2887. break;
  2888. case SSL_PKEY_DSA_SIGN:
  2889. rsign = EVP_PKEY_DSA;
  2890. default_nid = NID_dsaWithSHA1;
  2891. break;
  2892. case SSL_PKEY_ECC:
  2893. rsign = EVP_PKEY_EC;
  2894. default_nid = NID_ecdsa_with_SHA1;
  2895. break;
  2896. case SSL_PKEY_GOST01:
  2897. rsign = NID_id_GostR3410_2001;
  2898. default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
  2899. break;
  2900. case SSL_PKEY_GOST12_256:
  2901. rsign = NID_id_GostR3410_2012_256;
  2902. default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
  2903. break;
  2904. case SSL_PKEY_GOST12_512:
  2905. rsign = NID_id_GostR3410_2012_512;
  2906. default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
  2907. break;
  2908. default:
  2909. default_nid = -1;
  2910. break;
  2911. }
  2912. }
  2913. /*
  2914. * If peer sent no signature algorithms extension and we have set
  2915. * preferred signature algorithms check we support sha1.
  2916. */
  2917. if (default_nid > 0 && c->conf_sigalgs) {
  2918. size_t j;
  2919. const uint16_t *p = c->conf_sigalgs;
  2920. for (j = 0; j < c->conf_sigalgslen; j++, p++) {
  2921. const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
  2922. if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
  2923. break;
  2924. }
  2925. if (j == c->conf_sigalgslen) {
  2926. if (check_flags)
  2927. goto skip_sigs;
  2928. else
  2929. goto end;
  2930. }
  2931. }
  2932. /* Check signature algorithm of each cert in chain */
  2933. if (SSL_CONNECTION_IS_TLS13(s)) {
  2934. /*
  2935. * We only get here if the application has called SSL_check_chain(),
  2936. * so check_flags is always set.
  2937. */
  2938. if (find_sig_alg(s, x, pk) != NULL)
  2939. rv |= CERT_PKEY_EE_SIGNATURE;
  2940. } else if (!tls1_check_sig_alg(s, x, default_nid)) {
  2941. if (!check_flags)
  2942. goto end;
  2943. } else
  2944. rv |= CERT_PKEY_EE_SIGNATURE;
  2945. rv |= CERT_PKEY_CA_SIGNATURE;
  2946. for (i = 0; i < sk_X509_num(chain); i++) {
  2947. if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
  2948. if (check_flags) {
  2949. rv &= ~CERT_PKEY_CA_SIGNATURE;
  2950. break;
  2951. } else
  2952. goto end;
  2953. }
  2954. }
  2955. }
  2956. /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
  2957. else if (check_flags)
  2958. rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
  2959. skip_sigs:
  2960. /* Check cert parameters are consistent */
  2961. if (tls1_check_cert_param(s, x, 1))
  2962. rv |= CERT_PKEY_EE_PARAM;
  2963. else if (!check_flags)
  2964. goto end;
  2965. if (!s->server)
  2966. rv |= CERT_PKEY_CA_PARAM;
  2967. /* In strict mode check rest of chain too */
  2968. else if (strict_mode) {
  2969. rv |= CERT_PKEY_CA_PARAM;
  2970. for (i = 0; i < sk_X509_num(chain); i++) {
  2971. X509 *ca = sk_X509_value(chain, i);
  2972. if (!tls1_check_cert_param(s, ca, 0)) {
  2973. if (check_flags) {
  2974. rv &= ~CERT_PKEY_CA_PARAM;
  2975. break;
  2976. } else
  2977. goto end;
  2978. }
  2979. }
  2980. }
  2981. if (!s->server && strict_mode) {
  2982. STACK_OF(X509_NAME) *ca_dn;
  2983. int check_type = 0;
  2984. if (EVP_PKEY_is_a(pk, "RSA"))
  2985. check_type = TLS_CT_RSA_SIGN;
  2986. else if (EVP_PKEY_is_a(pk, "DSA"))
  2987. check_type = TLS_CT_DSS_SIGN;
  2988. else if (EVP_PKEY_is_a(pk, "EC"))
  2989. check_type = TLS_CT_ECDSA_SIGN;
  2990. if (check_type) {
  2991. const uint8_t *ctypes = s->s3.tmp.ctype;
  2992. size_t j;
  2993. for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
  2994. if (*ctypes == check_type) {
  2995. rv |= CERT_PKEY_CERT_TYPE;
  2996. break;
  2997. }
  2998. }
  2999. if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
  3000. goto end;
