/* * SDL_Extensions.cpp, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */ #include "StdInc.h" #include "SDL_Extensions.h" #include "SDL_PixelAccess.h" #include "../GameEngine.h" #include "../render/Graphics.h" #include "../render/IImage.h" #include "../render/IScreenHandler.h" #include "../render/Colors.h" #include "../CMT.h" #include "../xBRZ/xbrz.h" #include "../../lib/GameConstants.h" #include #include #include #include Rect CSDL_Ext::fromSDL(const SDL_Rect & rect) { return Rect(Point(rect.x, rect.y), Point(rect.w, rect.h)); } SDL_Rect CSDL_Ext::toSDL(const Rect & rect) { SDL_Rect result; result.x = rect.x; result.y = rect.y; result.w = rect.w; result.h = rect.h; return result; } ColorRGBA CSDL_Ext::fromSDL(const SDL_Color & color) { return { color.r, color.g, color.b, color.a }; } SDL_Color CSDL_Ext::toSDL(const ColorRGBA & color) { SDL_Color result; result.r = color.r; result.g = color.g; result.b = color.b; result.a = color.a; return result; } SDL_Surface * CSDL_Ext::newSurface(const Point & dimensions) { return newSurface(dimensions, nullptr); } SDL_Surface * CSDL_Ext::newSurface(const Point & dimensions, SDL_Surface * mod) //creates new surface, with flags/format same as in surface given { SDL_Surface * ret = nullptr; if (mod != nullptr) ret = SDL_CreateRGBSurface(0,dimensions.x,dimensions.y,mod->format->BitsPerPixel,mod->format->Rmask,mod->format->Gmask,mod->format->Bmask,mod->format->Amask); else ret = SDL_CreateRGBSurfaceWithFormat(0,dimensions.x,dimensions.y,32,SDL_PixelFormatEnum::SDL_PIXELFORMAT_ARGB8888); if(ret == nullptr) { const char * error = SDL_GetError(); std::string messagePattern = "Failed to create SDL Surface of size %d x %d. Reason: %s"; std::string message = boost::str(boost::format(messagePattern) % dimensions.x % dimensions.y % error); throw std::runtime_error(message); } if (mod && mod->format->palette) { assert(ret->format->palette); assert(ret->format->palette->ncolors >= mod->format->palette->ncolors); memcpy(ret->format->palette->colors, mod->format->palette->colors, mod->format->palette->ncolors * sizeof(SDL_Color)); } return ret; } void CSDL_Ext::blitAt(SDL_Surface * src, int x, int y, SDL_Surface * dst) { CSDL_Ext::blitSurface(src, dst, Point(x, y)); } void CSDL_Ext::blitAt(SDL_Surface * src, const Rect & pos, SDL_Surface * dst) { if (src) blitAt(src,pos.x,pos.y,dst); } // Vertical flip SDL_Surface * CSDL_Ext::verticalFlip(SDL_Surface * toRot) { SDL_Surface * ret = SDL_ConvertSurface(toRot, toRot->format, toRot->flags); SDL_LockSurface(ret); SDL_LockSurface(toRot); const int bpp = ret->format->BytesPerPixel; char * src = reinterpret_cast(toRot->pixels); char * dst = reinterpret_cast(ret->pixels); for(int i=0; ih; i++) { //FIXME: optimization bugged // if (bpp == 1) // { // // much faster for 8-bit surfaces (majority of our data) // std::reverse_copy(src, src + toRot->pitch, dst); // } // else // { char * srcPxl = src; char * dstPxl = dst + ret->w * bpp; for(int j=0; jw; j++) { dstPxl -= bpp; std::copy(srcPxl, srcPxl + bpp, dstPxl); srcPxl += bpp; } // } src += toRot->pitch; dst += ret->pitch; } SDL_UnlockSurface(ret); SDL_UnlockSurface(toRot); return ret; } // Horizontal flip SDL_Surface * CSDL_Ext::horizontalFlip(SDL_Surface * toRot) { SDL_Surface * ret = SDL_ConvertSurface(toRot, toRot->format, toRot->flags); SDL_LockSurface(ret); SDL_LockSurface(toRot); char * src = reinterpret_cast(toRot->pixels); char * dst = reinterpret_cast(ret->pixels) + ret->h * ret->pitch; for(int i=0; ih; i++) { dst -= ret->pitch; std::copy(src, src + toRot->pitch, dst); src += toRot->pitch; } SDL_UnlockSurface(ret); SDL_UnlockSurface(toRot); return ret; } uint32_t CSDL_Ext::getPixel(SDL_Surface *surface, const int & x, const int & y, bool colorByte) { int bpp = surface->format->BytesPerPixel; /* Here p is the address to the pixel we want to retrieve */ uint8_t *p = (uint8_t *)surface->pixels + y * surface->pitch + x * bpp; switch(bpp) { case 1: if(colorByte) return colorTouint32_t(surface->format->palette->colors+(*p)); else return *p; case 2: return *(uint16_t *)p; case 3: return p[0] | p[1] << 8 | p[2] << 16; case 4: return *(uint32_t *)p; default: return 0; // shouldn't happen, but avoids warnings } } template int CSDL_Ext::blit8bppAlphaTo24bppT(const SDL_Surface * src, const Rect & srcRectInput, SDL_Surface * dst, const Point & dstPointInput, [[maybe_unused]] uint8_t alpha) { SDL_Rect srcRectInstance = CSDL_Ext::toSDL(srcRectInput); SDL_Rect dstRectInstance = CSDL_Ext::toSDL(Rect(dstPointInput, srcRectInput.dimensions())); SDL_Rect * srcRect =&srcRectInstance; SDL_Rect * dstRect =&dstRectInstance; /* Make sure the surfaces aren't locked */ if ( ! src || ! dst ) { SDL_SetError("SDL_UpperBlit: passed a nullptr surface"); return -1; } if ( src->locked || dst->locked ) { SDL_SetError("Surfaces must not be locked during blit"); return -1; } if (src->format->BytesPerPixel==1 && (bpp==3 || bpp==4 || bpp==2)) //everything's ok { SDL_Rect fulldst; int srcx; int srcy; int w; int h; /* If the destination rectangle is nullptr, use the entire dest surface */ if ( dstRect == nullptr ) { fulldst.x = fulldst.y = 0; dstRect = &fulldst; } /* clip the source rectangle to the source surface */ if(srcRect) { int maxw; int maxh; srcx = srcRect->x; w = srcRect->w; if(srcx < 0) { w += srcx; dstRect->x -= srcx; srcx = 0; } maxw = src->w - srcx; if(maxw < w) w = maxw; srcy = srcRect->y; h = srcRect->h; if(srcy < 0) { h += srcy; dstRect->y -= srcy; srcy = 0; } maxh = src->h - srcy; if(maxh < h) h = maxh; } else { srcx = srcy = 0; w = src->w; h = src->h; } /* clip the destination rectangle against the clip rectangle */ { SDL_Rect *clip = &dst->clip_rect; int dx; int dy; dx = clip->x - dstRect->x; if(dx > 0) { w -= dx; dstRect->x += dx; srcx += dx; } dx = dstRect->x + w - clip->x - clip->w; if(dx > 0) w -= dx; dy = clip->y - dstRect->y; if(dy > 0) { h -= dy; dstRect->y += dy; srcy += dy; } dy = dstRect->y + h - clip->y - clip->h; if(dy > 0) h -= dy; } if(w > 0 && h > 0) { dstRect->w = w; dstRect->h = h; if(SDL_LockSurface(dst)) return -1; //if we cannot lock the surface const SDL_Color *colors = src->format->palette->colors; uint8_t *colory = (uint8_t*)src->pixels + srcy*src->pitch + srcx; uint8_t *py = (uint8_t*)dst->pixels + dstRect->y*dst->pitch + dstRect->x*bpp; for(int y=0; ypitch, py+=dst->pitch) { uint8_t *color = colory; uint8_t *p = py; for(int x = 0; x < w; ++x) { const SDL_Color &tbc = colors[*color++]; //color to blit if constexpr (useAlpha) ColorPutter::PutColorAlphaSwitch(p, tbc.r, tbc.g, tbc.b, int(alpha) * tbc.a / 255 ); else ColorPutter::PutColorAlphaSwitch(p, tbc.r, tbc.g, tbc.b, tbc.a); p += bpp; } } SDL_UnlockSurface(dst); } } return 0; } int CSDL_Ext::blit8bppAlphaTo24bpp(const SDL_Surface * src, const Rect & srcRect, SDL_Surface * dst, const Point & dstPoint, uint8_t alpha) { if (alpha == SDL_ALPHA_OPAQUE) { switch(dst->format->BytesPerPixel) { case 3: return blit8bppAlphaTo24bppT<3, false>(src, srcRect, dst, dstPoint, alpha); case 4: return blit8bppAlphaTo24bppT<4, false>(src, srcRect, dst, dstPoint, alpha); } } else { switch(dst->format->BytesPerPixel) { case 3: return blit8bppAlphaTo24bppT<3, true>(src, srcRect, dst, dstPoint, alpha); case 4: return blit8bppAlphaTo24bppT<4, true>(src, srcRect, dst, dstPoint, alpha); } } logGlobal->error("%d bpp is not supported!", (int)dst->format->BitsPerPixel); return -1; } uint32_t CSDL_Ext::colorTouint32_t(const SDL_Color * color) { uint32_t ret = 0; ret+=color->a; ret<<=8; //*=256 ret+=color->b; ret<<=8; //*=256 ret+=color->g; ret<<=8; //*=256 ret+=color->r; return ret; } static void drawLineXDashed(SDL_Surface * sur, int x1, int y1, int x2, int y2, const SDL_Color & color) { double length(x2 - x1); for(int x = x1; x <= x2; x++) { double f = (x - x1) / length; int y = vstd::lerp(y1, y2, f); if (std::abs(x - x1) % 5 != 4) CSDL_Ext::putPixelWithoutRefreshIfInSurf(sur, x, y, color.r, color.g, color.b); } } static void drawLineYDashed(SDL_Surface * sur, int x1, int y1, int x2, int y2, const SDL_Color & color) { double length(y2 - y1); for(int y = y1; y <= y2; y++) { double f = (y - y1) / length; int x = vstd::lerp(x1, x2, f); if (std::abs(y - y1) % 5 != 4) CSDL_Ext::putPixelWithoutRefreshIfInSurf(sur, x, y, color.r, color.g, color.b); } } static void drawLineX(SDL_Surface * sur, int x1, int y1, int x2, int y2, const SDL_Color & color1, const SDL_Color & color2) { double length(x2 - x1); for(int x = x1; x <= x2; x++) { double f = (x - x1) / length; int y = vstd::lerp(y1, y2, f); uint8_t r = vstd::lerp(color1.r, color2.r, f); uint8_t g = vstd::lerp(color1.g, color2.g, f); uint8_t b = vstd::lerp(color1.b, color2.b, f); uint8_t a = vstd::lerp(color1.a, color2.a, f); uint8_t *p = CSDL_Ext::getPxPtr(sur, x, y); ColorPutter<4>::PutColor(p, r,g,b,a); } } static void drawLineY(SDL_Surface * sur, int x1, int y1, int x2, int y2, const SDL_Color & color1, const SDL_Color & color2) { double length(y2 - y1); for(int y = y1; y <= y2; y++) { double f = (y - y1) / length; int x = vstd::lerp(x1, x2, f); uint8_t r = vstd::lerp(color1.r, color2.r, f); uint8_t g = vstd::lerp(color1.g, color2.g, f); uint8_t b = vstd::lerp(color1.b, color2.b, f); uint8_t a = vstd::lerp(color1.a, color2.a, f); uint8_t *p = CSDL_Ext::getPxPtr(sur, x, y); ColorPutter<4>::PutColor(p, r,g,b,a); } } void CSDL_Ext::drawLine(SDL_Surface * sur, const Point & from, const Point & dest, const SDL_Color & color1, const SDL_Color & color2, int thickness) { //FIXME: duplicated code with drawLineDashed int width = std::abs(from.x - dest.x); int height = std::abs(from.y - dest.y); if(width == 0 && height == 0) { uint8_t * p = CSDL_Ext::getPxPtr(sur, from.x, from.y); ColorPutter<4>::PutColorAlpha(p, color1); return; } for(int i = 0; i < thickness; ++i) { if(width > height) { if(from.x < dest.x) drawLineX(sur, from.x, from.y + i, dest.x, dest.y + i, color1, color2); else drawLineX(sur, dest.x, dest.y + i, from.x, from.y + i, color2, color1); } else { if(from.y < dest.y) drawLineY(sur, from.x + i, from.y, dest.x + i, dest.y, color1, color2); else drawLineY(sur, dest.x + i, dest.y, from.x + i, from.y, color2, color1); } } } void CSDL_Ext::drawLineDashed(SDL_Surface * sur, const Point & from, const Point & dest, const SDL_Color & color) { //FIXME: duplicated code with drawLine int width = std::abs(from.x - dest.x); int height = std::abs(from.y - dest.y); if ( width == 0 && height == 0) { CSDL_Ext::putPixelWithoutRefreshIfInSurf(sur, from.x, from.y, color.r, color.g, color.b); return; } if (width > height) { if ( from.x < dest.x) drawLineXDashed(sur, from.x, from.y, dest.x, dest.y, color); else drawLineXDashed(sur, dest.x, dest.y, from.x, from.y, color); } else { if ( from.y < dest.y) drawLineYDashed(sur, from.x, from.y, dest.x, dest.y, color); else drawLineYDashed(sur, dest.x, dest.y, from.x, from.y, color); } } void CSDL_Ext::drawBorder(SDL_Surface * sur, int x, int y, int w, int h, const SDL_Color &color, int depth) { depth = std::max(1, depth); for(int depthIterator = 0; depthIterator < depth; depthIterator++) { for(int i = 0; i < w; i++) { CSDL_Ext::putPixelWithoutRefreshIfInSurf(sur,x+i,y+depthIterator,color.r,color.g,color.b); CSDL_Ext::putPixelWithoutRefreshIfInSurf(sur,x+i,y+h-1-depthIterator,color.r,color.g,color.b); } for(int i = 0; i < h; i++) { CSDL_Ext::putPixelWithoutRefreshIfInSurf(sur,x+depthIterator,y+i,color.r,color.g,color.b); CSDL_Ext::putPixelWithoutRefreshIfInSurf(sur,x+w-1-depthIterator,y+i,color.r,color.g,color.b); } } } void CSDL_Ext::drawBorder( SDL_Surface * sur, const Rect &r, const SDL_Color &color, int depth) { drawBorder(sur, r.x, r.y, r.w, r.h, color, depth); } uint8_t * CSDL_Ext::getPxPtr(const SDL_Surface * const &srf, const int x, const int y) { return (uint8_t *)srf->pixels + y * srf->pitch + x * srf->format->BytesPerPixel; } void CSDL_Ext::putPixelWithoutRefresh(SDL_Surface *ekran, const int & x, const int & y, const uint8_t & R, const uint8_t & G, const uint8_t & B, uint8_t A) { uint8_t *p = getPxPtr(ekran, x, y); switch(ekran->format->BytesPerPixel) { case 3: ColorPutter<3>::PutColor(p, R, G, B); Channels::px<3>::a.set(p, A); break; case 4: ColorPutter<4>::PutColor(p, R, G, B); Channels::px<4>::a.set(p, A); break; } } void CSDL_Ext::putPixelWithoutRefreshIfInSurf(SDL_Surface *ekran, const int & x, const int & y, const uint8_t & R, const uint8_t & G, const uint8_t & B, uint8_t A) { const SDL_Rect & rect = ekran->clip_rect; if(x >= rect.x && x < rect.w + rect.x && y >= rect.y && y < rect.h + rect.y) CSDL_Ext::putPixelWithoutRefresh(ekran, x, y, R, G, B, A); } template void loopOverPixel(SDL_Surface * surf, const Rect & rect, Functor functor) { uint8_t * pixels = static_cast(surf->pixels); tbb::parallel_for(tbb::blocked_range(rect.top(), rect.bottom()), [&](const tbb::blocked_range& r) { for(int yp = r.begin(); yp != r.end(); ++yp) { uint8_t * pixel_from = pixels + yp * surf->pitch + rect.left() * surf->format->BytesPerPixel; uint8_t * pixel_dest = pixels + yp * surf->pitch + rect.right() * surf->format->BytesPerPixel; for (uint8_t * pixel = pixel_from; pixel < pixel_dest; pixel += surf->format->BytesPerPixel) { int r = Channels::px<4>::r.get(pixel); int g = Channels::px<4>::g.get(pixel); int b = Channels::px<4>::b.get(pixel); functor(r, g, b); Channels::px<4>::r.set(pixel, r); Channels::px<4>::g.set(pixel, g); Channels::px<4>::b.set(pixel, b); } } }); } void CSDL_Ext::convertToGrayscale(SDL_Surface * surf, const Rect & rect ) { loopOverPixel(surf, rect, [](int &r, int &g, int &b){ int gray = static_cast(0.299 * r + 0.587 * g + 0.114 * b); r = gray; g = gray; b = gray; }); } void CSDL_Ext::convertToH2Scheme(SDL_Surface * surf, const Rect & rect ) { loopOverPixel(surf, rect, [](int &r, int &g, int &b){ double gray = 0.3 * r + 0.59 * g + 0.11 * b; double factor = 2.0; //fast approximation instead of colorspace conversion r = static_cast(gray + (r - gray) * factor); g = static_cast(gray + (g - gray) * factor); b = static_cast(gray + (b - gray) * factor); r = std::clamp(r, 0, 255); g = std::clamp(g, 0, 255); b = std::clamp(b, 0, 255); }); } void CSDL_Ext::blitSurface(SDL_Surface * src, const Rect & srcRectInput, SDL_Surface * dst, const Point & dstPoint) { SDL_Rect srcRect = CSDL_Ext::toSDL(srcRectInput); SDL_Rect dstRect = CSDL_Ext::toSDL(Rect(dstPoint, srcRectInput.dimensions())); int result = SDL_UpperBlit(src, &srcRect, dst, &dstRect); if (result != 0) logGlobal->error("SDL_UpperBlit failed! %s", SDL_GetError()); } void CSDL_Ext::blitSurface(SDL_Surface * src, SDL_Surface * dst, const Point & dest) { Rect allSurface( Point(0,0), Point(src->w, src->h)); blitSurface(src, allSurface, dst, dest); } void CSDL_Ext::fillSurface( SDL_Surface *dst, const SDL_Color & color ) { Rect allSurface( Point(0,0), Point(dst->w, dst->h)); fillRect(dst, allSurface, color); } void CSDL_Ext::fillRect( SDL_Surface *dst, const Rect & dstrect, const SDL_Color & color) { SDL_Rect newRect = CSDL_Ext::toSDL(dstrect); uint32_t sdlColor = SDL_MapRGBA(dst->format, color.r, color.g, color.b, color.a); SDL_FillRect(dst, &newRect, sdlColor); } void CSDL_Ext::fillRectBlended( SDL_Surface *dst, const Rect & dstrect, const SDL_Color & color) { SDL_Rect newRect = CSDL_Ext::toSDL(dstrect); uint32_t sdlColor = SDL_MapRGBA(dst->format, color.r, color.g, color.b, color.a); SDL_Surface * tmp = SDL_CreateRGBSurface(0, newRect.w, newRect.h, dst->format->BitsPerPixel, dst->format->Rmask, dst->format->Gmask, dst->format->Bmask, dst->format->Amask); SDL_FillRect(tmp, nullptr, sdlColor); SDL_BlitSurface(tmp, nullptr, dst, &newRect); SDL_FreeSurface(tmp); } STRONG_INLINE