BinaryDeserializer.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501
  1. /*
  2. * BinaryDeserializer.h, part of VCMI engine
  3. *
  4. * Authors: listed in file AUTHORS in main folder
  5. *
  6. * License: GNU General Public License v2.0 or later
  7. * Full text of license available in license.txt file, in main folder
  8. *
  9. */
  10. #pragma once
  11. #include "CSerializer.h"
  12. #include "ESerializationVersion.h"
  13. #include "SerializerReflection.h"
  14. VCMI_LIB_NAMESPACE_BEGIN
  15. /// Main class for deserialization of classes from binary form
  16. /// Effectively revesed version of BinarySerializer
  17. class BinaryDeserializer
  18. {
  19. public:
  20. using Version = ESerializationVersion;
  21. static constexpr bool saving = false;
  22. IGameInfoCallback * cb = nullptr;
  23. Version version = Version::NONE;
  24. bool loadingGamestate = false;
  25. bool reverseEndianness = false; //if source has different endianness than us, we reverse bytes
  26. BinaryDeserializer(IBinaryReader * r)
  27. : reader(r)
  28. {
  29. }
  30. template<class T>
  31. BinaryDeserializer & operator&(T & t)
  32. {
  33. this->load(t);
  34. return *this;
  35. }
  36. void clear()
  37. {
  38. loadedPointers.clear();
  39. loadedSharedPointers.clear();
  40. loadedUniquePointers.clear();
  41. }
  42. bool hasFeature(Version v) const
  43. {
  44. return version >= v;
  45. }
  46. private:
  47. static constexpr bool trackSerializedPointers = true;
  48. std::vector<std::string> loadedStrings;
  49. std::map<uint32_t, Serializeable *> loadedPointers;
  50. std::set<Serializeable *> loadedUniquePointers;
  51. std::map<const Serializeable *, std::shared_ptr<Serializeable>> loadedSharedPointers;
  52. IBinaryReader * reader;
  53. uint32_t readAndCheckLength()
  54. {
  55. uint32_t length;
  56. load(length);
  57. //NOTE: also used for h3m's embedded in campaigns, so it may be quite large in some cases (e.g. XXL maps with multiple objects)
  58. if(length > 1000000)
  59. {
  60. logGlobal->warn("Warning: very big length: %d", length);
  61. };
  62. return length;
  63. }
  64. void read(void * data, unsigned size)
  65. {
  66. auto bytePtr = reinterpret_cast<std::byte *>(data);
  67. reader->read(bytePtr, size);
  68. if(reverseEndianness)
  69. std::reverse(bytePtr, bytePtr + size);
  70. };
  71. int64_t loadEncodedInteger()
  72. {
  73. uint64_t valueUnsigned = 0;
  74. uint_fast8_t offset = 0;
  75. for(;;)
  76. {
  77. uint8_t byteValue;
  78. load(byteValue);
  79. if((byteValue & 0x80) != 0)
  80. {
  81. valueUnsigned |= static_cast<uint64_t>(byteValue & 0x7f) << offset;
  82. offset += 7;
  83. }
  84. else
  85. {
  86. valueUnsigned |= static_cast<uint64_t>(byteValue & 0x3f) << offset;
  87. bool isNegative = (byteValue & 0x40) != 0;
  88. if(isNegative)
  89. return -static_cast<int64_t>(valueUnsigned);
  90. else
  91. return valueUnsigned;
  92. }
  93. }
  94. }
  95. template<class T, typename std::enable_if_t<std::is_floating_point_v<T>, int> = 0>
  96. void load(T & data)
  97. {
  98. this->read(static_cast<void *>(&data), sizeof(data));
  99. }
  100. template<class T, typename std::enable_if_t<std::is_integral_v<T> && !std::is_same_v<T, bool>, int> = 0>
  101. void load(T & data)
  102. {
  103. if constexpr(sizeof(T) == 1)
  104. {
  105. this->read(static_cast<void *>(&data), sizeof(data));
  106. }
  107. else
  108. {
  109. static_assert(!std::is_same_v<uint64_t, T>, "Serialization of unsigned 64-bit value may not work in some cases");
  110. data = loadEncodedInteger();
  111. }
  112. }
  113. template<typename T, typename std::enable_if_t<is_serializeable<BinaryDeserializer, T>::value, int> = 0>
  114. void load(T & data)
  115. {
  116. ////that const cast is evil because it allows to implicitly overwrite const objects when deserializing
  117. typedef typename std::remove_const_t<T> nonConstT;
  118. auto & hlp = const_cast<nonConstT &>(data);
  119. hlp.serialize(*this);
  120. }
  121. template<typename T, typename std::enable_if_t<std::is_array_v<T>, int> = 0>
  122. void load(T & data)
  123. {
