|
@@ -353,7 +353,7 @@ double Framework::rateArt(const DuelParameters dp, CArtifactInstance * inst)
|
|
|
|
|
|
double LRgain = resultLR - resultsBase,
|
|
|
RLgain = resultsBase - resultRL;
|
|
|
- return LRgain+RLgain;
|
|
|
+ return (LRgain+RLgain)/4;
|
|
|
}
|
|
|
|
|
|
double Framework::cmpArtSets(DuelParameters dp, TArtSet setL, TArtSet setR)
|
|
@@ -538,6 +538,17 @@ double SSN::learn(const std::vector<Example> & input, const ParameterSet & param
|
|
|
|
|
|
net.set_callback(ANNCallback, NULL);
|
|
|
net.train_on_data(*td, 1000, 1000, 0.01);
|
|
|
+
|
|
|
+
|
|
|
+// int exNum = 130;
|
|
|
+//
|
|
|
+// for(int exNum =0; exNum<input.size(); ++exNum)
|
|
|
+// {
|
|
|
+// double * testIn = genSSNinput(input[exNum].dp.sides[0], input[exNum].art, input[exNum].dp.bfieldType, input[exNum].dp.terType);
|
|
|
+//
|
|
|
+// double ans = *net.run(testIn);
|
|
|
+// int g = 0;
|
|
|
+// }
|
|
|
|
|
|
return net.test_data(*td);
|
|
|
}
|
|
@@ -651,6 +662,12 @@ void SSNRun()
|
|
|
FANN::activation_function_enum possibleFuns[] = {FANN::SIGMOID_SYMMETRIC_STEPWISE, FANN::LINEAR,
|
|
|
FANN::SIGMOID, FANN::SIGMOID_STEPWISE, FANN::SIGMOID_SYMMETRIC};
|
|
|
|
|
|
+// bestParams.actSteepHidden = 1.18;
|
|
|
+// bestParams.actSteepnessOutput = 1.26;
|
|
|
+// bestParams.hiddenActFun = FANN::SIGMOID_STEPWISE;
|
|
|
+// bestParams.outActFun = FANN::SIGMOID_SYMMETRIC;
|
|
|
+// bestParams.neuronsInHidden = 47;
|
|
|
+
|
|
|
for(int i=0; i<5000; i += 1)
|
|
|
{
|
|
|
SSN::ParameterSet ps;
|
|
@@ -672,7 +689,7 @@ void SSNRun()
|
|
|
cout << "hid:\t" << i << " lmse:\t" << lmse << " tmse:\t" << tmse << std::endl;
|
|
|
}
|
|
|
//saving of best network
|
|
|
- network.learn(trainingSet, bestParams);
|
|
|
+ double debugMSE = network.learn(trainingSet, bestParams);
|
|
|
|
|
|
network.save("network_config_file.net");
|
|
|
}
|