BinarySerializer.h 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393
  1. /*
  2. * BinarySerializer.h, part of VCMI engine
  3. *
  4. * Authors: listed in file AUTHORS in main folder
  5. *
  6. * License: GNU General Public License v2.0 or later
  7. * Full text of license available in license.txt file, in main folder
  8. *
  9. */
  10. #pragma once
  11. #include "CSerializer.h"
  12. #include "CTypeList.h"
  13. #include "SerializerReflection.h"
  14. #include "ESerializationVersion.h"
  15. #include "Serializeable.h"
  16. #include "../mapObjects/CArmedInstance.h"
  17. VCMI_LIB_NAMESPACE_BEGIN
  18. class DLL_LINKAGE CSaverBase
  19. {
  20. protected:
  21. IBinaryWriter * writer;
  22. public:
  23. CSaverBase(IBinaryWriter * w): writer(w){};
  24. void write(const void * data, unsigned size)
  25. {
  26. writer->write(reinterpret_cast<const std::byte*>(data), size);
  27. };
  28. };
  29. /// Main class for serialization of classes into binary form
  30. /// Behaviour for various classes is following:
  31. /// Primitives: copy memory into underlying stream (defined in CSaverBase)
  32. /// Containers: custom overloaded method that decouples class into primitives
  33. /// VCMI Classes: recursively serialize them via ClassName::serialize( BinarySerializer &, int version) call
  34. class BinarySerializer : public CSaverBase
  35. {
  36. template<typename Handler>
  37. struct VariantVisitorSaver
  38. {
  39. Handler &h;
  40. VariantVisitorSaver(Handler &H):h(H)
  41. {
  42. }
  43. template <typename T>
  44. void operator()(const T &t)
  45. {
  46. h & t;
  47. }
  48. };
  49. public:
  50. using Version = ESerializationVersion;
  51. std::map<std::string, uint32_t> savedStrings;
  52. std::map<const Serializeable*, uint32_t> savedPointers;
  53. Version version = Version::CURRENT;
  54. static constexpr bool trackSerializedPointers = true;
  55. static constexpr bool saving = true;
  56. bool loadingGamestate = false;
  57. bool hasFeature(Version what) const
  58. {
  59. return version >= what;
  60. };
  61. DLL_LINKAGE BinarySerializer(IBinaryWriter * w);
  62. template<class T>
  63. BinarySerializer & operator&(const T & t)
  64. {
  65. this->save(t);
  66. return * this;
  67. }
  68. void saveEncodedInteger(int64_t value)
  69. {
  70. uint64_t valueUnsigned = std::abs(value);
  71. while (valueUnsigned > 0x3f)
  72. {
  73. uint8_t byteValue = (valueUnsigned & 0x7f) | 0x80;
  74. valueUnsigned = valueUnsigned >> 7;
  75. save(byteValue);
  76. }
  77. uint8_t lastByteValue = valueUnsigned & 0x3f;
  78. if (value < 0)
  79. lastByteValue |= 0x40;
  80. save(lastByteValue);
  81. }
  82. template < typename T, typename std::enable_if_t < std::is_same_v<T, bool>, int > = 0 >
  83. void save(const T &data)
  84. {
  85. uint8_t writ = static_cast<uint8_t>(data);
  86. save(writ);
  87. }
  88. template < class T, typename std::enable_if_t < std::is_floating_point_v<T>, int > = 0 >
  89. void save(const T &data)
  90. {
  91. // save primitive - simply dump binary data to output
  92. this->write(static_cast<const void *>(&data), sizeof(data));
  93. }
  94. template < class T, typename std::enable_if_t < std::is_integral_v<T> && !std::is_same_v<T, bool>, int > = 0 >
  95. void save(const T &data)
  96. {
  97. if constexpr (sizeof(T) == 1)
  98. {
  99. // save primitive - simply dump binary data to output
  100. this->write(static_cast<const void *>(&data), sizeof(data));
  101. }
  102. else
  103. {
  104. saveEncodedInteger(data);
  105. }
  106. }
  107. void save(const Version &data)
  108. {
  109. this->write(static_cast<const void *>(&data), sizeof(data));
  110. }
  111. template < typename T, typename std::enable_if_t < std::is_enum_v<T>, int > = 0 >
  112. void save(const T &data)
  113. {
  114. int32_t writ = static_cast<int32_t>(data);
  115. *this & writ;
  116. }
  117. template < typename T, typename std::enable_if_t < std::is_array_v<T>, int > = 0 >
  118. void save(const T &data)
  119. {
  120. uint32_t size = std::size(data);
  121. for(uint32_t i=0; i < size; i++)
  122. *this & data[i];
  123. }
  124. template<typename T>
  125. void saveRawPointer(const T & data)
  126. {
  127. //write if pointer is not nullptr
  128. bool isNull = (data == nullptr);
  129. save(isNull);
  130. //if pointer is nullptr then we don't need anything more...
