| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444 | /* * BinarySerializer.h, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */#pragma once#include "CSerializer.h"#include "CTypeList.h"#include "SerializerReflection.h"#include "ESerializationVersion.h"#include "Serializeable.h"#include "../mapObjects/CArmedInstance.h"VCMI_LIB_NAMESPACE_BEGINclass DLL_LINKAGE CSaverBase{protected:	IBinaryWriter * writer;public:	CSaverBase(IBinaryWriter * w): writer(w){};	void write(const void * data, unsigned size)	{		writer->write(reinterpret_cast<const std::byte*>(data), size);	};};/// Main class for serialization of classes into binary form/// Behaviour for various classes is following:/// Primitives:    copy memory into underlying stream (defined in CSaverBase)/// Containers:    custom overloaded method that decouples class into primitives/// VCMI Classes:  recursively serialize them via ClassName::serialize( BinarySerializer &, int version) callclass BinarySerializer : public CSaverBase{	template<typename Handler>	struct VariantVisitorSaver	{		Handler &h;		VariantVisitorSaver(Handler &H):h(H)		{		}		template <typename T>		void operator()(const T &t)		{			h & t;		}	};	template<typename Fake, typename T>	bool saveIfStackInstance(const T &data)	{		return false;	}	template<typename Fake>	bool saveIfStackInstance(const CStackInstance* const &data)	{		assert(data->armyObj);		SlotID slot;		if(data->getNodeType() == CBonusSystemNode::COMMANDER)			slot = SlotID::COMMANDER_SLOT_PLACEHOLDER;		else			slot = data->armyObj->findStack(data);		assert(slot != SlotID());		save(data->armyObj->id);		save(slot);		if (data->armyObj->id != ObjectInstanceID::NONE)			return true;		else			return false;	}public:	using Version = ESerializationVersion;	std::map<std::string, uint32_t> savedStrings;	std::map<const Serializeable*, uint32_t> savedPointers;	Version version = Version::CURRENT;	static constexpr bool trackSerializedPointers = true;	static constexpr bool saving = true;	bool loadingGamestate = false;	bool hasFeature(Version what) const	{		return version >= what;	};	DLL_LINKAGE BinarySerializer(IBinaryWriter * w);	template<class T>	BinarySerializer & operator&(const T & t)	{		this->save(t);		return * this;	}	void saveEncodedInteger(int64_t value)	{		uint64_t valueUnsigned = std::abs(value);		while (valueUnsigned > 0x3f)		{			uint8_t byteValue = (valueUnsigned & 0x7f) | 0x80;			valueUnsigned = valueUnsigned >> 7;			save(byteValue);		}		uint8_t lastByteValue = valueUnsigned & 0x3f;		if (value < 0)			lastByteValue |= 0x40;		save(lastByteValue);	}	template < typename T, typename std::enable_if_t < std::is_same_v<T, bool>, int > = 0 >	void save(const T &data)	{		uint8_t writ = static_cast<uint8_t>(data);		save(writ);	}	template < class T, typename std::enable_if_t < std::is_floating_point_v<T>, int  > = 0 >	void save(const T &data)	{		// save primitive - simply dump binary data to output		this->write(static_cast<const void *>(&data), sizeof(data));	}	template < class T, typename std::enable_if_t < std::is_integral_v<T> && !std::is_same_v<T, bool>, int  > = 0 >	void save(const T &data)	{		if constexpr (sizeof(T) == 1)		{			// save primitive - simply dump binary data to output			this->write(static_cast<const void *>(&data), sizeof(data));		}		else		{			saveEncodedInteger(data);		}	}	void save(const Version &data)	{		this->write(static_cast<const void *>(&data), sizeof(data));	}	template < typename T, typename std::enable_if_t < std::is_enum_v<T>, int  > = 0 >	void save(const T &data)	{		int32_t writ = static_cast<int32_t>(data);		*this & writ;	}	template < typename T, typename std::enable_if_t < std::is_array_v<T>, int  > = 0 >	void save(const T &data)	{		uint32_t size = std::size(data);		for(uint32_t i=0; i < size; i++)			*this & data[i];	}	template < typename T, typename std::enable_if_t < std::is_pointer_v<T>, int  > = 0 >	void save(const T &data)	{		//write if pointer is not nullptr		bool isNull = (data == nullptr);		save(isNull);		//if pointer is nullptr then we don't need anything more...		if(data == nullptr)			return;		typedef typename std::remove_const_t<typename std::remove_pointer_t<T>> TObjectType;		if(writer->smartVectorMembersSerialization)		{			typedef typename VectorizedTypeFor<TObjectType>::type VType;			typedef typename VectorizedIDType<TObjectType>::type IDType;			if(const auto *info = writer->getVectorizedTypeInfo<VType, IDType>())			{				IDType id = writer->getIdFromVectorItem<VType>(*info, data);				save(id);				if(id != IDType(-1)) //vector id is enough					return;			}		}		if(writer->sendStackInstanceByIds)		{			const bool gotSaved = saveIfStackInstance<void>(data);			if(gotSaved)				return;		}		if(trackSerializedPointers)		{			// We might have an object that has multiple inheritance and store it via the non-first base pointer.			// Therefore, all pointers need to be normalized to the actual object address.			