  3001. } else {
  3002. rv |= CERT_PKEY_CERT_TYPE;
  3003. }
  3004. ca_dn = s->s3.tmp.peer_ca_names;
  3005. if (ca_dn == NULL
  3006. || sk_X509_NAME_num(ca_dn) == 0
  3007. || ssl_check_ca_name(ca_dn, x))
  3008. rv |= CERT_PKEY_ISSUER_NAME;
  3009. else
  3010. for (i = 0; i < sk_X509_num(chain); i++) {
  3011. X509 *xtmp = sk_X509_value(chain, i);
  3012. if (ssl_check_ca_name(ca_dn, xtmp)) {
  3013. rv |= CERT_PKEY_ISSUER_NAME;
  3014. break;
  3015. }
  3016. }
  3017. if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
  3018. goto end;
  3019. } else
  3020. rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
  3021. if (!check_flags || (rv & check_flags) == check_flags)
  3022. rv |= CERT_PKEY_VALID;
  3023. end:
  3024. if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
  3025. rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
  3026. else
  3027. rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
  3028. /*
  3029. * When checking a CERT_PKEY structure all flags are irrelevant if the
  3030. * chain is invalid.
  3031. */
  3032. if (!check_flags) {
  3033. if (rv & CERT_PKEY_VALID) {
  3034. *pvalid = rv;
  3035. } else {
  3036. /* Preserve sign and explicit sign flag, clear rest */
  3037. *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
  3038. return 0;
  3039. }
  3040. }
  3041. return rv;
  3042. }
  3043. /* Set validity of certificates in an SSL structure */
  3044. void tls1_set_cert_validity(SSL_CONNECTION *s)
  3045. {
  3046. tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
  3047. tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
  3048. tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
  3049. tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
  3050. tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
  3051. tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
  3052. tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
  3053. tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
  3054. tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
  3055. }
  3056. /* User level utility function to check a chain is suitable */
  3057. int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
  3058. {
  3059. SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
  3060. if (sc == NULL)
  3061. return 0;
  3062. return tls1_check_chain(sc, x, pk, chain, -1);
  3063. }
  3064. EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
  3065. {
  3066. EVP_PKEY *dhp = NULL;
  3067. BIGNUM *p;
  3068. int dh_secbits = 80, sec_level_bits;
  3069. EVP_PKEY_CTX *pctx = NULL;
  3070. OSSL_PARAM_BLD *tmpl = NULL;
  3071. OSSL_PARAM *params = NULL;
  3072. SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
  3073. if (s->cert->dh_tmp_auto != 2) {
  3074. if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
  3075. if (s->s3.tmp.new_cipher->strength_bits == 256)
  3076. dh_secbits = 128;
  3077. else
  3078. dh_secbits = 80;
  3079. } else {
  3080. if (s->s3.tmp.cert == NULL)
  3081. return NULL;
  3082. dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
  3083. }
  3084. }
  3085. /* Do not pick a prime that is too weak for the current security level */
  3086. sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
  3087. NULL, NULL);
  3088. if (dh_secbits < sec_level_bits)
  3089. dh_secbits = sec_level_bits;
  3090. if (dh_secbits >= 192)
  3091. p = BN_get_rfc3526_prime_8192(NULL);
  3092. else if (dh_secbits >= 152)
  3093. p = BN_get_rfc3526_prime_4096(NULL);
  3094. else if (dh_secbits >= 128)
  3095. p = BN_get_rfc3526_prime_3072(NULL);
  3096. else if (dh_secbits >= 112)
  3097. p = BN_get_rfc3526_prime_2048(NULL);
  3098. else