  131. if(data == nullptr)
  132. return;
  133. if(trackSerializedPointers)
  134. {
  135. // We might have an object that has multiple inheritance and store it via the non-first base pointer.
  136. // Therefore, all pointers need to be normalized to the actual object address.
  137. const auto * actualPointer = static_cast<const Serializeable*>(data);
  138. auto i = savedPointers.find(actualPointer);
  139. if(i != savedPointers.end())
  140. {
  141. //this pointer has been already serialized - write only it's id
  142. save(i->second);
  143. return;
  144. }
  145. //give id to this pointer
  146. uint32_t pid = savedPointers.size();
  147. savedPointers[actualPointer] = pid;
  148. save(pid);
  149. }
  150. //write type identifier
  151. uint16_t tid = CTypeList::getInstance().getTypeID(data);
  152. save(tid);
  153. if(!tid)
  154. save(*data); //if type is unregistered simply write all data in a standard way
  155. else
  156. CSerializationApplier::getInstance().getApplier(tid)->savePtr(*this, static_cast<const Serializeable*>(data)); //call serializer specific for our real type
  157. }
  158. template < typename T, typename std::enable_if_t < is_serializeable<BinarySerializer, T>::value, int > = 0 >
  159. void save(const T &data)
  160. {
  161. const_cast<T&>(data).serialize(*this);
  162. }
  163. void save(const std::monostate & data)
  164. {
  165. // no-op
  166. }
  167. template <typename T>
  168. void save(const std::shared_ptr<T> &data)
  169. {
  170. T *internalPtr = data.get();
  171. saveRawPointer(internalPtr);
  172. }
  173. template <typename T>
  174. void save(const std::shared_ptr<const T> &data)
  175. {
  176. const T *internalPtr = data.get();
  177. saveRawPointer(internalPtr);
  178. }
  179. template <typename T>
  180. void save(const std::unique_ptr<T> &data)
  181. {
  182. T *internalPtr = data.get();
  183. saveRawPointer(internalPtr);
  184. }
  185. template <typename T, typename std::enable_if_t < !std::is_same_v<T, bool >, int > = 0>
  186. void save(const std::vector<T> &data)
  187. {
  188. uint32_t length = data.size();
  189. *this & length;
  190. for(uint32_t i=0;i<length;i++)
  191. save(data[i]);
  192. }
  193. template <typename T, size_t N>
  194. void save(const boost::container::small_vector<T, N>& data)
  195. {
  196. uint32_t length = data.size();
  197. *this& length;
  198. for (uint32_t i = 0; i < length; i++)
  199. save(data[i]);
  200. }
  201. template <typename T, typename std::enable_if_t < !std::is_same_v<T, bool >, int > = 0>
  202. void save(const std::deque<T> & data)
  203. {
  204. uint32_t length = data.size();
  205. *this & length;
  206. for(uint32_t i = 0; i < length; i++)
  207. save(data[i]);
  208. }
  209. template <typename T, size_t N>
  210. void save(const std::array<T, N> &data)
  211. {
  212. for(uint32_t i=0; i < N; i++)
  213. save(data[i]);
  214. }
  215. template <typename T>
  216. void save(const std::set<T> &data)
  217. {
  218. uint32_t length = data.size();
  219. save(length);
  220. for(auto i = data.begin(); i != data.end(); i++)
  221. save(*i);
  222. }
  223. template <typename T, typename U>
  224. void save(const std::unordered_set<T, U> &data)
  225. {
  226. uint32_t length = data.size();
  227. *this & length;
  228. for(auto i = data.begin(); i != data.end(); i++)
  229. save(*i);
  230. }
  231. template <typename T>
  232. void save(const std::list<T> &data)
  233. {
  234. uint32_t length = data.size();
  235. *this & length;
  236. for(auto i = data.begin(); i != data.end(); i++)
  237. save(*i);
  238. }
  239. void save(const std::string &data)
  240. {
  241. if (data.empty())
  242. {
  243. save(static_cast<uint32_t>(0));
  244. return;
  245. }
  246. auto it = savedStrings.find(data);
  247. if (it == savedStrings.end())
  248. {
  249. save(static_cast<uint32_t>(data.length()));
  250. this->write(static_cast<const void *>(data.data()), data.size());
  251. // -1, -2...