static uint32_t mapColor(SDL_Surface * surface, SDL_Color color) { return SDL_MapRGBA(surface->format, color.r, color.g, color.b, color.a); } void CSDL_Ext::setColorKey(SDL_Surface * surface, SDL_Color color) { uint32_t key = mapColor(surface,color); SDL_SetColorKey(surface, SDL_TRUE, key); } void CSDL_Ext::setDefaultColorKey(SDL_Surface * surface) { setColorKey(surface, toSDL(Colors::DEFAULT_KEY_COLOR)); } void CSDL_Ext::setDefaultColorKeyPresize(SDL_Surface * surface) { uint32_t key = mapColor(surface, toSDL(Colors::DEFAULT_KEY_COLOR)); auto & color = surface->format->palette->colors[key]; // set color key only if exactly such color was found if (color.r == Colors::DEFAULT_KEY_COLOR.r && color.g == Colors::DEFAULT_KEY_COLOR.g && color.b == Colors::DEFAULT_KEY_COLOR.b) { SDL_SetColorKey(surface, SDL_TRUE, key); color.a = SDL_ALPHA_TRANSPARENT; } } void CSDL_Ext::setClipRect(SDL_Surface * src, const Rect & other) { SDL_Rect rect = CSDL_Ext::toSDL(other); SDL_SetClipRect(src, &rect); } void CSDL_Ext::getClipRect(SDL_Surface * src, Rect & other) { SDL_Rect rect; SDL_GetClipRect(src, &rect); other = CSDL_Ext::fromSDL(rect); } SDL_Surface * CSDL_Ext::drawOutline(SDL_Surface * source, const SDL_Color & color, int thickness) { // ensure format SDL_Surface *sourceSurface = SDL_ConvertSurfaceFormat(source, SDL_PIXELFORMAT_ARGB8888, 0); SDL_Surface *destSurface = newSurface(Point(source->w, source->h)); // Lock surfaces for direct pixel access if (SDL_MUSTLOCK(sourceSurface)) SDL_LockSurface(sourceSurface); if (SDL_MUSTLOCK(destSurface)) SDL_LockSurface(destSurface); int width = sourceSurface->w; int height = sourceSurface->h; // Iterate through the pixels of the image for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { Uint8 maxPixel = 0; Uint8 minPixel = 255; int halfThickness = (thickness + 1) / 2; // Loop over the neighborhood around (x, y) for(int offsetY = -halfThickness; offsetY <= halfThickness; offsetY++) { for(int offsetX = -halfThickness; offsetX <= halfThickness; offsetX++) { // Circle instead of rectangle if(offsetX * offsetX + offsetY * offsetY > halfThickness * halfThickness) continue; int neighborX = x + offsetX; int neighborY = y + offsetY; // Check image bounds if(neighborX >= 0 && neighborX < destSurface->w && neighborY >= 0 && neighborY < destSurface->h) { // Get the pixel at the neighbor position Uint32 pixel = *((Uint32*)sourceSurface->pixels + neighborY * width + neighborX); Uint8 r; Uint8 g; Uint8 b; Uint8 a; SDL_GetRGBA(pixel, sourceSurface->format, &r, &g, &b, &a); // Compare the pixel alpha value to find the maximum and maximum if(a > maxPixel) maxPixel = a; if(a < minPixel) minPixel = a; } } } Uint32 newPixel = SDL_MapRGBA(destSurface->format, color.r, color.g, color.b, maxPixel - minPixel); *((Uint32*)destSurface->pixels + y * width + x) = newPixel; } } if (SDL_MUSTLOCK(sourceSurface)) SDL_UnlockSurface(sourceSurface); if (SDL_MUSTLOCK(destSurface)) SDL_UnlockSurface(destSurface); SDL_FreeSurface(sourceSurface); return