  3099. p = BN_get_rfc2409_prime_1024(NULL);
  3100. if (p == NULL)
  3101. goto err;
  3102. pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
  3103. if (pctx == NULL
  3104. || EVP_PKEY_fromdata_init(pctx) != 1)
  3105. goto err;
  3106. tmpl = OSSL_PARAM_BLD_new();
  3107. if (tmpl == NULL
  3108. || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
  3109. || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
  3110. goto err;
  3111. params = OSSL_PARAM_BLD_to_param(tmpl);
  3112. if (params == NULL
  3113. || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
  3114. goto err;
  3115. err:
  3116. OSSL_PARAM_free(params);
  3117. OSSL_PARAM_BLD_free(tmpl);
  3118. EVP_PKEY_CTX_free(pctx);
  3119. BN_free(p);
  3120. return dhp;
  3121. }
  3122. static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
  3123. int op)
  3124. {
  3125. int secbits = -1;
  3126. EVP_PKEY *pkey = X509_get0_pubkey(x);
  3127. if (pkey) {
  3128. /*
  3129. * If no parameters this will return -1 and fail using the default
  3130. * security callback for any non-zero security level. This will
  3131. * reject keys which omit parameters but this only affects DSA and
  3132. * omission of parameters is never (?) done in practice.
  3133. */
  3134. secbits = EVP_PKEY_get_security_bits(pkey);
  3135. }
  3136. if (s != NULL)
  3137. return ssl_security(s, op, secbits, 0, x);
  3138. else
  3139. return ssl_ctx_security(ctx, op, secbits, 0, x);
  3140. }
  3141. static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
  3142. int op)
  3143. {
  3144. /* Lookup signature algorithm digest */
  3145. int secbits, nid, pknid;
  3146. /* Don't check signature if self signed */
  3147. if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
  3148. return 1;
  3149. if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
  3150. secbits = -1;
  3151. /* If digest NID not defined use signature NID */
  3152. if (nid == NID_undef)
  3153. nid = pknid;
  3154. if (s != NULL)
  3155. return ssl_security(s, op, secbits, nid, x);
  3156. else
  3157. return ssl_ctx_security(ctx, op, secbits, nid, x);
  3158. }
  3159. int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
  3160. int is_ee)
  3161. {
  3162. if (vfy)
  3163. vfy = SSL_SECOP_PEER;
  3164. if (is_ee) {
  3165. if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
  3166. return SSL_R_EE_KEY_TOO_SMALL;
  3167. } else {
  3168. if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
  3169. return SSL_R_CA_KEY_TOO_SMALL;
  3170. }
  3171. if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
  3172. return SSL_R_CA_MD_TOO_WEAK;
  3173. return 1;
  3174. }
  3175. /*
  3176. * Check security of a chain, if |sk| includes the end entity certificate then
  3177. * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
  3178. * one to the peer. Return values: 1 if ok otherwise error code to use
  3179. */
  3180. int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
  3181. X509 *x, int vfy)
  3182. {
  3183. int rv, start_idx, i;
  3184. if (x == NULL) {
  3185. x = sk_X509_value(sk, 0);
  3186. if (x == NULL)
  3187. return ERR_R_INTERNAL_ERROR;
  3188. start_idx = 1;
  3189. } else
  3190. start_idx = 0;
  3191. rv = ssl_security_cert(s, NULL, x, vfy, 1);
  3192. if (rv != 1)
  3193. return rv;
  3194. for (i = start_idx; i < sk_X509_num(sk); i++) {
  3195. x = sk_X509_value(sk, i);
  3196. rv = ssl_security_cert(s, NULL, x, vfy, 0);
  3197. if (rv != 1)
  3198. return rv;
  3199. }
  3200. return 1;
  3201. }
  3202. /*
  3203. * For TLS 1.2 servers check if we have a certificate which can be used
  3204. * with the signature algorithm "lu" and return index of certificate.
