|
@@ -119,8 +119,8 @@ std::vector<CArtifactInstance*> genArts(const std::vector<Bonus> & bonusesToGive
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
-//returns how good the artifact is for the neural network
|
|
|
-double runSSN(FANN::neural_net & net, const DuelParameters dp, CArtifactInstance * inst)
|
|
|
+//rates given artifact
|
|
|
+double rateArt(const DuelParameters dp, CArtifactInstance * inst)
|
|
|
{
|
|
|
TArtSet setL, setR;
|
|
|
setL[inst->artType->possibleSlots[0]] = inst;
|
|
@@ -135,7 +135,7 @@ double runSSN(FANN::neural_net & net, const DuelParameters dp, CArtifactInstance
|
|
|
}
|
|
|
|
|
|
|
|
|
-const unsigned int num_input = 24;
|
|
|
+const unsigned int num_input = 27;
|
|
|
|
|
|
double * genSSNinput(const DuelParameters & dp, CArtifactInstance * art)
|
|
|
{
|
|
@@ -144,17 +144,17 @@ double * genSSNinput(const DuelParameters & dp, CArtifactInstance * art)
|
|
|
|
|
|
//general description
|
|
|
|
|
|
- *(cur++) = dp.bfieldType;
|
|
|
- *(cur++) = dp.terType;
|
|
|
+ *(cur++) = dp.bfieldType/30.0;
|
|
|
+ *(cur++) = dp.terType/12.0;
|
|
|
|
|
|
//creature & hero description
|
|
|
|
|
|
for(int i=0; i<2; ++i)
|
|
|
{
|
|
|
auto & side = dp.sides[0];
|
|
|
- *(cur++) = side.heroId;
|
|
|
+ *(cur++) = side.heroId/200.0;
|
|
|
for(int k=0; k<4; ++k)
|
|
|
- *(cur++) = side.heroPrimSkills[k];
|
|
|
+ *(cur++) = side.heroPrimSkills[k]/20.0;
|
|
|
|
|
|
//weighted average of statistics
|
|
|
auto avg = [&](std::function<int(CCreature *)> getter) -> double
|
|
@@ -173,19 +173,33 @@ double * genSSNinput(const DuelParameters & dp, CArtifactInstance * art)
|
|
|
return ret/div;
|
|
|
};
|
|
|
|
|
|
- *(cur++) = avg([](CCreature * c){return c->attack;});
|
|
|
- *(cur++) = avg([](CCreature * c){return c->defence;});
|
|
|
- *(cur++) = avg([](CCreature * c){return c->speed;});
|
|
|
- *(cur++) = avg([](CCreature * c){return c->hitPoints;});
|
|
|
+ *(cur++) = avg([](CCreature * c){return c->attack;})/50.0;
|
|
|
+ *(cur++) = avg([](CCreature * c){return c->defence;})/50.0;
|
|
|
+ *(cur++) = avg([](CCreature * c){return c->speed;})/15.0;
|
|
|
+ *(cur++) = avg([](CCreature * c){return c->hitPoints;})/1000.0;
|
|
|
}
|
|
|
|
|
|
//bonus description
|
|
|
auto & blist = art->getBonusList();
|
|
|
|
|
|
- *(cur++) = art->Attack();
|
|
|
- *(cur++) = art->Defense();
|
|
|
- *(cur++) = blist.valOfBonuses(Selector::type(Bonus::STACKS_SPEED));
|
|
|
- *(cur++) = blist.valOfBonuses(Selector::type(Bonus::STACK_HEALTH));
|
|
|
+ *(cur++) = blist[0]->type/100.0;
|
|
|
+ *(cur++) = blist[0]->subtype/10.0;
|
|
|
+ *(cur++) = blist[0]->val/100.0;;
|
|
|
+ *(cur++) = art->Attack()/10.0;
|
|
|
+ *(cur++) = art->Defense()/10.0;
|
|
|
+ *(cur++) = blist.valOfBonuses(Selector::type(Bonus::STACKS_SPEED))/5.0;
|
|
|
+ *(cur++) = blist.valOfBonuses(Selector::type(Bonus::STACK_HEALTH))/10.0;
|
|
|
+
|
|
|
+ return ret;
|
|
|
+}
|
|
|
+
|
|
|
+//returns how good the artifact is for the neural network
|
|
|
+double runSSN(FANN::neural_net & net, const DuelParameters dp, CArtifactInstance * inst)
|
|
|
+{
|
|
|
+ double * input = genSSNinput(dp, inst);
|
|
|
+ double * out = net.run(input);
|
|
|
+ double ret = *out;
|
|
|
+ free(out);
|
|
|
|
|
|
return ret;
|
|
|
}
|
|
@@ -200,7 +214,7 @@ void learnSSN(FANN::neural_net & net, const std::vector<std::pair<DuelParameters
|
|
|
{
|
|
|
inputs[i] = genSSNinput(input[i].first, input[i].second);
|
|
|
outputs[i] = new double;
|
|
|
- *(outputs[i]) = runSSN(net, input[i].first, input[i].second);
|
|
|
+ *(outputs[i]) = rateArt(input[i].first, input[i].second);
|
|
|
}
|
|
|
td.set_train_data(input.size(), num_input, inputs, 1, outputs);
|
|
|
|
|
@@ -211,7 +225,7 @@ void initNet(FANN::neural_net & ret)
|
|
|
{
|
|
|
const float learning_rate = 0.7f;
|
|
|
const unsigned int num_layers = 3;
|
|
|
- const unsigned int num_hidden = 3;
|
|
|
+ const unsigned int num_hidden = 30;
|
|
|
const unsigned int num_output = 1;
|
|
|
const float desired_error = 0.001f;
|
|
|
const unsigned int max_iterations = 300000;
|