  252. int32_t newStringID = -1 - savedStrings.size();
  253. savedStrings[data] = newStringID;
  254. }
  255. else
  256. {
  257. int32_t index = it->second;
  258. save(index);
  259. }
  260. }
  261. template <typename T1, typename T2>
  262. void save(const std::pair<T1,T2> &data)
  263. {
  264. save(data.first);
  265. save(data.second);
  266. }
  267. template <typename T1, typename T2>
  268. void save(const std::unordered_map<T1,T2> &data)
  269. {
  270. *this & static_cast<uint32_t>(data.size());
  271. for(auto i = data.begin(); i != data.end(); i++)
  272. {
  273. save(i->first);
  274. save(i->second);
  275. }
  276. }
  277. template <typename T1, typename T2>
  278. void save(const std::map<T1,T2> &data)
  279. {
  280. *this & static_cast<uint32_t>(data.size());
  281. for(auto i = data.begin(); i != data.end(); i++)
  282. {
  283. save(i->first);
  284. save(i->second);
  285. }
  286. }
  287. template <typename T1, typename T2>
  288. void save(const std::multimap<T1, T2> &data)
  289. {
  290. *this & static_cast<uint32_t>(data.size());
  291. for(auto i = data.begin(); i != data.end(); i++)
  292. {
  293. save(i->first);
  294. save(i->second);
  295. }
  296. }
  297. template<typename T0, typename... TN>
  298. void save(const std::variant<T0, TN...> & data)
  299. {
  300. int32_t which = data.index();
  301. save(which);
  302. VariantVisitorSaver<BinarySerializer> visitor(*this);
  303. std::visit(visitor, data);
  304. }
  305. template<typename T>
  306. void save(const std::optional<T> & data)
  307. {
  308. if(data)
  309. {
  310. save(static_cast<uint8_t>(1));
  311. save(*data);
  312. }
  313. else
  314. {
  315. save(static_cast<uint32_t>(0));
  316. }
  317. }
  318. template <typename T>
  319. void save(const boost::multi_array<T, 3> &data)
  320. {
  321. uint32_t length = data.num_elements();
  322. *this & length;
  323. auto shape = data.shape();
  324. uint32_t x = shape[0];
  325. uint32_t y = shape[1];
  326. uint32_t z = shape[2];
  327. *this & x & y & z;
  328. for(uint32_t i = 0; i < length; i++)
  329. save(data.data()[i]);
  330. }
  331. template <std::size_t T>
  332. void save(const std::bitset<T> &data)
  333. {
  334. static_assert(T <= 64);
  335. if constexpr (T <= 16)
  336. {
  337. auto writ = static_cast<uint16_t>(data.to_ulong());
  338. save(writ);
  339. }
  340. else if constexpr (T <= 32)
  341. {
  342. auto writ = static_cast<uint32_t>(data.to_ulong());
  343. save(writ);
  344. }
  345. else if constexpr (T <= 64)
  346. {
  347. auto writ = static_cast<uint64_t>(data.to_ulong());
  348. save(writ);
  349. }
  350. }
  351. };
  352. VCMI_LIB_NAMESPACE_END