  3205. */
  3206. static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
  3207. const SIGALG_LOOKUP *lu)
  3208. {
  3209. int sig_idx = lu->sig_idx;
  3210. const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
  3211. SSL_CONNECTION_GET_CTX(s));
  3212. /* If not recognised or not supported by cipher mask it is not suitable */
  3213. if (clu == NULL
  3214. || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
  3215. || (clu->nid == EVP_PKEY_RSA_PSS
  3216. && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
  3217. return -1;
  3218. /* If doing RPK, the CERT_PKEY won't be "valid" */
  3219. if (tls12_rpk_and_privkey(s, sig_idx))
  3220. return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
  3221. return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
  3222. }
  3223. /*
  3224. * Checks the given cert against signature_algorithm_cert restrictions sent by
  3225. * the peer (if any) as well as whether the hash from the sigalg is usable with
  3226. * the key.
  3227. * Returns true if the cert is usable and false otherwise.
  3228. */
  3229. static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
  3230. X509 *x, EVP_PKEY *pkey)
  3231. {
  3232. const SIGALG_LOOKUP *lu;
  3233. int mdnid, pknid, supported;
  3234. size_t i;
  3235. const char *mdname = NULL;
  3236. SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
  3237. /*
  3238. * If the given EVP_PKEY cannot support signing with this digest,
  3239. * the answer is simply 'no'.
  3240. */
  3241. if (sig->hash != NID_undef)
  3242. mdname = OBJ_nid2sn(sig->hash);
  3243. supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
  3244. mdname,
  3245. sctx->propq);
  3246. if (supported <= 0)
  3247. return 0;
  3248. /*
  3249. * The TLS 1.3 signature_algorithms_cert extension places restrictions
  3250. * on the sigalg with which the certificate was signed (by its issuer).
  3251. */
  3252. if (s->s3.tmp.peer_cert_sigalgs != NULL) {
  3253. if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
  3254. return 0;
  3255. for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
  3256. lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
  3257. if (lu == NULL)
  3258. continue;
  3259. /*
  3260. * This does not differentiate between the
  3261. * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
  3262. * have a chain here that lets us look at the key OID in the
  3263. * signing certificate.
  3264. */
  3265. if (mdnid == lu->hash && pknid == lu->sig)
  3266. return 1;
  3267. }
  3268. return 0;
  3269. }
  3270. /*
  3271. * Without signat_algorithms_cert, any certificate for which we have
  3272. * a viable public key is permitted.
  3273. */
  3274. return 1;
  3275. }
  3276. /*
  3277. * Returns true if |s| has a usable certificate configured for use
  3278. * with signature scheme |sig|.
  3279. * "Usable" includes a check for presence as well as applying
  3280. * the signature_algorithm_cert restrictions sent by the peer (if any).
  3281. * Returns false if no usable certificate is found.
  3282. */
  3283. static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
  3284. {
  3285. /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
  3286. if (idx == -1)
  3287. idx = sig->sig_idx;
  3288. if (!ssl_has_cert(s, idx))
  3289. return 0;
  3290. return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
  3291. s->cert->pkeys[idx].privatekey);
  3292. }
  3293. /*
  3294. * Returns true if the supplied cert |x| and key |pkey| is usable with the
  3295. * specified signature scheme |sig|, or false otherwise.
  3296. */
  3297. static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
  3298. EVP_PKEY *pkey)
  3299. {
  3300. size_t idx;
  3301. if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
  3302. return 0;
  3303. /* Check the key is consistent with the sig alg */
  3304. if ((int)idx != sig->sig_idx)
  3305. return 0;
  3306. return check_cert_usable(s, sig, x, pkey);
  3307. }
  3308. /*
  3309. * Find a signature scheme that works with the supplied certificate |x| and key
  3310. * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
  3311. * available certs/keys to find one that works.