  124. uint32_t size = std::size(data);
  125. for(uint32_t i = 0; i < size; i++)
  126. load(data[i]);
  127. }
  128. void load(Version & data)
  129. {
  130. this->read(static_cast<void *>(&data), sizeof(data));
  131. }
  132. template<typename T, typename std::enable_if_t<std::is_enum_v<T>, int> = 0>
  133. void load(T & data)
  134. {
  135. int32_t read;
  136. load(read);
  137. data = static_cast<T>(read);
  138. }
  139. template<typename T, typename std::enable_if_t<std::is_same_v<T, bool>, int> = 0>
  140. void load(T & data)
  141. {
  142. uint8_t read;
  143. load(read);
  144. assert(read == 0 || read == 1);
  145. data = static_cast<bool>(read);
  146. }
  147. template<typename T, typename std::enable_if_t<!std::is_same_v<T, bool>, int> = 0>
  148. void load(std::vector<T> & data)
  149. {
  150. uint32_t length = readAndCheckLength();
  151. if constexpr(std::is_base_of_v<GameCallbackHolder, T>)
  152. data.resize(length, T(cb));
  153. else
  154. data.resize(length);
  155. for(uint32_t i=0;i<length;i++)
  156. load( data[i]);
  157. }
  158. template <typename T, size_t N>
  159. void load(boost::container::small_vector<T, N>& data)
  160. {
  161. uint32_t length = readAndCheckLength();
  162. data.resize(length);
  163. for (uint32_t i = 0; i < length; i++)
  164. load(data[i]);
  165. }
  166. template<typename T, typename std::enable_if_t<!std::is_same_v<T, bool>, int> = 0>
  167. void load(std::deque<T> & data)
  168. {
  169. uint32_t length = readAndCheckLength();
  170. data.resize(length);
  171. for(uint32_t i = 0; i < length; i++)
  172. load(data[i]);
  173. }
  174. template<typename T>
  175. void loadRawPointer(T & data)
  176. {
  177. bool isNull;
  178. load(isNull);
  179. if(isNull)
  180. {
  181. data = nullptr;
  182. return;
  183. }
  184. uint32_t pid = 0xffffffff; //pointer id (or maybe rather pointee id)
  185. if(trackSerializedPointers)
  186. {
  187. load(pid); //get the id
  188. auto i = loadedPointers.find(pid); //lookup
  189. if(i != loadedPointers.end())
  190. {
  191. // We already got this pointer
  192. // Cast it in case we are loading it to a non-first base pointer
  193. data = dynamic_cast<T>(i->second);
  194. if (vstd::contains(loadedUniquePointers, data))
  195. throw std::runtime_error("Attempt to deserialize duplicated unique_ptr!");
  196. return;
  197. }
  198. }
  199. //get type id
  200. uint16_t tid;
  201. load(tid);
  202. typedef typename std::remove_pointer_t<T> npT;
  203. typedef typename std::remove_const_t<npT> ncpT;
  204. if(!tid)
  205. {
  206. data = ClassObjectCreator<ncpT>::invoke(cb);
  207. ptrAllocated(data, pid);
  208. load(*data);
  209. }
  210. else
  211. {
  212. auto * app = CSerializationApplier::getInstance().getApplier(tid);
  213. if(app == nullptr)
  214. {
  215. logGlobal->error("load %d %d - no loader exists", tid, pid);
  216. data = nullptr;
  217. return;
  218. }
  219. auto createdPtr = app->createPtr(*this, cb);
  220. auto dataNonConst = dynamic_cast<ncpT *>(createdPtr);
  221. assert(createdPtr);
  222. assert(dataNonConst);
  223. data = dataNonConst;
  224. ptrAllocated(data, pid);
  225. app->loadPtr(*this, cb, dataNonConst);
  226. }
  227. }
  228. template<typename T>
  229. void ptrAllocated(T * ptr, uint32_t pid)
  230. {
  231. if(trackSerializedPointers && pid != 0xffffffff)
  232. loadedPointers[pid] = const_cast<Serializeable*>(dynamic_cast<const Serializeable*>(ptr)); //add loaded pointer to our lookup map; cast is to avoid errors with const T* pt
  233. }
  234. template<typename T>
  235. void load(std::shared_ptr<T> & data)
  236. {
  237. typedef typename std::remove_const_t<T> NonConstT;
  238. NonConstT * internalPtr;
  239. loadRawPointer(internalPtr);
  240. const auto * internalPtrDerived = static_cast<Serializeable *>(internalPtr);
  241. if(internalPtr)
  242. {
  243. auto itr = loadedSharedPointers.find(internalPtrDerived);
  244. if(itr != loadedSharedPointers.end())
  245. {
  246. // This pointers is already loaded. The "data" needs to be pointed to it,
  247. // so their shared state is actually shared.