const auto * actualPointer = static_cast<const Serializeable*>(data);			auto i = savedPointers.find(actualPointer);			if(i != savedPointers.end())			{				//this pointer has been already serialized - write only it's id				save(i->second);				return;			}			//give id to this pointer			uint32_t pid = savedPointers.size();			savedPointers[actualPointer] = pid;			save(pid);		}		//write type identifier		uint16_t tid = CTypeList::getInstance().getTypeID(data);		save(tid);		if(!tid)			save(*data); //if type is unregistered simply write all data in a standard way		else			CSerializationApplier::getInstance().getApplier(tid)->savePtr(*this, static_cast<const Serializeable*>(data));  //call serializer specific for our real type	}	template < typename T, typename std::enable_if_t < is_serializeable<BinarySerializer, T>::value, int  > = 0 >	void save(const T &data)	{		const_cast<T&>(data).serialize(*this);	}	void save(const std::monostate & data)	{		// no-op	}	template <typename T>	void save(const std::shared_ptr<T> &data)	{		T *internalPtr = data.get();		save(internalPtr);	}	template <typename T>	void save(const std::shared_ptr<const T> &data)	{		const T *internalPtr = data.get();		save(internalPtr);	}	template <typename T>	void save(const std::unique_ptr<T> &data)	{		T *internalPtr = data.get();		save(internalPtr);	}	template <typename T, typename std::enable_if_t < !std::is_same_v<T, bool >, int  > = 0>	void save(const std::vector<T> &data)	{		uint32_t length = data.size();		*this & length;		for(uint32_t i=0;i<length;i++)			save(data[i]);	}	template <typename T, size_t N>	void save(const boost::container::small_vector<T, N>& data)	{		uint32_t length = data.size();		*this& length;		for (uint32_t i = 0; i < length; i++)			save(data[i]);	}	template <typename T, typename std::enable_if_t < !std::is_same_v<T, bool >, int  > = 0>	void save(const std::deque<T> & data)	{		uint32_t length = data.size();		*this & length;		for(uint32_t i = 0; i < length; i++)			save(data[i]);	}	template <typename T, size_t N>	void save(const std::array<T, N> &data)	{		for(uint32_t i=0; i < N; i++)			save(data[i]);	}	template <typename T>	void save(const std::set<T> &data)	{		uint32_t length = data.size();		save(length);		for(auto i = data.begin(); i != data.end(); i++)			save(*i);	}	template <typename T, typename U>	void save(const std::unordered_set<T, U> &data)	{		uint32_t length = data.size();		*this & length;		for(auto i = data.begin(); i != data.end(); i++)			save(*i);	}	template <typename T>	void save(const std::list<T> &data)	{		uint32_t length = data.size();		*this & length;		for(auto i = data.begin(); i != data.end(); i++)			save(*i);	}	void save(const std::string &data)	{		if (data.empty())		{			save(static_cast<uint32_t>(0));			return;		}		auto it = savedStrings.find(data);		if (it == savedStrings.end())		{			save(static_cast<uint32_t>(data.length()));			this->write(static_cast<const void *>(data.data()), data.size());			// -1, -2...			int32_t newStringID = -1 - savedStrings.size();			savedStrings[data] = newStringID;		}		else		{			int32_t index = it->second;			save(index);		}	}	template <typename T1, typename T2>	void save(const std::pair<T1,T2> &data)	{		save(data.first);		save(data.second);	}	template <typename T1, typename T2>	void save(const std::unordered_map<T1,T2> &data)	{		*this & static_cast<uint32_t>(data.size());		for(auto i = data.begin(); i != data.end(); i++)		{			save(i->first);			save(i->second);		}	}	template <typename T1, typename T2>	void save(const std::map<T1,T2> &data)	{		*this & static_cast<uint32_t>(data.size());		for(auto i = data.begin(); i != data.end(); i++)		{			save(i->first);			save(i->second);		}	}	template <typename T1, typename T2>	void save(const std::multimap<T1, T2> &data)	{		*this & static_cast<uint32_t>(data.size());		for(auto i = data.begin(); i != data.end(); i++)		{			save(i->first);			save(i->second);		}	}	template<typename T0, typename... TN>	void save(const std::variant<T0, TN...> & data)	{		int32_t which = data.index();		save(which);		VariantVisitorSaver<BinarySerializer> visitor(*this);		std::visit(visitor, data);	}	template<typename T>	void save(const std::optional<T> & data)	{		if(data)		{			save(static_cast<uint8_t>(1));			save(*data);		}		else		{			save(static_cast<uint32_t>(0));		}	}	template <typename T>	void save(const boost::multi_array<T, 3> &data)	{		uint32_t length = data.num_elements();		*this & length;		auto shape = data.shape();		uint32_t x = shape[0];		uint32_t y = shape[1];		uint32_t z = shape[2];		*this & x & y & z;		for(uint32_t i = 0; i < length; i++)			save(data.data()[i]);	}	template <std::size_t T>	void save(const std::bitset<T> &data)	{		static_assert(T <= 64);		if constexpr (T <= 16)		{			auto writ = static_cast<uint16_t>(data.to_ulong());			save(writ);		}		else if constexpr (T <= 32)		{			auto writ = static_cast<uint32_t>(data.to_ulong());			save(writ);		}		else if constexpr (T <= 64)		{			auto writ = static_cast<uint64_t>(data.to_ulong());			save(writ);		}	}};VCMI_LIB_NAMESPACE_END
 |