  3312. */
  3313. static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
  3314. EVP_PKEY *pkey)
  3315. {
  3316. const SIGALG_LOOKUP *lu = NULL;
  3317. size_t i;
  3318. int curve = -1;
  3319. EVP_PKEY *tmppkey;
  3320. SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
  3321. /* Look for a shared sigalgs matching possible certificates */
  3322. for (i = 0; i < s->shared_sigalgslen; i++) {
  3323. lu = s->shared_sigalgs[i];
  3324. /* Skip SHA1, SHA224, DSA and RSA if not PSS */
  3325. if (lu->hash == NID_sha1
  3326. || lu->hash == NID_sha224
  3327. || lu->sig == EVP_PKEY_DSA
  3328. || lu->sig == EVP_PKEY_RSA)
  3329. continue;
  3330. /* Check that we have a cert, and signature_algorithms_cert */
  3331. if (!tls1_lookup_md(sctx, lu, NULL))
  3332. continue;
  3333. if ((pkey == NULL && !has_usable_cert(s, lu, -1))
  3334. || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
  3335. continue;
  3336. tmppkey = (pkey != NULL) ? pkey
  3337. : s->cert->pkeys[lu->sig_idx].privatekey;
  3338. if (lu->sig == EVP_PKEY_EC) {
  3339. if (curve == -1)
  3340. curve = ssl_get_EC_curve_nid(tmppkey);
  3341. if (lu->curve != NID_undef && curve != lu->curve)
  3342. continue;
  3343. } else if (lu->sig == EVP_PKEY_RSA_PSS) {
  3344. /* validate that key is large enough for the signature algorithm */
  3345. if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
  3346. continue;
  3347. }
  3348. break;
  3349. }
  3350. if (i == s->shared_sigalgslen)
  3351. return NULL;
  3352. return lu;
  3353. }
  3354. /*
  3355. * Choose an appropriate signature algorithm based on available certificates
  3356. * Sets chosen certificate and signature algorithm.
  3357. *
  3358. * For servers if we fail to find a required certificate it is a fatal error,
  3359. * an appropriate error code is set and a TLS alert is sent.
  3360. *
  3361. * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
  3362. * a fatal error: we will either try another certificate or not present one
  3363. * to the server. In this case no error is set.
  3364. */
  3365. int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
  3366. {
  3367. const SIGALG_LOOKUP *lu = NULL;
  3368. int sig_idx = -1;
  3369. s->s3.tmp.cert = NULL;
  3370. s->s3.tmp.sigalg = NULL;
  3371. if (SSL_CONNECTION_IS_TLS13(s)) {
  3372. lu = find_sig_alg(s, NULL, NULL);
  3373. if (lu == NULL) {
  3374. if (!fatalerrs)
  3375. return 1;
  3376. SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
  3377. SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
  3378. return 0;
  3379. }
  3380. } else {
  3381. /* If ciphersuite doesn't require a cert nothing to do */
  3382. if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
  3383. return 1;
  3384. if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
  3385. return 1;
  3386. if (SSL_USE_SIGALGS(s)) {
  3387. size_t i;
  3388. if (s->s3.tmp.peer_sigalgs != NULL) {
  3389. int curve = -1;
  3390. SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
  3391. /* For Suite B need to match signature algorithm to curve */
  3392. if (tls1_suiteb(s))
  3393. curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
  3394. .privatekey);
  3395. /*
  3396. * Find highest preference signature algorithm matching
  3397. * cert type
  3398. */
  3399. for (i = 0; i < s->shared_sigalgslen; i++) {
  3400. lu = s->shared_sigalgs[i];
  3401. if (s->server) {
  3402. if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
  3403. continue;
  3404. } else {
  3405. int cc_idx = s->cert->key - s->cert->pkeys;
  3406. sig_idx = lu->sig_idx;
  3407. if (cc_idx != sig_idx)
  3408. continue;
  3409. }
  3410. /* Check that we have a cert, and sig_algs_cert */
  3411. if (!has_usable_cert(s, lu, sig_idx))
  3412. continue;
  3413. if (lu->sig == EVP_PKEY_RSA_PSS) {
  3414. /* validate that key is large enough for the signature algorithm */
  3415. EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
  3416. if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
  3417. continue;
  3418. }
  3419. if (curve == -1 || lu->curve == curve)
  3420. break;
  3421. }
  3422. #ifndef OPENSSL_NO_GOST
  3423. /*
  3424. * Some Windows-based implementations do not send GOST algorithms indication
  3425. * in supported_algorithms extension, so when we have GOST-based ciphersuite,
  3426. * we have to assume GOST support.