  248. data = std::dynamic_pointer_cast<T>(itr->second);
  249. }
  250. else
  251. {
  252. auto hlp = std::shared_ptr<NonConstT>(internalPtr);
  253. data = hlp;
  254. loadedSharedPointers[internalPtrDerived] = std::static_pointer_cast<Serializeable>(hlp);
  255. }
  256. }
  257. else
  258. data.reset();
  259. }
  260. void load(std::monostate & data)
  261. {
  262. // no-op
  263. }
  264. template<typename T>
  265. void load(std::shared_ptr<const T> & data)
  266. {
  267. std::shared_ptr<T> nonConstData;
  268. load(nonConstData);
  269. data = nonConstData;
  270. }
  271. template<typename T>
  272. void load(std::unique_ptr<T> & data)
  273. {
  274. T * internalPtr;
  275. loadRawPointer(internalPtr);
  276. data.reset(internalPtr);
  277. loadedUniquePointers.insert(internalPtr);
  278. }
  279. template<typename T, size_t N>
  280. void load(std::array<T, N> & data)
  281. {
  282. for(uint32_t i = 0; i < N; i++)
  283. load(data[i]);
  284. }
  285. template<typename T>
  286. void load(std::set<T> & data)
  287. {
  288. uint32_t length = readAndCheckLength();
  289. data.clear();
  290. T ins;
  291. for(uint32_t i = 0; i < length; i++)
  292. {
  293. load(ins);
  294. data.insert(ins);
  295. }
  296. }
  297. template <typename T, typename U>
  298. void load(std::unordered_set<T, U> &data)
  299. {
  300. uint32_t length = readAndCheckLength();
  301. data.clear();
  302. T ins;
  303. for(uint32_t i = 0; i < length; i++)
  304. {
  305. load(ins);
  306. data.insert(ins);
  307. }
  308. }
  309. template<typename T>
  310. void load(std::list<T> & data)
  311. {
  312. uint32_t length = readAndCheckLength();
  313. data.clear();
  314. T ins;
  315. for(uint32_t i = 0; i < length; i++)
  316. {
  317. load(ins);
  318. data.push_back(ins);
  319. }
  320. }
  321. template<typename T1, typename T2>
  322. void load(std::pair<T1, T2> & data)
  323. {
  324. load(data.first);
  325. load(data.second);
  326. }
  327. template<typename T1, typename T2>
  328. void load(std::unordered_map<T1, T2> & data)
  329. {
  330. uint32_t length = readAndCheckLength();
  331. data.clear();
  332. T1 key;
  333. for(uint32_t i = 0; i < length; i++)
  334. {
  335. load(key);
  336. load(data[key]);
  337. }
  338. }
  339. template<typename T1, typename T2>
  340. void load(std::map<T1, T2> & data)
  341. {
  342. uint32_t length = readAndCheckLength();
  343. data.clear();
  344. T1 key;
  345. for(uint32_t i = 0; i < length; i++)
  346. {
  347. load(key);
  348. if constexpr(std::is_base_of_v<GameCallbackHolder, T2>)
  349. {
  350. data.try_emplace(key, cb);
  351. load(data.at(key));
  352. }
  353. else
  354. load(data[key]);
  355. }
  356. }
  357. void load(std::string & data)
  358. {
  359. int32_t length;
  360. load(length);
  361. if(length < 0)
  362. {
  363. int32_t stringID = -length - 1; // -1, -2 ... -> 0, 1 ...
  364. data = loadedStrings[stringID];
  365. }
  366. if(length == 0)
  367. {
  368. data = {};
  369. }
  370. if(length > 0)
  371. {
  372. data.resize(length);
  373. this->read(static_cast<void *>(data.data()), length);
  374. loadedStrings.push_back(data);
  375. }
  376. }
  377. template<typename... TN>
  378. void load(std::variant<TN...> & data)
  379. {
  380. int32_t which;
  381. load(which);
  382. assert(which < sizeof...(TN));
  383. // Create array of variants that contains all default-constructed alternatives
  384. const std::variant<TN...> table[] = { TN{ }... };
  385. // use appropriate alternative for result
  386. data = table[which];
  387. // perform actual load via std::visit dispatch
  388. std::visit([&](auto& o) { load(o); }, data);
  389. }
  390. template<typename T>
  391. void load(std::optional<T> & data)
  392. {
  393. uint8_t present;
  394. load(present);
  395. if(present)
  396. {
  397. //TODO: replace with emplace once we start request Boost 1.56+, see PR360
  398. T t;
  399. load(t);
  400. data = std::make_optional(std::move(t));
  401. }
  402. else
  403. {
  404. data = std::optional<T>();
  405. }
  406. }
  407. template<typename T>
  408. void load(boost::multi_array<T, 3> & data)
  409. {
  410. uint32_t length = readAndCheckLength();
  411. uint32_t x;
  412. uint32_t y;
  413. uint32_t z;
  414. load(x);
  415. load(y);
  416. load(z);
  417. data.resize(boost::extents[x][y][z]);
  418. assert(length == data.num_elements()); //x*y*z should be equal to number of elements
  419. for(uint32_t i = 0; i < length; i++)
  420. load(data.data()[i]);
  421. }
  422. template<std::size_t T>
  423. void load(std::bitset<T> & data)
  424. {
  425. static_assert(T <= 64);
  426. if constexpr(T <= 16)
  427. {
  428. uint16_t read;
  429. load(read);
  430. data = read;
  431. }
  432. else if constexpr(T <= 32)
  433. {
  434. uint32_t read;
  435. load(read);
  436. data = read;
  437. }
  438. else if constexpr(T <= 64)
  439. {
  440. uint64_t read;
  441. load(read);
  442. data = read;
  443. }
  444. }
  445. };
  446. VCMI_LIB_NAMESPACE_END