destSurface; } void applyAffineTransform(SDL_Surface* src, SDL_Surface* dst, double a, double b, double c, double d, double tx, double ty) { assert(src->format->format == SDL_PIXELFORMAT_ARGB8888); assert(dst->format->format == SDL_PIXELFORMAT_ARGB8888); // Lock surfaces for direct pixel access if (SDL_MUSTLOCK(src)) SDL_LockSurface(src); if (SDL_MUSTLOCK(dst)) SDL_LockSurface(dst); // Calculate inverse matrix M_inv for mapping dst -> src double det = a * d - b * c; if (static_cast(det) == 0) throw std::runtime_error("Singular transform matrix!"); double invDet = 1.0 / det; double ia = d * invDet; double ib = -b * invDet; double ic = -c * invDet; double id = a * invDet; // For each pixel in the destination image for(int y = 0; y < dst->h; y++) { for(int x = 0; x < dst->w; x++) { // Map destination pixel (x,y) back to source coordinates (srcX, srcY) double srcX = ia * (x - tx) + ib * (y - ty); double srcY = ic * (x - tx) + id * (y - ty); // Nearest neighbor sampling (can be improved to bilinear) auto srcXi = static_cast(round(srcX)); auto srcYi = static_cast(round(srcY)); // Check bounds if (srcXi >= 0 && srcXi < src->w && srcYi >= 0 && srcYi < src->h) { auto srcPixels = (Uint32*)src->pixels; auto dstPixels = (Uint32*)dst->pixels; Uint32 pixel = srcPixels[srcYi * src->w + srcXi]; dstPixels[y * dst->w + x] = pixel; } else { // Outside source bounds: set transparent or black auto dstPixels = (Uint32*)dst->pixels; dstPixels[y * dst->w + x] = 0x00000000; // transparent black } } } if (SDL_MUSTLOCK(src)) SDL_UnlockSurface(src); if (SDL_MUSTLOCK(dst)) SDL_UnlockSurface(dst); } int getLowestNonTransparentY(SDL_Surface* surface) { assert(surface->format->format == SDL_PIXELFORMAT_ARGB8888); if(SDL_MUSTLOCK(surface)) SDL_LockSurface(surface); int w = surface->w; int h = surface->h; int bpp = surface->format->BytesPerPixel; auto pixels = (Uint8*)surface->pixels; for(int y = h - 1; y >= 0; --y) { Uint8* row = pixels + y * surface->pitch; for(int x = 0; x < w; ++x) { Uint32 pixel = *(Uint32*)(row + x * bpp); Uint8 r; Uint8 g; Uint8 b; Uint8 a; SDL_GetRGBA(pixel, surface->format, &r, &g, &b, &a); if (a > 0) { if(SDL_MUSTLOCK(surface)) SDL_UnlockSurface(surface); return y; } } } if (SDL_MUSTLOCK(surface)) SDL_UnlockSurface(surface); return -1; // fully transparent } void fillAlphaPixelWithRGBA(SDL_Surface* surface, Uint8 r, Uint8 g, Uint8 b, Uint8 a) { assert(surface->format->format == SDL_PIXELFORMAT_ARGB8888); if (SDL_MUSTLOCK(surface)) SDL_LockSurface(surface); auto pixels = (Uint32*)surface->pixels; int pixelCount = surface->w * surface->h; for (int i = 0; i < pixelCount; i++) { Uint32 pixel = pixels[i]; Uint8 pr; Uint8 pg; Uint8 pb; Uint8 pa; // Extract existing RGBA components using SDL_GetRGBA SDL_GetRGBA(pixel, surface->format, &pr, &pg, &pb, &pa); Uint32 newPixel = SDL_MapRGBA(surface->format, r, g, b, a); if(pa == 0) newPixel = SDL_MapRGBA(surface->format, 0, 0, 0, 0); pixels[i] = newPixel; } if (SDL_MUSTLOCK(surface)) SDL_UnlockSurface(surface); } void gaussianBlur(SDL_Surface* surface, int