  3427. */
  3428. if (i == s->shared_sigalgslen
  3429. && (s->s3.tmp.new_cipher->algorithm_auth
  3430. & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
  3431. if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
  3432. if (!fatalerrs)
  3433. return 1;
  3434. SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
  3435. SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
  3436. return 0;
  3437. } else {
  3438. i = 0;
  3439. sig_idx = lu->sig_idx;
  3440. }
  3441. }
  3442. #endif
  3443. if (i == s->shared_sigalgslen) {
  3444. if (!fatalerrs)
  3445. return 1;
  3446. SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
  3447. SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
  3448. return 0;
  3449. }
  3450. } else {
  3451. /*
  3452. * If we have no sigalg use defaults
  3453. */
  3454. const uint16_t *sent_sigs;
  3455. size_t sent_sigslen;
  3456. if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
  3457. if (!fatalerrs)
  3458. return 1;
  3459. SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
  3460. SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
  3461. return 0;
  3462. }
  3463. /* Check signature matches a type we sent */
  3464. sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
  3465. for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
  3466. if (lu->sigalg == *sent_sigs
  3467. && has_usable_cert(s, lu, lu->sig_idx))
  3468. break;
  3469. }
  3470. if (i == sent_sigslen) {
  3471. if (!fatalerrs)
  3472. return 1;
  3473. SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
  3474. SSL_R_WRONG_SIGNATURE_TYPE);
  3475. return 0;
  3476. }
  3477. }
  3478. } else {
  3479. if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
  3480. if (!fatalerrs)
  3481. return 1;
  3482. SSLfatal(s, SSL_AD_INTERNAL_ERROR,
  3483. SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
  3484. return 0;
  3485. }
  3486. }
  3487. }
  3488. if (sig_idx == -1)
  3489. sig_idx = lu->sig_idx;
  3490. s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
  3491. s->cert->key = s->s3.tmp.cert;
  3492. s->s3.tmp.sigalg = lu;
  3493. return 1;
  3494. }
  3495. int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
  3496. {
  3497. if (mode != TLSEXT_max_fragment_length_DISABLED
  3498. && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
  3499. ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
  3500. return 0;
  3501. }
  3502. ctx->ext.max_fragment_len_mode = mode;
  3503. return 1;
  3504. }
  3505. int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
  3506. {
  3507. SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
  3508. if (sc == NULL
  3509. || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
  3510. return 0;
  3511. if (mode != TLSEXT_max_fragment_length_DISABLED
  3512. && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
  3513. ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
  3514. return 0;
  3515. }
  3516. sc->ext.max_fragment_len_mode = mode;
  3517. return 1;
  3518. }
  3519. uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
  3520. {
  3521. if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
  3522. return TLSEXT_max_fragment_length_DISABLED;
  3523. return session->ext.max_fragment_len_mode;
  3524. }
  3525. /*
  3526. * Helper functions for HMAC access with legacy support included.