amount) { assert(surface->format->format == SDL_PIXELFORMAT_ARGB8888); if (!surface || amount <= 0) return; if (SDL_MUSTLOCK(surface)) SDL_LockSurface(surface); int width = surface->w; int height = surface->h; int pixelCount = width * height; auto pixels = static_cast(surface->pixels); std::vector srcR(pixelCount); std::vector srcG(pixelCount); std::vector srcB(pixelCount); std::vector srcA(pixelCount); std::vector dstR(pixelCount); std::vector dstG(pixelCount); std::vector dstB(pixelCount); std::vector dstA(pixelCount); // Initialize src channels from surface pixels for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { Uint32 pixel = pixels[y * width + x]; Uint8 r; Uint8 g; Uint8 b; Uint8 a; SDL_GetRGBA(pixel, surface->format, &r, &g, &b, &a); int idx = y * width + x; srcR[idx] = r; srcG[idx] = g; srcB[idx] = b; srcA[idx] = a; } } // 3x3 Gaussian kernel std::array, 3> kernel = {{ {{1.f/16, 2.f/16, 1.f/16}}, {{2.f/16, 4.f/16, 2.f/16}}, {{1.f/16, 2.f/16, 1.f/16}} }}; // Apply the blur 'amount' times for stronger blur for (int iteration = 0; iteration < amount; ++iteration) { for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { float sumR = 0.f; float sumG = 0.f; float sumB = 0.f; float sumA = 0.f; for (int ky = -1; ky <= 1; ++ky) { for (int kx = -1; kx <= 1; ++kx) { int nx = x + kx; int ny = y + ky; // Clamp edges if (nx < 0) nx = 0; else if (nx >= width) nx = width - 1; if (ny < 0) ny = 0; else if (ny >= height) ny = height - 1; int nIdx = ny * width + nx; float kval = kernel[ky + 1][kx + 1]; sumR += srcR[nIdx] * kval; sumG += srcG[nIdx] * kval; sumB += srcB[nIdx] * kval; sumA += srcA[nIdx] * kval; } } int idx = y * width + x; dstR[idx] = static_cast(sumR); dstG[idx] = static_cast(sumG); dstB[idx] = static_cast(sumB); dstA[idx] = static_cast(sumA); } } // Swap src and dst for next iteration (blur chaining) srcR.swap(dstR); srcG.swap(dstG); srcB.swap(dstB); srcA.swap(dstA); } // After final iteration, write back to surface pixels for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { int idx = y * width + x; pixels[idx] = SDL_MapRGBA(surface->format, srcR[idx], srcG[idx], srcB[idx], srcA[idx]); } } if (SDL_MUSTLOCK(surface)) SDL_UnlockSurface(surface); } SDL_Surface * CSDL_Ext::drawShadow(SDL_Surface * source, bool doSheer) { SDL_Surface *sourceSurface = SDL_ConvertSurfaceFormat(source, SDL_PIXELFORMAT_ARGB8888, 0); SDL_Surface *destSurface = newSurface(Point(source->w, source->h)); assert(destSurface->format->format == SDL_PIXELFORMAT_ARGB8888); double shearX = doSheer ? 0.5 : 0.0; double scaleY = doSheer ? 0.5 : 0.25; int lowestSource = getLowestNonTransparentY(sourceSurface); int lowestTransformed = lowestSource * scaleY; // Parameters for applyAffineTransform double a = 1.0; double b = shearX; double c = 0.0; double d = scaleY; double tx = -shearX * lowestSource; double ty = lowestSource - lowestTransformed; applyAffineTransform(sourceSurface, destSurface, a, b, c, d, tx, ty); fillAlphaPixelWithRGBA(destSurface, 0, 0, 0, 128); gaussianBlur(destSurface, 1); SDL_FreeSurface(sourceSurface); return destSurface; }