  3527. */
  3528. SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
  3529. {
  3530. SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
  3531. EVP_MAC *mac = NULL;
  3532. if (ret == NULL)
  3533. return NULL;
  3534. #ifndef OPENSSL_NO_DEPRECATED_3_0
  3535. if (ctx->ext.ticket_key_evp_cb == NULL
  3536. && ctx->ext.ticket_key_cb != NULL) {
  3537. if (!ssl_hmac_old_new(ret))
  3538. goto err;
  3539. return ret;
  3540. }
  3541. #endif
  3542. mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
  3543. if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
  3544. goto err;
  3545. EVP_MAC_free(mac);
  3546. return ret;
  3547. err:
  3548. EVP_MAC_CTX_free(ret->ctx);
  3549. EVP_MAC_free(mac);
  3550. OPENSSL_free(ret);
  3551. return NULL;
  3552. }
  3553. void ssl_hmac_free(SSL_HMAC *ctx)
  3554. {
  3555. if (ctx != NULL) {
  3556. EVP_MAC_CTX_free(ctx->ctx);
  3557. #ifndef OPENSSL_NO_DEPRECATED_3_0
  3558. ssl_hmac_old_free(ctx);
  3559. #endif
  3560. OPENSSL_free(ctx);
  3561. }
  3562. }
  3563. EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
  3564. {
  3565. return ctx->ctx;
  3566. }
  3567. int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
  3568. {
  3569. OSSL_PARAM params[2], *p = params;
  3570. if (ctx->ctx != NULL) {
  3571. *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
  3572. *p = OSSL_PARAM_construct_end();
  3573. if (EVP_MAC_init(ctx->ctx, key, len, params))
  3574. return 1;
  3575. }
  3576. #ifndef OPENSSL_NO_DEPRECATED_3_0
  3577. if (ctx->old_ctx != NULL)
  3578. return ssl_hmac_old_init(ctx, key, len, md);
  3579. #endif
  3580. return 0;
  3581. }
  3582. int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
  3583. {
  3584. if (ctx->ctx != NULL)
  3585. return EVP_MAC_update(ctx->ctx, data, len);
  3586. #ifndef OPENSSL_NO_DEPRECATED_3_0
  3587. if (ctx->old_ctx != NULL)
  3588. return ssl_hmac_old_update(ctx, data, len);
  3589. #endif
  3590. return 0;
  3591. }
  3592. int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
  3593. size_t max_size)
  3594. {
  3595. if (ctx->ctx != NULL)
  3596. return EVP_MAC_final(ctx->ctx, md, len, max_size);
  3597. #ifndef OPENSSL_NO_DEPRECATED_3_0
  3598. if (ctx->old_ctx != NULL)
  3599. return ssl_hmac_old_final(ctx, md, len);
  3600. #endif
  3601. return 0;
  3602. }
  3603. size_t ssl_hmac_size(const SSL_HMAC *ctx)
  3604. {
  3605. if (ctx->ctx != NULL)
  3606. return EVP_MAC_CTX_get_mac_size(ctx->ctx);
  3607. #ifndef OPENSSL_NO_DEPRECATED_3_0
  3608. if (ctx->old_ctx != NULL)
  3609. return ssl_hmac_old_size(ctx);
  3610. #endif
  3611. return 0;
  3612. }
  3613. int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
  3614. {
  3615. char gname[OSSL_MAX_NAME_SIZE];
  3616. if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
  3617. return OBJ_txt2nid(gname);
  3618. return NID_undef;
  3619. }
  3620. __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
  3621. const unsigned char *enckey,
  3622. size_t enckeylen)
  3623. {
  3624. if (EVP_PKEY_is_a(pkey, "DH")) {
  3625. int bits = EVP_PKEY_get_bits(pkey);
  3626. if (bits <= 0 || enckeylen != (size_t)bits / 8)
  3627. /* the encoded key must be padded to the length of the p */
  3628. return 0;
  3629. } else if (EVP_PKEY_is_a(pkey, "EC")) {
  3630. if (enckeylen < 3 /* point format and at least 1 byte for x and y */
  3631. || enckey[0] != 0x04)
  3632. return 0;
  3633. }
  3634. return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
  3635. }